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1. Introduction

Extremely popular for statistical inference, Bayesian methods are gaining importance in machine
learning and artificial intelligence problems. Indeed, in many applications, it is important for any
device not only to predict well, but also to provide a quantification of the uncertainty of the prediction.

The main problem when one is to apply Bayesian statistics is that the computation of the estimators
is expensive and sometimes not feasible. Bayesian estimators are based on the posterior distribution
on parameters θ given by:

π(θ|x) = L(θ; x)π(θ)∫
L(θ; x)π(dθ)

(1)

where π is the prior, x the observations, and L(θ; x) the likelihood function. For example,
the computation of the posterior mean

∫
θπ(dθ|x) requires a difficult evaluation of the integrals.

Thanks to the development of computational power, Bayesian estimation became feasible in the 1980s
and the 1990s through Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis–Hastings
algorithm [1] and the Gibbs sampler [2,3]. These algorithms target the exact posterior distribution.
They proved to be useful in many contexts and are still an active area of research. The performances
and applicability of MCMC were improved by variants such as the Hamiltonian MCMC [4,5],
adaptive MCMC [6–8], etc. We refer the reader to the review [9], the books [10–12], and Part III
in [13] for detailed introductions to MCMC. The surveys [14,15] provide an overview on more recent
advances. The asymptotic theory of Markov chains, ensuring the consistency of these algorithms,
was covered in the monographs [16,17]. A few non-asymptotic results are also available [18].

Sequential Monte Carlo emerged in the 1990s as a way to update sequentially (that is, for each
new data) samples from the posterior in hidden state models. They allow thus the computation of
a Bayesian version of filters (such as the Kalman filter [19]). For this reason, they are also referred to as
“particle filters”. We refer the reader to [20] for the state-of-the-art of the early years and to the recent
books [21,22] for pedagogical introductions and an overview of the most recent progress.

However, many modern models in statistics are simply too complex to use such methodologies.
In machine learning, the volume of the data used in practice makes MCMC too slow to be used: first,
each iteration of the algorithm requires accessing all the data, then the number of iterations required
to reach convergence explodes when the dimension is large. In these cases, it seems that targeting
the exact posterior is no longer a realistic objective. This motivated the development of many new
methodologies, where the target is no longer the exact posterior, but simply a part of the information
contained in it, or an approximation.
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Before a short overview of these approximations techniques, let us mention two important
examples where approximations were an essential ingredient in the application of Bayesian methods.
In 2006, Netflix released a dataset containing movie ratings by its users and challenged the
machine learning community to improve on its own predictions for movies that were not rated [23].
Many algorithms were proposed, including methods based on matrix factorization. Bayesian matrix
factorization is computationally intensive. The first success at scaling Bayesian methods to the
Netflix dataset was based on a mean-field variational approximation of the posterior by [24].
Such approximations will be discussed below.

In computer vision problems, the best performances are reached by deep neural networks [25].
Bayesian neural networks became a popular research direction. A new field of Bayesian deep learning
has emerged that relies on approximate Bayesian inference to provide uncertainty estimates for neural
networks without increasing the computation cost too much [26–29]. In particular, References [28,29]
scaled these algorithms to the size of benchmark datasets such as CIFAR-10 and ImageNet.

2. Approximation in the Modelization

In many practical situations, the statistician is not interested in building a complete model
describing the data, but simply in learning some aspects of it. One can think for example of
a classification problem where one does not want to learn the full distribution of the data, but only
a good classifier. A natural idea is to replace π(θ|x) in (1) by:

π̃(θ|x) = exp [−`(x; θ)]π(θ)∫
exp [−`(x; θ)]π(dθ)

(2)

where `(x; θ) is a Taylor loss function—for example, the classification error. When `(x; θ) = − logL(θ; x),
we recover (1) as a special case. When `(x; θ) = −α logL(θ; x) for some α 6= 1, we obtain tempered
posteriors, which appeared for various computational and theoretical reasons in the statistical literature;
see [30–34], respectively. The use of the general form (2) was advocated to the statistical community
by [35].

It appears that this idea was already popular in the machine learning theory community,
where distributions like π̃(θ|x) are often referred to as Gibbs posteriors or aggregation rules.
The PAC-Bayesian theory was developed to provide upper bounds on the prediction risk of
such distributions [36–38]. We refer the reader to nice tutorials on PAC-Bayes bounds [39,40].
References [41–43] emphasized the connection to information theory. Note that the dropout technique
used in deep learning to improve the performances of neural networks [44] was studied with
PAC-Bayes bounds in [40]; see also [26]. Many publications in the past few years indeed confirmed
that PAC-Bayes bounds are very well suited to analyze the performances of deep learning [45–51].
See [52] for a recent survey on PAC-Bayes bounds.

Such distributions were also well known in game theory and in prediction with expert advice
since the 1990s [53,54]. We refer to the book [55], the recent work [56], and to connected problems such
as bandits [57,58].

