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Abstract: Distance weighted discrimination (DWD) is an appealing classification method that is
capable of overcoming data piling problems in high-dimensional settings. Especially when various
sparsity structures are assumed in these settings, variable selection in multicategory classification
poses great challenges. In this paper, we propose a multicategory generalized DWD (MgDWD)
method that maintains intrinsic variable group structures during selection using a sparse group lasso
penalty. Theoretically, we derive minimizer uniqueness for the penalized MgDWD loss function and
consistency properties for the proposed classifier. We further develop an efficient algorithm based on
the proximal operator to solve the optimization problem. The performance of MgDWD is evaluated
using finite sample simulations and miRNA data from an HIV study.

Keywords: high dimension; multicategory classification; DWD; sparse group lasso; L2-consistency;
proximal algorithm

1. Introduction

Classification problems appear in diverse practical applications, such as spam e-mail classification,
disease diagnosis and drug discovery, among many others (e.g., [1–3]). In these classification
problems, the goal is to predict class labels based on a given set of variables. Recent research has
focused extensively on linear classification: see [4,5] for comprehensive introductions. Among many
linear classification methods, support vector machines (SVMs) (see [6,7]) and distance-weighted
discrimination (DWD) (see [8–10]) are two commonly used large-margin based classification methods.

Owing to the recent advent of new technologies for data acquisition and storage, classification
with high dimensional features, i.e., a large number of variables, has become a ubiquitous problem
in both theoretical and applied scientific studies. Typically, only a small number of instances are
available, a setting we refer to as high-dimensional, low-sample size (HDLSS), as in [11]. In the HDLSS
setting, a so-called “data-piling” phenomenon is observed in [8] for SVMs, occurring when projections
of many training instances onto a vector normal to the separating hyperplane are nearly identical,
suggesting severe overfitting. DWD was originally proposed to overcome data-piling in the HDLSS
setting. In binary classification problems, linear SVMs seek a hyperplane maximizing the smallest
margin for all data points, while DWD seeks a hyperplane minimizing the sum of inverse margins over
all data points. Reference [8] suggests replacing the inverse margins by the q-th power of the inverse
margins in a generalized DWD method; see [12] for a detailed description. Formally, for a training
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data set {(yi, Xi)}N
i=1 of N observations, where Xi ∈ Rp and yi ∈ {−1, 1}, binary generalized linear

DWD seeks a proper separating hyperplane {X : a + X>b = 0} through the optimization problem

arg max
a,b

N

∑
i=1

1
dq

i

s.t. di = yi

(
a + XT

i b
)
+ ηi ≥ 0, ∀i,

ηi ≥ 0, ∀i, ∑
i

ηi ≤ c,

‖b‖2
2 = 1,

(1)

where a and b are the intercept and slope parameters, respectively. The slack variable ηi is introduced
to ensure that the corresponding margin di is non-negative and the constant c > 0 is a tuning parameter
to control the overlap between classes. Problem (1) can also be written in a loss-plus-penalty form
(e.g., [12]) as

(â, b̂) = argmin
a,b

[
1
N

N

∑
i=1

φq

{
yi

(
a + X>i b

)}
+ λ‖b‖2

2

]
, (2)

where

φq(u) =

{
1− u, if u ≤ Q
ϕq(u), if u > Q,

(3)

with Q = q
q+1 , q > 0 and ϕq(u) = (1− Q)(Qu−1)q. When q = 1, (1) becomes the standard DWD

problem in [8] while problem (2) appears in [9,13].
The binary classification problem (1) is well studied. However, in many applications such as

image classification [1], cancer diagnosis [2] and speech recognition [3], to name a few, problems with
more than two categories are commonplace. To solve these multicategory problems with the DWD
classifier, approaches based on either formulation (1) or (2) are common. One common strategy is
to extend problem (1) to multiple classes by solving a series of binary problems in a one-versus-one
(OVO) or one-versus-rest (OVR) method (e.g., [14]). Instead of reducing the multicategory problem to
a binary one, another strategy based on problem (1) considers all classes at once. As shown in [14],
this approach generally works better than the OVO and OVR methods. Based on an extension of
problem (2), [15] proposes multicategory DWD, written in a loss-plus-penalty form as

min
ak ,bk

1
N

N

∑
i=1

φq

(
ayi + X>i byi

)
+ λ

K

∑
k=1
‖bk‖2

2

s.t.
K

∑
k=1

ak = 0;
K

∑
k=1

bjk = 0, ∀j = 1, . . . , p,

(4)

with yi, k ∈ {1, . . . , K} and where ak and bk = (b1k, · · · , bpk) are the intercept and slope parameters for
each category k, respectively. Although these methods can be applied to multicategory classification in
the HDLSS setting, both problems (2) and (4) use the L2 penalty and do not perform feature selection.
As discussed in [16], for high dimensional classification, taking all features into consideration does
not work well for two reasons. First, based on prior knowledge, only a small number of variables are
relevant to the classification problem: a good classifier in high dimensions should have the ability to
sparsely select important variables and discard redundant ones. Second, classifiers using all available
variables in high-dimensional settings may have poor classification performance.
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Much of the SVM literature has considered variable selection in high-dimensional classification
problems to improve performance (e.g., [17–19]). Among the DWD literature, to the best
of our knowledge, only [16] considered variables selection and classification simultaneously.
Wang and Zou [16] considered an L1 rather than an L2 penalty in problem (2) to improve
interpretability through sparsity in the binary classification. Moreover, [16] made selections based on
the strengths of input variables within individual classes but ignored the strengths of input variable
groupings, thereby selecting more factors than necessary for each class. To overcome this weakness
in this paper, we developed a multicategory generalized DWD method that is capable of performing
variable selection and classification simultaneously. Our approach incorporates sparsity and group
structure information via the sparse group lasso penalty (see [20–24]).

Although DWD is well studied, it is less popular than the SVM for binary classification, arguably
for computational and theoretical reasons. For an up-to-date list of works on DWD mostly focused
on the q = 1 case, see [14,15]. Theoretical asymptotic properties of large-margin classifiers in high
dimensional settings were studied in [25], and [26] derived an expression for asymptotic generalization
error. In terms of computation, [8] solved the standard DWD problem in (1) as a second-order cone
programming (SOCP) problem using a primal-dual interior-point method that is computationally
expensive when N or p is large. To overcome computational bottlenecks, [12] proposed an approach
based on a novel formulation of the primal DWD model in (1): this method, proposed in [12],
does not scale to large data sets and requires further work. Lam et al. [27] designed a new algorithm
for large DWD problems with q ≥ 2 and K = 2 based on convergent multi-block ADMM-type
methods (see [28]). Wang and Zou [16] solved the lasso-penalized binary DWD problem by combining
majorization–minimization and coordinate descent methods: the lasso penalty does not directly permit
a SOCP solution. In fact, solution identifiability in the generalized DWD problem with q > 1 requires
more constraints and remains an open research problem (see [8]). To the best of our knowledge, no work
focusing on computational aspects of lasso penalized multicategory generalized DWD (MgDWD)
exists. The same holds for sparse group lasso-penalized MgDWD.

The theoretical and computational contributions of this paper are as follows. First, we establish
the uniqueness of the minimizer in the population form of the MgDWD problem. Second, we prove
a non-asymptotic L2 estimation error bound for the sparse group lasso-regularized MgDWD loss
function in the ultra-high dimensional setting under mild regularity conditions. Third, we develop
a fast, efficient algorithm able to solve the sparse group lasso-penalized MgDWD problem using
proximal methods.

The rest of this paper is organized as follows. In Section 2.1, we introduce the MgDWD problem
with sparse group lasso penalty. In Sections 2.2 and 2.3, we establish theoretical properties of
the population classifier and regularized empirical loss. We propose a computational algorithm
in Section 2.4. Section 3 illustrates the finite sample performance of our method through simulation
studies and a real data analysis. Proofs for major theorems are given in the Appendix A.

2. Methodology

2.1. Model Setup

We begin with some basic set-up and notation. Consider the multicategory classification problem
for a random sample {(yi, Xi)}N

i=1 of N independent and identically distributed (i.i.d.) observations
from some distribution P(y, X). Here, y is the categorical response taking values in Y = {1, . . . , K},
and X = (x1, . . . , xp)> ∈ X ⊂ Rp is the covariate vector. We wish to obtain a proper separating
hyperplane {X ∈ X |ak + X>bk = 0} for each category k ∈ Y , where ak and bk = (b1k, . . . , bpk)

> are
intercept and slope parameters, respectively.