Finally, many aggregation procedures studied in high-dimensional statistics can also be written
under the form of (2); see [59–64] with various regression or classification losses. References [65]
used a Gibbs posterior based on the quantile loss to estimate a VaR (Value at Risk, a measure of risk
in finance).

3. Approximation in the Computations

Many works have been done in the past few years to compute estimators based on π(θ|x) or
π̃(θ|x) in complex problems, or with very large datasets. Very often, this is at the cost of targeting
an approximation rather than the exact posterior. It is then important to analyze the accuracy of
the approximation.
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The nature and accuracy of these approximations are extremely different from one algorithm to the
other, and some of them are not well understood theoretically. Below, we group these algorithms into
three groups. In Section 3.1, we present methods that still essentially rely on simulations. In Section 3.2,
we present asymptotic approximations. Finally, in Section 3.3, we present optimization based methods
(this grouping is for the ease of exposition and is of course a little crude; each subsection mentions
methods that have little to do with each other).

3.1. Non-Exact Monte Carlo Methods

Monte Carlo methods based on Langevin diffusions were introduced in physics in the 1970s [66].
Let (Ut)t≥0 be a diffusion process given by the stochastic differential equation:

dUt = ∇ log π(Ut|x)dt +
√

2dWt,

where (Wt)t≥0 is a standard Brownian motion. It turns out that the invariant distribution
of (Ut) is π(·|x). A discretization scheme with step h > 0 leads to the Markov chain
Ũn+1 = Ũn + h∇ log π(Un|x) +

√
2hξn, where the (ξn) are i.i.d standard Gaussian variables.

However, it is important to note that (Un) does not admit π(·|x) as an invariant distribution.
Thus, the Langevin Monte Carlo method is not exact (it would become exact with h → 0).
Reference [67] proposed a correction of this method based on the Metropolis–Hastings algorithm,
which leads to an exact algorithm, known as the MALA (the Monte Carlo Adjusted Langevin
Algorithm). The Langevin Monte Carlo and MALA became popular in statistics and machine learning
following [68]. This paper studies the asymptotic properties of both algorithms. Surprisingly, the exact
method does not necessarily enjoy the best asymptotic guarantees. More recently, in the case where
log π(Un|x) is concave, non-asymptotic guarantees where proven for Langevin Monte Carlo with
a running time that depends only polynomially on the dimension of the parameter θ; see [69–74].
Such results are usually not available for exact MCMC methods.

The implementation of the classical Metropolis–Hastings algorithm requires being able to compute
the ratio L(θ; x)/L(θ′|x) for any θ, θ′. In some models with complex likelihoods, or with intractable
normalization constants, this is not possible. This led to a new direction, that is approximations of this
likelihood ratio. A surprising and beautiful fact is that, if each likelihood is computed by an unbiased
Monte Carlo estimator, the algorithm remains exact: this was studied under the name pseudo-marginal
MCMC in [75]. Still, it sometimes requires much work to get unbiased estimates [76,77], when possible
at all. Some authors proposed more general approximations of the likelihood ratio, leading to non-exact
algorithms. References [78–81] proposed estimators based on subsampling when the data x are too
large. Reference [82] proposed an estimator of the likelihood ratio when the likelihood has intractable
constants, as in the exponential random graph model, and proved that, even if the resulting MCMC is
inexact, it remains asymptotically close to the exact chain. A further theory was developed in [83–85].
More on MCMC for big data can be found in [86].

Finally, the ABC (Approximate Bayesian Computation) algorithm was proposed in population
genetics for models where the likelihood is far too complex to be computed, but where it is relatively
easy to sample from it [87,88]. It became extremely popular in some applications; we refer the reader
to the survey [89], to Section 3 in [15], and more recently, to the book [90]. Some theoretical results
were proven in [91]; we also refer the reader to [92–94] for some recent advances.

3.2. Asymptotic Approximations

Laplace’s method provides a Gaussian approximation of the posterior centered on the Maximum
Likelihood Estimator (MLE) and whose covariance matrix is the inverse of the Fisher information.
This approximation can be theoretically justified in parametric models under appropriate regularity
conditions thanks to the Bernstein–von Mises theorem. We refer the reader to Chapter 13 in [95] for
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a complete statement of this result. Integrated Nested Laplace Approximations (INLA) indeed became
very popular in Gaussian latent models to compute approximations of the posterior marginals [96].

The extension of the Bernstein–von Mises theorem to nonparametric or semiparametric models
is a quite technical and important research direction; see for example [97–101] and Chapter 10 in
the monograph [102]. It is important to keep in mind that even in parametric models, when the
assumptions of the theorem are not met, Laplace approximation can be wrong. The asymptotic of the
posterior in such models was studied in detail in [103].