In this paper, we consider MgDWD with sparse group lasso regularization. That is, we estimate a
classification boundary by solving the constrained optimization problem
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min
ak , bk

1
N

N

∑
i=1

φq
(
ayi + X>i byi

)
+ λ1

K

∑
k=1

p

∑
j=1
|bjk|+ λ2

p

∑
j=1

√√√√ K

∑
k=1

b2
jk

s.t.
K

∑
k=1

ak = 0;
K

∑
k=1

bjk = 0, ∀j = 1, . . . , p,

(5)

where φq is as defined in (3).
To approach this problem, we apply the concept of a “margin vector” to extend the definition

of a (binary) margin to the multicategory case. Denote the margin vector of an observation Xi as
Fi = ( fi1, . . . , fiK)

>, with fik = ak + X>i bk satisfying ∑K
k=1 fik = 0. Let Ei = (ei1, . . . , eiK)

> be the class
indicator vector with eik = 1{yi = k}. The multicategory margin of the data point (yi, Xi) is then
given as fiyi = ayi + X>i byi = E>i Fi. Therefore, the MgDWD loss can be rewritten as

φq(ayi + X>i byi ) = φq(E>i Fi) = E>i φq(Fi) =
K

∑
k=1

1{yi = k}φq(ak + X>i bk). (6)

Based on (6), Lemma 1 describes the Fisher consistency of the MgDWD loss.

Lemma 1. Given X = u, the minimizer of the conditional expectation of (6) is
F̃(u) =

(
f̃1(u), . . . , f̃K(u)

)>, satisfying

argmax
k∈Y

f̃k(u) = argmax
k∈Y

Pr{y = k|X = u},

where

f̃k(u) =


Q q

√
Pr{y = k|X = u}
Pr{y = k∗|X = u} , k 6= k∗

−Q ∑
l 6=k∗

q

√
Pr{y = l|X = u}

Pr{y = k∗|X = u} , k = k∗.

and k∗ = argmin
k∈Y

Pr{y = k|X = u}.

Consequently, f̃k(u) can be treated as an effective proxy of Pr{y = k|X = u} and, for any new
observation X∗, a reasonable prediction of its label y∗ is

ŷ∗ = argmax
k∈Y

{ak + X>∗ bk}.

Speaking to the sparse group lasso (SGL) regularization in (5), the L1 penalty encourages an
element-wise sparse estimator that selects important variables for each category, indicated by b̂jk 6= 0.
Assuming that parameters in different categories share the same information, we use an L2 penalty
to encourage a group-wise sparsity structure that removes covariates that are irrelevant across
all categories, that is, where β̂ j = (b1j, . . . , bKj)

> = 0. Specifically, let xj = (x1j, · · · , xNj)
T and

B = (bjk) ∈ Rp×K
jk , where the k-th column bk is the slope vector for the category label k and the j-th

row β>j is the group coefficient for the variable xj. If xj is noise in the classification problem or is not
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relevant to category label k, then the entry bjk of B should be shrunk to exactly zero. The SGL penalty
of (5) can be written as a convex combination of the lasso and group lasso penalties in terms of β j as

λ1

K

∑
k=1

p

∑
j=1
|bjk|+ λ2

p

∑
j=1

√√√√ K

∑
k=1

b2
jk = λ

p

∑
j=1

{
τ‖β j‖1 + (1− τ)‖β j‖2

}
, (7)

where λ > 0 is the scale of the penalty and τ ∈ [0, 1] tunes the propensity between the element-wise
and group-wise sparsity structure.

2.2. Population MgDWD

In this subsection, some basic results pertaining to unpenalized population MgDWD are given.
These results are necessary for further theoretical analysis.

Denote the marginal probability mass of y as Pr(y = k) = πk with πk > 0 and ∑K
k=1 πk = 1,

and the conditional probability density functions of X given y = k by g(X | y = k) = gk(X).
Let Θ = (θ1, . . . , θK) be the collection of coefficient vectors θk = (ak, b>k )

> for all labels and
Z = (1, X>)>. The population version of the MgDWD problem in (6) is

L(ϑ) = E
{
I(Y )>φq(Θ

>Z)
}
=

K

∑
k=1

πk

∫
X

φq(Z>θk)gk(x)dx, (8)

where ϑ = vec{Θ} is the vectorization of the matrix Θ and I(Y ) = (1{y = 1}, . . . ,1{y = K})> is
a random vector. Denote the true parameter value ϑ∗ as a minimizer of the population MgDWD
problem, namely,

ϑ∗ ∈ argmin
ϑ∈C

L(ϑ),

where C =
{

ϑ ∈ RK(p+1)
∣∣ Cϑ = 0K

}
is the set of sum-constrained ϑ with C = 1>K ⊗ Ip+1, where ⊗

denotes the Kronecker product.
To facilitate our theoretical analysis, we first define the gradient vector and Hessian matrix of the

population MgDWD loss function. We then introduce some regularity conditions necessary to derive
theoretical properties of this problem. Let diag{v} be a diagonal matrix constructed from the vector v,
and let ◦ and ⊕ be the Hadamard product and the direct matrix sum, respectively. Denote the gradient
vector of the population MgDWD loss function (8) as

S(ϑ) = E
(
{I(Y ) ◦ φ′q(Θ

>Z)} ⊗ Z
)
= vec

(
S1, . . . , SK

)
,

with

Sk = E
{
1{y = k}φ′q(Z>θk)Z

}
= πk

∫
X

φ′q(Z>θk)Zgk(X)dX,

and its Hessian matrix as

H(ϑ) = E
{

diag
{
I(Y , X ) ◦ ϕ′′q (Θ

>Z)
}
⊗ (ZZ>)

}
=

K⊕
k=1

Hk,

where ϕ′′q denotes the second derivative of the function ϕq; I(Y , X ) = I(Y ) ◦ I(X ) is a random
vector with I(X ) = (1{X ∈ X1}, . . . ,1{X ∈ Xk})> and Xk =

{
X ∈ X

∣∣Z>θk > Q
}

; and

Hk = E
{
1{y = k, X ∈ Xk}ϕ′′q (Z>θk)ZZ>

}
= πk

∫
Xk

ϕ′′q (Z>θk)ZZ>gk(X)dX.
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The block structure ofH(ϑ) implies a parallel relationship between each category. The relationship
between the θk is reflected by the sum-to-zero constraint in the definition of C .

We assume the following regularity conditions.
(C1) The densities of X given y = k ∈ Y , i.e., the gk(X), are continuous and have finite

second moments.
(C2) 0 < Pr{X ∈ X ∗

k |y = k} < 1 for all k ∈ Y , where X ∗
k =

{
X ∈ X

∣∣Z>θ∗k > Q
}

.
(C3) Var

{
X
∣∣ X ∈ X ∗

k , y = k
}
� Op for all k ∈ Y .

Remark 1. Condition (C1) ensures that L, S andH are well defined and continuous in ϑ. For the theoretically
optimal hyperplane {X ∈ X |Z>θ∗k = 0}, the case with θ∗k = 0p+1 leaves X useless for classification.
On the other hand, when a∗k 6= 0 and b∗k = 0p, the hyperplane is the empty set and is similarly meaningless.
Condition (C2) is proposed to avoid the case where b∗k = 0p so that ϑ∗ always contains information relevant
to the classification problem. For bounded random variables, condition (C2) should be assumed with caution.
Condition (C3) implies the positive definiteness ofH(ϑ∗).

By convexity and the second-order Lagrange condition, the following theorem shows that the
local minimizer of the population MgDWD problem exists and is unique.

Theorem 1. Under the regularity conditions (C1)-(C3), the true parameter ϑ∗ ∈ C is the unique minimizer of
L(ϑ) with b∗k 6= 0p, and

L(ϑ∗) =
K

∑
k=1

A(k, q)πk,

with 0 ≤ u(k, q) ≤ A(k, q) ≤ v(k, q) ≤ 1, where

A(k, q) = 1−E
{
1{X ∈ X ∗

k }
{

1−
( Q

Z>θ∗k

)q} ∣∣∣ y = k
}

,

u(k, q) = Pr
{

X /∈ X ∗
k
∣∣y = k

}
+ Q2q Pr

{
Q < Z>θ∗k ≤ Q−1∣∣y = k

}
,

v(k, q) = Pr
{

Z>θ∗k ≤ 1
∣∣ y = k

}
+ inf

ε>0

( Q
1 + ε

)q
Pr
{

Z>θ∗k > 1 + ε
∣∣ y = k

}
.

The bounds in Theorem 1 show how q affects the loss function L(ϑ∗). The upper bound v(k, q) is
a decreasing function of q with

lim
q→0

v(k, q) = 1 and lim
q→∞

v(k, q) = Pr
{

Z>θ∗k ≤ 1
∣∣ y = k

}
.

In the lower bound u(k, q), the first term Pr
{

X /∈ X ∗
k

∣∣y = k
}

is an increasing function of q and
the last term Q2q Pr

{
Q < Z>θ∗k ≤ Q−1

∣∣y = k
}

is a decreasing function of q, with

lim
q→0

u(k, q) = 1 and lim
q→∞

u(k, q) = Pr
{

Z>θ∗k ≤ 1
∣∣ y = k

}
.

Consequently, for the given population P(y, X), a larger q encourages the population MgDWD
estimator to focus more on the regions {X /∈ Xk, y = k

}
that correspond to misclassifications. As a

result, the estimator’s performance will be similar to the hinge loss as q→ ∞. Setting q too small will
lead to an ineffective classifier due to the unreasonable penalty placed on the well classified region
{X ∈ Xk, y = k

}
. This variation in the lower bound with respect to q provides a necessary condition

for the existence of an optimal q.
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Remark 2. The explicit relationship between q and ϑ∗ is complicated. While it may be more desirable to prove
that a greater value of q results in a smaller value of the loss function L(ϑ), there is no explicit formula for the
optimal value ϑ∗ in terms of q.

2.3. Estimator Consistency

Under the unpenalized framework presented in the previous subsection, all covariates will
contribute to the classification task for each category: this scenario may lead to a classifier that overfits
to the training data set. In this subsection, we study the consistency of the estimator for (5) in ultra-high
dimensional settings.

To achieve structural sparsity in the estimator, the regularization parameter λ in (7) must be large
enough to dominate the gradient of the empirical MgDWD loss evaluated at the theoretical minimizer
ϑ∗ = vec{Θ∗} with high probability. On the other hand, λ should also be as small as possible to
reduce the bias incurred by the SGL regularization term

P(β) =
p

∑
j=1

τ‖β j‖1 + (1− τ)‖β j‖2.

Lemma 2 provides a suitable choice of λ under the following assumption.
(A1) The predictors X = (x1, . . . , xp) ∈ Rp are independent sub-Gaussian random vectors

satisfying EX = 0p, and where Var(X) = Σ, there exists a constant κ > 0 such that for any γ ∈ Rp,
E exp(γ>Σ−1/2X) ≤ exp(‖γ‖2

2κ2/2). From here on, we define ς2
1 as the largest eigenvalue of Σ.

Lemma 2. Denote S(ϑ∗) = (IK ⊗ Z>)diag(vec{E})vec{φ′q(ZΘ∗)}, where E =
(
E1, . . . , EN

)>,

Z =
(
Z1, . . . , ZN

)> with Zi = (1, X>i )>, and IK is the identity matrix of size K. Under condition (A1),

P̃
{

PS(ϑ∗)
}
≤ τΛ1 + (1− τ)Λ2

with probability at least 1− 2(Kp)1−c2
1 − p1−c2

2 , where

P = (IK − K−11K1>K )⊗ Ip+1,

Λ1 = max{ς1κ, 1}
(

1− 1
K

)√2 log(pK)
N

,

Λ2 = max{2
√

2ς1κ, 1}
{

c2

√(
1− 1

K

)2 log(p)
N

+

√
K− 1

N

}
,

for constants c1, c2 > 1.

It is difficult to obtain a closed form for the conjugate of the SGL penalty, say,
P̄(v) = supu∈C \{0}

〈u,v〉
P(u) . Instead, we use a regularized upper bound P̃(v) ≥ P̄(v). Based on Lemma 2,

we propose a theoretical tuning parameter value

λ = c0

√
log(pK)

N
, (9)

where c0 is some given constant satisfying λ > τΛ1 + (1− τ)Λ2.
Before we can derive an error bound for the estimator in (5), we impose two

additional assumptions.
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(A2) For the true parameter value ϑ∗, there is a (se, sg)-sparse structure in the coefficients B∗ with
element-wise and group-wise support sets

E =
{
(j, k) ∈ {1, . . . , p} × {1, . . . , K}|b∗jk 6= 0

}
and G =

{
j ∈ {1, . . . , p}|β∗j 6= 0K

}
with cardinality |E | = se and |G | = sg, respectively.

(A3) There exist some positive constants ς2 and ς3 such that

ς2
2 = max

γ∈V

‖diag{vec(E>)}(Z⊗ IK)γ‖2
2

N‖γ‖2
2

and ς2
3 = min

γ∈U

γ>H(ϑ∗)γ

γ>γ

with V =
{

v ∈ RK(p+1)|0 < ‖v‖0 ≤ se + K
}

and

U =

{
δ ∈ RK(p+1)

∣∣∣∣ τ

1− τ
‖δE+‖1 + ∑

j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)}
,

where C0 = (c0−1)
(c0+1) , E c is the complement of E , E+ = E ∪ {l = 1 + (k − 1)(p + 1)|k = 1, . . . , K},

and G+ = G ∪ {0}.
Under the choice of λ given in (9), we show the L2-consistency of the estimator in (5).

Theorem 2. Suppose that conditions (A1)-(A3) hold. Then with λ = c0

√
log(pK)

N in (5), we have that

‖ϑ̂ − ϑ∗‖2 ≤
{

C1
√

se + K + C2

√
sg + 1

}√ log(pK)
N

with probability at least 1 − 2(Kp)2(se+K)(1−c2
3), where C1 = 2ς−2

3 {c0τ + (
√

2 + 2c3)ς2} and
C2 = 2ς−2

3 c0(1− τ).

Remark 3. The sub-Gaussian distribution assumption (A1) is common in high-dimensional scenarios.
This assumption characterizes the tail behavior of a collection of random variables including Gaussian,
Bernoulli, and bounded variables as special cases. Assumption (A2) describes structural sparsity at two
levels. The element-wise size se < p is the size of the underlying generative model, and the group-wise size
sg < pK is the size of the signal covariate set. Both se and sg are allowed to depend on the sample size N.
As a result, the dimension p is allowed to increase with the sample size N. Assumption (A3) guarantees that
eigenvalues are positive in this sparse scenario.

Remark 4. In practice, the tuning parameters λ and τ in (7) are commonly chosen by M-fold cross validation.
That is, we choose the pair (τ, λ) with the highest prediction accuracy among the sub-data sets Dm, specifically,

CV(τ, λ) =
M

∑
m=1

∑
i∈Dm

,1{yi = ŷi(τ, λ)}

where ŷi(τ, λ) = argmax
k∈Y

Z>i θ̂k(τ, λ).

2.4. Computational Algorithm

In this section, we propose an efficient algorithm to solve problem (5). Our approach uses the
proximal algorithm (see [29]) for solving high dimensional regularization problems. In two main steps,
this approach obtains a solution to the constrained optimization problem by applying the proximal
operator to the solution to the unconstrained problem.
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Since regularization is not needed for the intercept terms α = (a1, . . . , aK)
>, it can be separated

from the coefficients in B. The empirical MgDWD loss of (8) is given by

L(ϑ) =
1
N

N

∑
i=1

E>i φq(Fi) =
1
N

tr
{

Eφq(F>)
}
=

1
N

vec{E>}>vec
{

φq(F>)
}

where F = ( fik)N×K = ZΘ = 1Nα> + XB. Various properties of the loss function L(ϑ) follow below.

Lemma 3. The loss function L(ϑ) has Lipschitz continuous partial derivatives. In particular,

for S(α) =
∂L(θ)

∂α
=

1
N
{

E ◦ φ′q(F)
}>1N and any u, v ∈ RK, we have that

∥∥S(u)− S(v)
∥∥

2 ≤
√

nmax

N
(q + 1)2

q
‖u− v‖2,

where nmax is the largest group sample size. For S(B) =
∂L(θ)

∂B
=

1
N
{

E ◦ φ′q(F)
}>X and any U, V ∈ Rp×K,

we have that

∥∥vec{S(U)− S(V)}
∥∥

2 ≤
maxk ‖diag(ek)X‖2

2
N

(q + 1)2

q
‖vec{U−V}‖2,

where ek is the k-th column of E and indicates the observations belonging to the k-th group.

Hence, following the majorization–minimization scheme, we can majorize the empirical MgDWD
loss L(ϑ) by a quadratic function, that is,

L(ϑ) ≤L(ϑ∗) + S(α∗)>(α− α∗) +
Lα

2
‖α− α∗‖2

2

+ vec{S(B)}>vec{B− B∗}+
LB∗
2
‖vec{B− B∗}‖2

2,

for some ϑ∗ = vec{(α∗, B>∗ )>}, where Lα and LB denote the Lipschitz constants in Lemma 3. Instead of
minimizing L(ϑ) directly, we apply gradient descent to minimize its surrogate upper bound function.
The gradient descent updates are given by

α∗ = α− q(q + 1)−2
√

nmaxN

{
E ◦ φ′q(F)

}>1N , (10)

B∗ = B− q(q + 1)−2

maxk ‖diag(ek)X‖2
2

{
E ◦ φ′q(F)

}>X. (11)

Next, we address the problem’s constraints and regularization simultaneously by applying the
proximal operator. For α∗, it is clear that

αnew = argmin
α>1K=0

‖α− α∗‖2
2 = PKα∗, (12)

where PK = IK − k−11K1K. For B∗ = (β1∗, . . . , βp∗)>, the minimization problem can be expressed as

Bnew = argmin
B1K=0p

1
2
‖vec{B− B∗}‖2

2 +
λ1

LB
‖vec{B}‖1 +

λ2

LB
‖vec{B}‖1,2

= argmin
B1K=0p

p

∑
j=1

1
2
‖β j − β j∗‖2

2 +
λ1

LB
‖β j‖1 +

λ2

LB
‖β j‖2,

(13)
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which implies that we can implement minimization for p groups in parallel. The following theorem
provides the solution to (13).