3.3. Approximations via Optimization

A huge number of methods are based on the idea of using optimization algorithms to find the
best approximation of π(·|x), or π̃(·|x), in a set of probability distributions Q fixed by the statistician.
The difference between the various methods is in the choice of the criterion used to define the “best”
approximation. The set Q can be parametric (e.g., Gaussian distributions, inspired by Laplace’s
method) or not, the choice being prescribed by the feasibility of the optimization problem.

Variational approximations are based on the Kullback–Leibler divergence KL:

π̂(θ|x) = argmin
q∈Q

KL(q||π(·|x)) (3)

= argmin
q∈Q

{
Eθ∼q[− logL(θ; x)] + KL(q||π)

}
, (4)

where we remind that KL(q||p) =
∫

log(dq/dp)dp when q is absolutely continuous with respect
to p, and KL(q||p) = +∞ otherwise. We refer the reader to the seminal papers [104,105], to the
tutorial [106], and to the recent review of the huge literature on variational approximations [107].
Note that the approximation used in [108] in the early days of neural networks can also be interpreted
as a variational approximation. Besides the aforementioned applications to recommender systems
and to deep learning, variational inference was successfully used in network data analysis [109],
economics and econometrics [110–113], finance [114], natural language processing [115], and video
processing [116], among others. A huge range of optimization algorithm were used, from the
coordinate-wise optimization in the original publications to message passing [117], the gradient
and stochastic gradient algorithm [27,115,118], and the natural gradient [119]. The convexity and
smoothness of the minimization problem were discussed in [120]. The scope of these methods was
extended to models with intractable likelihood in [121]. Reference [122] pointed out a connection
between (4) and PAC-Bayes bounds, which led to the first generalization error bounds for variational
inference for some Gibbs posteriors, as in (2). The analysis was extended to various settings, including
regular posteriors, as in (1), by [123–131]. In particular, Reference [132] proved that variational inference
leads to the optimal estimation of some classes of functions with deep learning. Note that even whenQ
is the set of all Gaussian distributions on the parameter space, the approximation can be very different
from the Laplace approximation. Indeed, Reference [129] contains an example of a mixture model
where the MLE is not consistent, but Gaussian variational inference is.

The choice of the Kullback–Leibler divergence in (3) and (4) was initially motivated by the
tractability of the computational program to which it leads. Recently, many authors questioned
that choice and proposed extended definitions of variational inference using other divergences;
for a presentation of the most popular divergences in statistics, see the introduction to information
geometry [133]. Note that if we replace KL by another divergence, (3) and (4) are in general no longer
equivalent, which leads to two possible ways to extend the definition. Reference [134] extended (3) by
replacing the KL term by a Rényi divergence, and Reference [135] used the χ2 divergence. However,
Reference [136] discussed the computational difficulties induced by these changes, which might
outweigh the benefits. Reference [137] discussed other criteria, including the Wasserstein distance,
and provided some theoretical guarantees. On the other hand, References [138–141] proposed to use
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more general divergences in (3). This can be related to the generalized exponential family of [142] and
the PAC-Bayes bounds in [143,144].

The very popular Expectation Propagation algorithm (EP) was introduced by [145]. EP can
be interpreted as the minimization of the reverse KL, KL(π(·|x)||q)), instead of (3). This was
detailed in [146], where the author also proposed an extension with α-divergences called power
EP. Algorithmic issues were discussed in [147] and by [148], who proposed stochastic optimization
methods. A first theoretical analysis of EP was proposed in [149]. Let us mention that the textbook [150],
which is a generalist introduction to machine learning, contains a full chapter entirely devoted to
a pedagogical introduction to variational approximations and EP. The paper [151] focuses on the
application of EP to hierarchical models, but also contains a very nice introduction to EP and the
conditions ensuring its stability.

Finally, let us mention approximations by discrete distributions, of the form q = 1
M ∑M

i=1 δθi

where δx is the Dirac mass at x. Note that this is typically the kind of approximation provided by
the MCMC and sequential Monte Carlo methods, but in these methods, the θi are sampled. It is also
possible to try to minimize a distance criterion between q and π(·|x). Unfortunately, when π(·|x)
is continuous, both KL(π(·|x)||q)) = KL(q||π(·|x))) = +∞, so it is not possible to use variational
inference or EP in this case. An energy based criterion was proposed in [152]. Reference [153] proposed
to use Stein divergences between q and π(·|x), and the technique became quite successful [154–156].
Another possible research direction is to use the Wasserstein distance [157].

4. Scope of This Special Issue

The objective of this Special Issue is to provide the latest advances in approximate Monte Carlo
methods and in approximations of the posterior: the design of efficient algorithms, the study of the
statistical properties of these algorithms, and challenging applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Approximate Bayesian Computation
EP Expectation Propagation
MALA Monte Carlo Adjusted Langevin Algorithm
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimator
PAC Probably Approximately Correct
VaR Value at Risk
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