Theorem 3. Let ρ1, ρ2 ≥ 0 and β∗ ∈ RK. Then the constrained regularization problem

min
β∈RK

1
2
‖β− β∗‖2

2 + ρ1‖β‖1 + ρ2‖β‖2

s.t. β>1K = 0

has a solution of the form

β∗ =
{

1− ρ2

‖PK(β∗ − ρ1u)‖2

}
+

PK(β∗ − ρ1u) (14)

for some u ∈ ∂‖β‖1.

In the special case with ρ2 = 0, the constrained regularization problem in Theorem 3 reduces to
the constrained lasso problem with solution β̃∗ = PK(β∗ − ρ1u). Combined with (14), the proximal
operator U , given by

β∗ = U (β̃∗, ρ2) =
{

1− ρ2

‖β̃∗‖2

}
+

β̃∗, (15)

can be introduced to realize the group sparsity of β̃∗.
For the standard lasso problem, the subgradient u has a closed form given by

β̃∗ = β∗ − ρ1u = S(β∗, ρ1), with S(u, v) = sign(u)(|u| − v)+. However, under the constraint on
β̃∗, the naive solution PKS(β∗, ρ1) is misleading in that it satisfies the constraint but does not achieve
shrinkage, let alone loss function minimization. The term PKu is suggestive of the intersection between
the subdifferential set ∂‖β‖1 and the constraint set {β ∈ RK|β>1K = 0}; in this sense, β̃∗ might not
have a closed form. Here we consider using coordinate descent to solve the constrained lasso problem.
For some fixed coordinate m, since β>1K = 0, we have that bm = −∑l 6=m bl . Rewriting the objective
function of the lasso-constrained problem in a coordinate-wise form, we obtain

K

∑
l=1

1
2
(bl − bl∗)

2 + ρ1|bl | =
(

bk −
(bk∗ − bm∗)

2
+

1
2

K

∑
l 6=k,m

bl

)2
+ ρ1

{
|bk|+

∣∣∣bk +
K

∑
l 6=k,m

bl

∣∣∣}
+

1
4

(
bk∗ + bm∗ +

K

∑
l 6=k,m

bl

)2
+

K

∑
l 6=k,m

1
2
(bl − bl∗)

2 + ρ1|bl |.
(16)

Next, Theorem 4 provides the solution to the optimization problem (16).

Theorem 4. Suppose that t, s ∈ R and $ ≥ 0. Then the regularization problem

min
b∈R

1
2
(b− t)2 + ${|b|+ |b + s|}

has solution

b∗ =


t, |t| < C(s, t)

−C(s, t), C(s, t) ≤ |t| ≤ C(s, t) + 2$

sign(t)(|t| − 2$), |t| > C(s, t) + 2$

= t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, 2$
}

,
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where C(s, t) =
1− sign(s)sign(t)

2
|s|.

By Theorem 4, given some m ∈ {1, . . . , K}, the coordinate-wise minimizer for any k 6= m can be
expressed as the proximal operator

bk = T (t, s, ρ1) = t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, ρ1
}

, (17)

with s = ∑l 6=k,m bl and t = (bk∗ − bm∗ − s)/2. If we fix m during iteration, then the shrinkage of bm

will be indirectly reflected in the other bk. We propose that m change with k in the coordinate-wise
minimization process to ensure that every coordinate can be equally shrunk. We summarize our
proposed algorithm in Algorithm 1.

Algorithm 1 Proximal gradient descent algorithm for SGL-MgDWD.

Input: λ1, λ2.
Initialization: α(0) = 0K, B(0) = Op×K, l = 0.

1: repeat
2: Update α according to (10) and (12):

α(l+1) = PK{α(l) − L−1
α S(α(l))}.

3: Update B̃ according to (11):

B̃ = B(l) − L−1
B S(B(l)).

4: Set B(l+1) ← B̃.
5: repeat
6: for m = 1 to K do
7: for k in {1, . . . , K} \m do
8: Update (t, s):

t = b̃k − b̃m, s =
K

∑
r=1

b(l+1)
r − b(l+1)

k − b(l+1)
m .

9: Update b(l+1)
k according to (17) and b(l+1)

m by constraint:

b(l+1)
k = T (t, s, L−1

B λ1), b(l+1)
m = −s− b(l+1)

k .

10: end for
11: end for
12: until B(l+1) convergence.
13: Update B(l+1) according to (15):

B(l+1) = U (B(l+1), L−1
B λ2).

14: Set l ← l + 1.
15: until some condition is met.
Output: α(l) and B(l).
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3. Numerical Analysis

In the following section, we use both simulated and real data sets to evaluate the finite sample
properties of our proposed method. We compare the finite sample performance of SGL-MgDWD with
L1-regularized multinomial logistic regression (L1-logistic).

3.1. Simulation Studies

The data is generated from the following model. Consider the K-category classification problem
where πk = K−1 and gk(X) is the density function of a normal distribution with mean vector
µk = (µ1k, µ2k, 0>p−2)

> and covariance matrix Ip, where (µ1k, µ2k) = (2 cos(πrk), 2 sin(πrk)) with

rk =
2(k−1)

K , for k = 1, . . . , K. In this model, only the first two variables contribute to the classification
and their corresponding parameter vectors β1 and β2 form two groups of coefficients. The true model
has the sparsity structure (se, sg) = (2K, 2) for a total of K(p + 1) coefficients. We set the sample size
for each category to nk = 50, 100, 200 and 400, and the number of classes to K = 5 and 11. We consider
dimensionality p = 100 and 1000.

In what follows, we compare the proposed SGL-MgDWD method with the OVR method based
on SGL-MgDWD with K = 2 (OVR-SGL-gDWD). For SGL-MgDWD, logistic regression and OVR,
the tuning parameter λ is optimized over a discrete set by minimizing the prediction error using 5-fold
cross validation. In each simulation, we conduct 100 runs and use a testing set of equal size to evaluate
each method’s performance using the following criteria:

• Testing set accuracy, measuring the rate of correct classification;
• Signal, as the average number of correctly-selected element-wise and group-wise signals, that is,

with b̂jk 6= 0 and β̂ j 6= 0, respectively, denoted by the pair (s+e , s+g );
• Noise, as the average number of incorrectly-selected element-wise and group-wise components,

that is, with b̂jk = 0 and β̂ j = 0, respectively, denoted by the pair (n+
e , n+

g ).

Simulation results are summarized in Tables 1 and 2.
As shown in Tables 1 and 2, the proposed SGL-MgDWD method performs better than the

L1-logistic and OVR methods. Specifically, in each scenario, predictions from the SGL-MgDWD
method had higher accuracy relative to the other two methods. Similarly, the SGL-MgDWD method
correctly selected the signal components of the model with fewer incorrectly-selected noise components,
again relative to the L1-logistic and OVR methods. These simulation results also demonstrate that
test accuracy increases with increasing sample size nk and that test accuracy decreases with higher
dimension p at fixed nk. This is consistent with the derived theoretical properties. All computations
were performed on a Tensorflow 2.3 CPU on Threadripper 2950X at 4.1 Ghz.

3.2. HIV Data Analysis

Symptomatic distal sensory polyneuropathy (sDSP) is a common debilitating condition among
people with HIV. This condition leads to neuropathic pain and is associated with substantial
comorbidities and increased health care costs. Plasma miRNA profiles show differences between HIV
patients with and without sDSP, and several miRNA biomarkers are reported to be associated with
the presence of sDSP in HIV patients (see [30]). The corresponding binary classification problem was
analyzed in [30] using random forest classifiers. However, the HIV data set can be further classified into
four classes. The HIV data set has 1715 miRNA measures for 40 patients and is partitioned into four
groups (K = 4) with nk = 10 patients each category: non-HIV, HIV with no brain damage (HIVNBD),
HIV with brain damage but stable (HIVBDS) and HIV with brain damage and unstable (HIVBDU).
In the following analysis, we apply our proposed method to this classification problem. The primary
aim was to identify critical miRNA biomarkers for each of the four groups. Beyond achieving a finer
classification, this analysis is helpful in assessing related pathogenic effects for each patient group.

Given the small sample size of N = 40, we chose the tuning parameter λ by maximizing
leave-one-out cross validation accuracy. We fixed (q, τ) = (1, 0.1). Table 3 shows the signal for
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coefficient estimates obtained from the SGL-MgDWD method using the selected λ. We conclude
that there are 22 critical miRNA biomarkers important to the classification problem. In particular,
the biomarkers miR-25-star, miR-3171, miR-3924 and miR-4307 are not relevant to the non-HIV group;
miR-4641, miR-4655-3p and miR-660 are not relevant to the HIVNBD group; miR-217 and miR-4683 are
not relevant to the HIVBDS group; and miR-217 and miR-4307 are not relevant to the HIVBDU group.

Table 1. Simulation results for the SGL-MgDWD, L1-logistic, and OVR methods with K = 5. Time is
measured relative to a baseline logistic regression model with K = 5, p = 100, and N = 50. Numbers in
parentheses denote standard deviations.

nk p Method Test Accuracy Signal (s+e , s+g ) Noise (n+
e , n+

g ) Time (SD)

50

100

SGL-MgDWD 0.980 (9.99, 2) (0, 0) 1.150 (0.173)

L1-logistic 0.979 (9.00, 2) (116.98, 26.17) 1.000 (0.153)

OVR-SGL-gDWD 0.912 - - -

1000

SGL-MgDWD 0.979 (10, 2) (6.96, 1.94) 5.290 (0.166)

L1-logistic 0.966 (10, 2) (2793.65, 722.38) 5.130 (0.063)

OVR-SGL-gDWD 0.740 - - -

100

100

SGL-MgDWD 0.981 (10, 2) (0.07, 0.03) 1.453 (0.155)

L1-logistic 0.980 (8.82, 2) (35.18, 3.98) 1.258 (0.127)

OVR-SGL-gDWD 0.828 - - -

1000

SGL-MgDWD 0.980 (10, 2) (1.01, 0.25) 4.863 (0.150)

L1-logistic 0.978 (9.93, 2) (1380.38, 192.37) 4.703 (0.061)

OVR-SGL-gDWD 0.546 - - -

200

100

SGL-MgDWD 0.980 (10, 2) (7.67, 2.08) 1.776 (0.164)

L1-logistic 0.980 (9.39, 2) (13.1, 0.72) 1.709 (0.175)

OVR-SGL-gDWD 0.934 - - -

1000

SGL-MgDWD 0.982 (10, 2) (1.09, 0.29) 8.641 (0.186)

L1-logistic 0.981 (9.79, 2) (199.02, 2.51) 2.505 (0.121)

OVR-SGL-gDWD 0.950 - - -

400

100

SGL-MgDWD 0.981 (10, 2) (0.02, 0) 2.792 (0.159)

L1-logistic 0.981 (10, 2) (4.72, 3.95) 2.828 (0.115)

OVR-SGL-gDWD 0.979 - - -

1000

SGL-MgDWD 0.981 (10, 2) (4.72, 3.95) 15.800 (0.221)

L1-logistic 0.981 (9.6, 2) (16.17, 0.02) 17.915 (1.585)

OVR-SGL-gDWD 0.964 - - -
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Table 2. Simulation results for the SGL-MgDWD, L1-logistic, and OVR methods with K = 11. Time is
measured relative to a baseline logistic regression model with K = 5, p = 100, and N = 50. Numbers in
parentheses denote standard deviations.

nk p Method Test Accuracy Signal (s+e , s+g ) Noise (n+
e , n+

g ) Time (SD)

50

100

SGL-MgDWD 0.735 (21.41, 2) (0.14, 0.02) 1.661 (0.143)

L1-logistic 0.735 (20.13, 2) (337.77, 22.07) 1.610 (0.110)

OVR-SGL-gDWD 0.647 - - -

1000

SGL-MgDWD 0.733 (21.25, 2) (0, 0) 7.105 (0.205)

L1-logistic 0.566 (20.67, 2) (3805.97, 265.82) 6.933 (0.205)

OVR-SGL-gDWD 0.382 - - -

100

100

SGL-MgDWD 0.737 (21.82, 2) (0.06, 0.01) 2.518 (0.099)

L1-logistic 0.721 (20, 2) (173.17, 5.81) 2.418 (0.103)

OVR-SGL-gDWD 0.609 - - -

1000

SGL-MgDWD 0.737 (21.88, 2) (5.4, 0.77) 12.371 (0.109)

L1-logistic 0.697 (20.15, 2) (1859.51, 9.04) 12.279 (0.114)

OVR-SGL-gDWD 0.214 - - -

200

100

SGL-MgDWD 0.738 (22, 2) (0, 0) 5.191 (0.079)

L1-logistic 0.730 (20, 2) (50.7, 0.08) 4.246 (0.100)

OVR-SGL-gDWD 0.609 - - -

1000

SGL-MgDWD 0.738 (21.98, 2) (0.23, 0.04) 21.950 (0.241)

L1-logistic 0.730 (20, 2) (523.08, 1.07) 22.158 (0.163)

OVR-SGL-gDWD 0.490 - - -

400

100

SGL-MgDWD 0.740 (22, 2) (0, 0) 7.025 (0.172)

L1-logistic 0.738 (20, 2) (3.71, 3.48) 7.997 (0.122)

OVR-SGL-gDWD 0.709 - - -

1000

SGL-MgDWD 0.738 (22, 2) (0.68, 0.11) 38.301 (0.200)

L1-logistic 0.734 (20, 2) (38.84, 35.37) 41.059 (2.064)

OVR-SGL-gDWD 0.556 - - -

Table 3. Signal for the coefficient estimates obtained from the SGL-MgDWD method with
(q, τ) = (1, 0.1) for the HIV data set. The symbols “+” and “-” denote positive and negative coefficient
estimates, respectively, while “0” denotes a zero coefficient (i.e., an irrelevant variable).

Non-HIV HIVNBD HIVBDS HIVBDU

interception + + - +
miR-255b - + - +
miR-217 + - 0 0
miR-25-star 0 + + -
miR-3136-5p - - + -
miR-3152-3p + - - +
miR-3159 - - - +
miR-3171 0 + - -
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Table 3. Cont.

Non-HIV HIVNBD HIVBDS HIVBDU

miR-33b - - - +
miR-34c-3p - - + +
miR-3545-5p - + - +
miR-3654 - - - +
miR-3924 0 - + -
miR-4307 0 - + 0
miR-4474-5p - + + +
miR-4526 + - - -
miR-4641 + 0 - -
miR-4655-3p + 0 - -
miR-4680-5p - - + -
miR-4683 - - 0 +
miR-589 - + + -
miR-619 + - - +
miR-660 + 0 - +
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Proof. For simplicity, we write pj = P(y = j|X) and fk = fk(X). Using the Lagrange multiplier
method, we define

L(F) = E
{ K

∑
k=1

1{y = k}φq{F(X)}
∣∣∣X = u

}
+ µ1>K F(X) =

K

∑
k=1

pkφq( fk) + µ fk.

Then for each k,

∂L(F)
∂ fk

= φ′q( fk)pk + µ = 0 (A1)

with

φ′q( f j) =

{
−1, fk ≤ Q

−(Q f−1
k )q, fk > Q.

Without loss of generality, assume that p1 > p2 ≥ p3 ≥ · · · ≥ pK−1 > pK. Note that −1 ≤ φ′q < 0,
and so pj ≥ −φ′q( fk)pk = µ > 0 and µ = pk if and only if fk ≤ Q.
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If µ < pK < pk, then pK 6= µ when fK > Q, which implies that fk > fK > Q for all 1 ≤ k ≤ K.
Hence, substituting φ′q( fk) = −(Q f−1

k )q into (A1) yields

fk = Q q
√

pkµ−1 > Q > 0.

However, ∑K
k=1 fk > 0, contradicting the sum-to-zero constraint. Therefore, µ = pK < pk for

k < K and the result follows.

Appendix A.2. Proof of Theorem 1

Lemma A1. Under (C1), L(ϑ) exists, and it is convex on ϑ.

Proof. The existence of L(ϑ) will be satisfied if

EX|y
{
|φq(Z>θk)|

∣∣ y = k
}
=
∫
X
|φq(Z>θk)|gk(X)dX < ∞.

We divide X into two disjoint subsets. Defining Xk = {X ∈ X | Z>θk > Q}, it is clear that∫
Xk

|φq(Z>θk)|gk(X)dX ≤ (q + 1)−1
∫
Xk

gk(X)dX < ∞.

Note that 0 < φq(u) < (1 + q)−1 < 1 when u > Q. On the other hand, for
X c

k = {X ∈ X | Z>θk ≤ Q},

∫
X c

k

|φq(Z>θk)|gk(X)dX ≤ |1− ak|+
p

∑
j=1

bjk

∫
X
|xj|gk(X)dX < ∞,

if EX|y
{
|xj|

∣∣ y = k
}
< ∞ for all k ∈ Y . This completes the proof of the existence of L(ϑ).

Recall that

L(ϑ) =
K

∑
k=1

πk

∫
X

φq(Z>θk)gk(X)dX,

where φq(u) is a convex function of u, so its composition with the affine mapping u = Z>θk is
still convex in θk. Clearly, gk(X), πk > 0, so the non-negatively-weighted integral and sum both
preserve convexity.

Lemma A2. Existence of minimizers of L(ϑ) on C =
{

ϑ ∈ RK(p+1)
∣∣ Cϑ = 0K

}
, where C = 1>K ⊗ Ip+1.

Proof. By Jensen’s inequality, for any ϑ ∈ C , we have that

L(ϑ) ≥ φq

( K

∑
k=1

πkE{Z>θk|y = k}
)

.
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Let µ = vec
{
(πkE{zj|y = k})jk

}
, where ‖µ‖2 ≥

(
∑K

k=1 π2
k
) 1

2 ≥ K−
1
2 > 0. For some C > 0,

we have that

L(ϑ) ≥φq(µ
>ϑ) = 1{µ>ϑ < Q}(1− µ>ϑ) + 1{µ>ϑ ≥ Q}ϕq(µ

>ϑ)

≥1{µ>ϑ < Q}
∣∣1− |µ>ϑ|

∣∣
=1{µ>ϑ < −(C + 1)}(|µ>ϑ| − 1) + 1{−(C + 1) < µ>ϑ < −1}(|µ>ϑ| − 1)

+ 1{−1 < µ>ϑ < Q}(1− |µ>ϑ|)
>1{‖µ‖2‖ϑ‖2 > C + 1}C

=1
{
‖ϑ‖2 >

C + 1
‖µ‖2

}
C.

Note that 1 − µ>ϑ > 1 − Q > 0 when µ>ϑ < Q. By the Cauchy–Schwarz inequality,
−µ>ϑ = |µ>ϑ| ≤ ‖µ‖2‖ϑ‖2.

Hence, if ‖ϑ‖2 >
C + 1
‖µ‖2

> 0, then L(ϑ) > C > 0. The contrapositive of this result implies the

existence of a minimizer in the unconstrained problem. That is, the closed set
{

ϑ ∈ C
∣∣ L(ϑ) ≤ C

}
is

bounded for some large enough C. This guarantees the existence of a solution, as desired.

Lemma A3. Under (C1), S(ϑ) exists and

∂L(ϑ)
∂ϑ

= S(ϑ).

Proof. The existence of S(ϑ) will follow if∫
X
|φ′q(Z>θk)zj|πkgk(X)dX ≤ πk

∫
X
|zj|gk(X)dX < ∞

for j = 1, . . . , p + 1. Note that |φ′q(u)| ≤ 1 when u > Q.
For every θkj ∈ R, φq(Z>θk) is a Lebesgue integrable function of X. For any u ∈ R, φ′q(u) exists

and |φ′q(u)| ≤ 1. Hence, by the Leibniz integral rule, we have that

∂

∂θjk

∫
X

φq(Z>θk)πkgk(X)dX =
∫
X

∂φq(Z>θk)

∂θjk
πkgk(X)dX

=
∫
X

φ′q(Z>θk)zjπkgk(X)dX

and for any l 6= k,

∂

∂θjl

∫
X

φq(Z>θk)πkgk(X)dX = 0,

which is sufficient to show that

∂L(ϑ)
∂ϑ

= S(ϑ).

Lemma A4. Suppose (C1) is satisfied. Then (C2) implies that b∗k 6= 0.
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Proof. We can rewrite φq(u) as

φq(u) =1{u ≤ Q}(1− u) + 1{u > Q}(1−Q)
(Q

u

)q

=
{
− 1{u ≤ Q} − 1{u > Q}

(Q
u

)q+1}
u + 1{u ≤ Q}+ 1{u > Q}

(Q
u

)q

=φ′q(u)u + 1{u ≤ Q}+ 1{u > Q}
(Q

u

)q
.

Then for any γ ∈ Rp+1 and its corresponding Xk = {X ∈ X |Z>γ > Q}, we have that

E
{
1{y = k}φq(Z>γ)

}
=E
{
1{y = k}φ′q(Z>γ)Z>γ

}
+E

{
1{y = k, Z>γ ≤ Q}

}
+E

{
1{y = k, Z>γ > Q}

( Q
Z>γ

)q}
=S>k (γ)γ + Pr{y = k, X /∈ Xk}+E

{
1{y = k, X ∈ Xk}

( Q
Z>γ

)q}
=S>k (γ)γ + πk

(
1−E

{
1{X ∈ Xk}

{
1−

( Q
Z>γ

)q}∣∣∣y = k
})

.

Let ϑ∗ ∈ C be a local minimizer. It follows that PS(ϑ∗) = 0 and ∑K
k=1 S>k (θ∗k)θ

∗
k = S>(ϑ∗)ϑ∗ = 0

since ϑ∗ = Pϑ∗ and P =
(
IK − K−11K1>K

)
⊗ Ip+1. Therefore,

L(ϑ∗) =E
{
1{y = k}φq(Z>θ∗k)

}
=

K

∑
k=1

πk

(
1−E

{
1{X ∈ X ∗

k }
{

1−
( Q

Z>θ∗k

)q}∣∣∣y = k
})

=
K

∑
k=1

πk

(
1− Pr{X ∈ X ∗

k |y = k}E
{

1−
( Q

Z>θ∗k

)q ∣∣∣ y = k, X ∈ X ∗
k

})
.

(A2)

For any γ ∈ Rp+1 and its corresponding Xk = {X ∈ X |Z>γ > Q}, we always have that

0 < E
{( Q

Z>γ

)q ∣∣∣ y = k, X ∈ Xk

}
< 1.

If γ = 0p+1, then Xk = ∅ so that Pr{y = k, X /∈ Xk} = πk and Pr{y = k, X ∈ Xk} = 0.
If γ1 ≤ Q and γ/1 = 0p, then Xk = ∅, giving the same conclusions as the previous case. If γ1 > Q
and γ/1 = 0p, then Xk = X so that Pr{y = k, X /∈ Xk} = 0 and Pr{y = k, X ∈ Xk} = πk.
Consequently, when 0 < Pr{X ∈ Xk|y = k} < 1, then neither Xk nor X equal ∅, so bk 6= 0 follows.

Note that Pr{X /∈ Xk|y = k} > 0 implies that Pr{0 < Z>γ ≤ Q|y = k} > 0 or
Pr{Z>γ ≤ 0|y = k} > 0, and so special attention should be paid to bounded random variables.

Lemma A5. Under (C1),H(ϑ) exists and

∂2L(ϑ)
∂ϑ∂ϑ>

= H(ϑ).

Furthermore,H(ϑ∗) � OK(p+1) when (C2) and (C3) hold.
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Proof. The existence of H(ϑ) follows if its all entries are absolutely integrable, that is, for any
j, k = 1, . . . , p + 1, ∫

X
|1{Z>θk > Q}ϕ′′q (Z>θk)zjzl |πkgk(X)dX

≤(q + q−1 + 2)
∫
X c

k

|zjzl |gk(X)dX

<∞.

Equivalently, the result follows if EX|y
{
|zjzl |

∣∣ y = k
}
< ∞ for all k ∈ Y . Note that 0 < ϕ′′q (u) ≤

q + q−1 + 2 when u > Q.
Let η be a test function belonging to the Schwartz space D . Then η′ ∈ D with some support

denoted by supp(η′).
Clearly, φ′q(u) is not differentiable at Q but is Lipschitz continuous. Therefore, the measurable

function Sk(θk) is a locally integrable function of θk. Then the (regular) generalized functions Sk(θk)

belong to the dual space of D .
For the distributional derivative of Sk(θk) with respect to θjk, we have that∣∣∣∣∣

〈
∂Sk(θk)

∂θjk
, η(θjk)

〉∣∣∣∣∣ =
∣∣∣∣∣−
〈

Sk(θk),
dη(θjk)

dθjk

〉∣∣∣∣∣
≤
∫
R

∣∣∣Sk(θk)η
′(θjk)

∣∣∣dθjk

≤ max
θjk∈supp(η′)

|η′(θjk)|
∫

supp(η′)
|Sk(θk)|dθjk

<∞

implying that the function f (θjk, X) = φ′q(Z>θk)Zπkgk(X)η′(θjk) is integrable on R × X .
Therefore, by Fubini’s Theorem,〈

∂Sk(θk)

∂θjk
, η(θjk)

〉
=−

〈
Sk(θk),

dη(θjk)

dθjk

〉

=
∫
X
−
〈

φ′q(Z>θk)Zπkgk(X),
dη(θ jk)

dθjk

〉
dX

=
∫
X

〈
∂φ′q(Z>θk)

∂θjk
Zπkgk(X), η(θjk)

〉
dX

=

〈
E
{

∂φ′q(Z>θk)

∂θjk
Z1{y = k}

}
, η(θjk)

〉
,

which implies that

∂Sk(θk)

∂θjk
= E

{
∂φ′q(Z>θk)

∂θjk
Z1{y = k}

}
.

Recall that φ′q can be written as

φ′q(u) = ϕ′q(u)1{u > Q}+ (−1)1{u ≤ Q} = (ϕ′q(u) + 1)1{u > Q} − 1,
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which contains a Schwartz product between the differentiable function ϕ′q(u) and the generalized
function 1{u > Q}. Note that

1{Z>θk > Q} =1{zj > 0, θjk > cjk}+ 1{zj ≤ 0, θjk ≤ cjk}
=(21{zj > 0} − 1)1{θjk > cjk}+ (1− 1{zj > 0})
=sign(zj)1{θjk > cjk}+ 1{zj ≤ 0},

where cjk = (Q−∑l 6=j zlθlk)/zj and

∂1{Z>θk > Q}
∂θjk

+ 0 = sign(zj)δ(θjk − cjk)

= sign(zj)|zj|δ(Z>θk −Q)

= zjδ(Z>θk −Q),

where δ(x) is the Dirac delta function and the distributional derivative of 1{x > 0}. Recall that
δ(cx) = δ(x)/|c| and f (x)δ(x− c) = f (c)δ(x− c) for some constant c and function f .

Thus, by the product rule for the distributional derivative of the Schwartz product,

∂φ′q(Z>θk)

∂θjk
=

∂(ϕ′q(Z>θk) + 1)

∂θjk
1{Z>θk > Q}+ (ϕ′q(Z>θk) + 1)

∂1{Z>θk > Q}
∂θjk

=ϕ′′q (Z>θk)zj1{Z>θk > Q}+ (ϕ′q(Z>θk) + 1)zjδ(Z>θk −Q)

=ϕ′′q (Z>θk)zj1{Z>θk > Q}.

Substituting the above expression, we obtain

∂Sk(θk)

∂θjk
= E

{
ϕ′′q (Z>θk)Zzj1{Z>θk > Q}1{y = k}

}
.

Similarly, for l 6= k, we have the distributional derivative

∂Sk(θk)

∂θjl
= 0.

Recall that the distributional derivative does not depend on the order of differentiation and agrees
with the classical derivative whenever the latter exists. To summarize, we have that

Hk(θk) =
∂2L(ϑ)
∂θk∂θ>k

=
∂Sk(θk)

∂θ>k
, H(ϑ) =

K⊕
k=1

Hk(θk).

The Hk(θk) are symmetric matrices, soH(ϑ) is also symmetric.
In the sense of generalized functions, differentiation is a

continuous operation with respect to convergence in D ′. Therefore,
φ′0 = lim

q→0
φ′q = −1{u ≤ 0} and φ′′0 = lim

q→0
φ′′q = δ(u); φ′∞ = lim

q→∞
φ′q = −1{u ≤ 1} and

φ′′∞ = lim
q→∞

φ′′q = δ(u− 1), which coincides with results from the hinge loss.

Next,H(ϑ) � OK(p+1) if and only if both H1(θ1) and its Schur complement
⊕K

k=2 Hk(θk) are both
symmetric and positive definite. We can deduce that H(ϑ) � OK(p+1) if and only if Hk(θk) � Op+1

for all k.
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Note that there exists c > 0 such that ϕ′′q (Z>θk) ≥ c on Xk. Then for any γ ∈ Rp+1,

γ>Hk(θk)γ =πk

∫
Xk

ϕ′′q (Z>θk)(Z>γ)2gk(X)dX

≥c Pr{X ∈ Xk, y = k}E{(Z>γ)2|X ∈ Xk, y = k}
≥c Pr{X ∈ Xk, y = k}

(
γ2

0 + γ>1 Var{X|X ∈ Xk, y = k}γ1
)
,

which implies that γ>Hk(θk)γ = 0 if and only if γ = 0p+1 when Var{X|X ∈ Xk, y = k} is assumed
to be non-singular. Assuming that Var{X|y = k} � O implies that Var{X|X ∈ Xk, y = k} � O.

Proof of Theorem 1. By Lemma A2, a minimizer ϑ∗ ∈ C exists with b∗k 6= 0p (by Lemma A4) and
H(ϑ∗) � OK(p+1) (by Lemma A5). By the second-order Lagrange condition and the convexity of L(ϑ)
(by Lemma A1), a minimizer of the population MgDWD loss is unique.

Recall from (A2) that

L(ϑ∗) =E
{
1{y = k}φq(Z>θ∗k)

}
=

K

∑
k=1

πk

(
1−E

{
1{X ∈ X ∗

k }
{

1−
( Q

Z>θ∗k

)q}∣∣∣y = k
})

=
K

∑
k=1

A(k, q)πk.

It follows that

0 ≤E
{
1{X ∈ X ∗

k }
{

1−
( Q

Z>θ∗k

)q}∣∣∣y = k
}

<E
{
1{Z>γ > 1 + q−1}+ 1{Q < Z>γ ≤ 1 + q−1}

{
1−

( Q
1 + q−1

)q}∣∣∣y = m
}

=Pr
{

Z>γ > Q
∣∣y = m

}
− Pr

{
Q < Z>γ ≤ Q−1∣∣y = m

}
Q2q

≤1

and

1 ≥E
{
1{X ∈ X ∗

k }
{

1−
( Q

Z>θ∗k

)q}∣∣∣y = k
}

>E
{
1{Z>θ∗k > 1 + ε}

{
1−

( Q
1 + ε

)q}∣∣∣y = k
}

≥ sup
ε>0

{
1−

( Q
1 + ε

)q}
Pr
{

Z>θ∗k > 1 + ε
∣∣ y = m

}
≥0.

Consequently, 0 ≤ u(k, q) ≤ A(k, q) ≤ v(k, q) ≤ 1.
Note that lim

q→∞
(1 + ε)−qQq = e−1 when ε = 0 and lim

q→∞
(1 + ε)−qQq = 0 when ε > 0.

The difference between these two results is attributed to pointwise convergence.



Entropy 2020, 22, 1257 22 of 34

Let fm = 1− A(k, m) ∈ D ′ with m = 1, 2, . . . and η ∈ D . By Fubini’s theorem and the dominated
convergence theorem,

lim
m→∞

〈
fm, η

〉
= lim

m→∞

〈
E
{
1{X ∈ X ∗

k }
( Q

Z>θ∗k

)q∣∣∣y = k
}

, η(γ)
〉

= lim
m→∞

E
{〈

1{X ∈ X ∗
k }
( Q

Z>θ∗k

)q
, η(θ∗k)

〉∣∣∣y = k
}

=E
{

lim
m→∞

〈
1{X ∈ X ∗

k }
( Q

Z>θ∗k

)q
, η(θ∗k)

〉∣∣∣y = k
}

=0 =
〈
0, η(θ∗k)

〉
.

Similarly,

lim
m→0

〈
fm, η

〉
=E
{

lim
m→0

〈
1{X ∈ X ∗

k }
( Q

Z>θ∗k

)q
, η(γ)

〉∣∣∣y = k
}

=E
{〈

1{Z>θ∗k > 0}, η(γ)
〉∣∣∣y = k

}
=
〈
E
{
1{Z>θ∗k > 0}

∣∣y = k
}

, η(θ∗k)
〉

=
〈

Pr
{

Z>θ∗k > 0
∣∣ y = k

}
, η(θ∗k)

〉
,

hence

A(k, ∞) = lim
q→∞

A(k, q) = Pr
{

X /∈ X ∗
k
∣∣ y = k

}
, and A(k, 0) = lim

q→0
A(k, q) = 1.

As a result, A(k, ∞) coincides with the population hinge/SVM loss and A(k, 0) is independent
of θ∗k .

Appendix A.3. Proof of Lemma 2

Proof. By the definition of P̃,

P̃
{

PS(ϑ∗)
}
= τ‖PS(ϑ∗)‖∞ + (1− τ)max

j

{
‖PKS(α∗)‖2, ‖PKS(β∗j )‖2

}
,

where

PKS(α∗) = PK
(
E ◦ φ′q{F(ϑ∗)}

)>1K =
1
N

N

∑
i=1

PKdiag{Ei}φ′q(F∗i ),

PKS(β∗j ) = PK
(
E ◦ φ′q{F(ϑ∗)}

)>xj =
1
N

N

∑
i=1

xijPKdiag{Ei}φ′q(F∗i ),

PK = (p1, . . . , pK) with pk = (plk) = 1{l = k} − K−1, and

E{PKS(α∗)} = PKS(α∗) = 0K, E{PKS(β∗j )} = PKS(β∗j ) = 0K.

Denoting

dik =
{

p>k diag{Ei}φ′q(F∗i )
}
=

K

∑
l=1

(
1{yi = k} − 1

K

)
eilφ
′
q( f ∗il ),
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we have that |dik| ≤ 1− K−1. Note that the dik are N i.i.d. random variables with

1
N

N

∑
i=1

E(dik) = p>k S(α
∗) = 0 and

1
N

N

∑
i=1

E(dikxij) = p>k S(β∗j ) = 0.

By Hoeffding’s inequality, we have that

Pr

{
|p>k S(α∗)| > c1

(
1− 1

K

)√2 log(pK)
N

}
≤ 2(pK)−c2

1 , (A3)

where c1 > 1.
Regarding the dikxij, we have that

E exp{dikxij} ≤ E exp{(1− K−1)|xij|} ≤ exp{4(1− K−1)2ς2
1κ2},

which implies that the dikxij are N independent sub-Gaussian random variables with variance proxy
(1− K−1)2ς2

1κ2. Taking c1 > 1, we have that

Pr

{
|p>k S(β∗j )| > c1ς1κ

(
1− 1

K

)√2 log(pK)
N

}
≤ 2(pK)−c2

1 . (A4)

Then by (A3) and (A4),

Pr
{

max
j

{
|p>k S(α∗)|, |p>k S(β∗j )|

}
> Λ1

}
≤ 2(pK)−c2

1 (A5)

with

Λ1 = max{ς1κ, 1}c1

(
1− 1

K

)√2 log(pK)
N

.

Taking a union bound over the Kp entries of PS(β∗) yields that

Pr
{
‖PS(ϑ∗)‖∞ ≥ Λ1

}
=Pr

{
max

j,k

{∣∣∣ 1
N

N

∑
i=1

p>k S(α∗)
∣∣∣, ∣∣∣ 1

N

N

∑
i=1

p>k S(β∗j )
∣∣∣} ≥ Λ1

}
≤2K(p + 1)(Kp)−c2

1 .

On one hand,

‖Pdiag{Ei}φ′q(F∗i )‖2
2 =‖(Ei − K−1) ◦ φ′q(F∗i )‖2

2 ≤
K

∑
l=1

(eil − K−1)2 · 1 = 1− K−1,

so for any γ ∈ RK,

|γ>Pdiag{Ei}φ′q(F∗i )| ≤ ‖γ‖2

√
1− 1

K

and E{γ>Pdiag{Ei}φ′q(F∗i )} = 0. Applying Hoeffding’s lemma,

E exp{γ>PKS(α∗)} =
N

∏
i=1

E exp
{ 1

N
γ>PKdiag{Ei}φ′q(F∗i )

}
≤ exp

{
‖γ‖2

2
2N

(
1− 1

K

)}
.
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Applying a square root to Theorem 2.1 of [31] with c2 > 1, we have that

Pr

{
‖PS(α∗)‖2 ≥

√
K− 1

N
+ c2

√(
1− 1

K

)2 log(p)
N

}
≤ p−c2

2 . (A6)

On the other hand, since the xij are N independent sub-Gaussian random variables with variance
proxy ς2

1κ2,

E exp{γ>PS(β∗j )} =
N

∏
i=1

E exp
{ xij

N
{

γ>Pdiag{Ei}φ′q(F∗i )
}}

≤
N

∏
i=1

E exp
{√

1− 1
K
‖γ‖2

N
|xij|

}
≤ = exp

{‖γ‖2
2

2

(
1− 1

K

)8ς2
1κ2

N

}
and E{PKS(β∗j )} = 0K. Similarly, we have that

Pr

{
‖PS(β∗j )‖2 ≥ 2

√
2ς1κ

{√
K− 1

N
+ c2

√(
1− 1

K

)2 log(p)
N

}}
≤ p−c2

2 (A7)

for a constant c2 > 1.
Therefore, by (A6) and (A7),

Pr
{

max
j

{
‖PS(α∗)‖2, ‖PS(β∗j )‖2

}
≥ Λ2

}
≤ p−c2

2

with

Λ2 = max{2
√

2ς1κ, 1}
{√

K− 1
N

+ c2

√(
1− 1

K

)2 log(p)
N

}
.

Applying the union bound to (A5), it follows that

Pr
{

P̃
{

PS(ϑ∗)
}
≥ τΛ1 + (1− τ)Λ2

}
≤ 2K(p + 1)(pK)1−c2

1 + p1−c2
2 ,

and the desired result follows.

Appendix A.4. Proof of Theorem 2

Lemma A6. Suppose that λ = c0

√
log(pK)

N
. Then ϑ̂ − ϑ∗ ∈ U , where

U =

{
δ ∈ RK(p+1)

∣∣∣∣ τ

1− τ
‖δE+‖1 + ∑

j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)}
,

C0 = (c0−1)
(c0+1) , E c denotes the complement of E , E+ = E ∪ {l = 1 + (k − 1)(p + 1)|k = 1, . . . , K},

and G+ = G ∪ {0}.

Proof. Since ϑ̂ = ϑ∗ + δ is the minimizer, we have that

L(ϑ∗) + λP(β∗) ≥L(ϑ̂) + λP(β̂)

λ
{

P(β∗)− P(β∗ + δ̃)
}
≥L(ϑ∗ + δ)− L(ϑ∗),

(A8)
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where β∗ is the vector ϑ∗ without the ak components, replacing δ̃ for δ. Then

P(β∗)− P(β∗ + δ̃) =τ
(
‖β∗E ‖1 − ‖β∗E + δ̃E ‖1 − ‖δ̃E c‖1

)
+ (1− τ)

(
∑
j∈G

‖β∗j ‖2 − ∑
j∈G

‖β∗j + δj‖2 − ∑
j/∈G

‖δ∗j ‖2

)
≤τ
(
‖δ̃E ‖1 − ‖δ̃E c‖1

)
+ (1− τ)

(
∑
j∈G

‖δj‖2 − ∑
j/∈G

‖δ∗j ‖2

)
≤τ
(
‖δE+‖1 − ‖δE c‖1

)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 − ∑
j/∈G

‖δj‖2

)
.

By the convexity of L,

L(ϑ∗ + δ)− L(ϑ∗) ≥ 〈S(ϑ∗), δ〉 ≥ −P̄{PS(ϑ∗)}P(δ) ≥ − λ

c0
P(δ).

Note that

P(δ) = τ
(
‖δE+‖1 + ‖δE c‖1

)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 + ∑
j/∈G

‖δj‖2

)
.

Combining the above results, we have that

λ
{

P(ϑ∗)− P(ϑ∗ + δ)
}
≥
{

L(ϑ∗ + δ)− L(ϑ∗)
}

(c + 1)τ‖δE+‖1 + (1− τ) ∑
j∈G+

‖δj‖2 ≥ (c− 1)τ‖δE c‖1 + (1− τ) ∑
j/∈G

‖δj‖2

τ

1− τ
‖δE+‖1 + ∑

j∈G+

‖δj‖2 ≥ C0

( τ

1− τ
‖δE c‖1 + ∑

j/∈G

‖δj‖2

)
.

Lemma A7. Assume that conditions (A1)-(A3) are satisfied. Then

sup
v∈V

|∆L(u, v)−E{∆L(u, v)}|
‖v‖2

> Λ3

with probability at most 2(Kp)2(se+K)(1−c2
3), where

Λ3 = (1 +
√

2c3)ς2

√
2(se + K) log(pK)

N

and ∆L(u, v) = L(u + v)− L(u) for any u, v ∈ RK(p+1) and for some constant c3 > 1.

Proof. Given any u ∈ RK(p+1) and v ∈ V with V =
{

v ∈ RK(p+1)|0 < ‖v‖0 ≤ se + K
}

,

∆L(u, v) =
1
N

N

∑
i=1

E>i
(

φq
{
(U + V)>Zi

}
− φq

{
U>Zi

})
=

1
N

N

∑
i=1

K

∑
k=1

eik

(
φq
{

Z>i (uk + vk)
}
− φq

{
Z>i (uk)

})
=

1
N

N

∑
i=1

di(u, v),

where u = vec{U}, v = vec{V}.
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The bounded gradient implies the Lipschitz continuity of φq so that |φq(u + v)− φq(u)| ≤ |v|.
Since eik ∈ {0, 1}, we have that

|di(u, v)| ≤
K

∑
k=1

∣∣∣eik
{

φq
{

Z>i (uk + vk)
}
− φq(Z>i uk)

}∣∣∣
≤

K

∑
k=1

∣∣eikZ>i vk
∣∣ ≤ E>i vec{V>Zi}

=v>(Zi ⊗ IK)Ei.

Note that

N

∑
i=1

(
v>(Zi ⊗ IK)Ei

)2
= ‖diag{vec{E>}}(Z⊗ IK)v‖2

2.

By Hoeffding’s inequality, we have that

Pr

{∣∣∣ 1
N

N

∑
i=1

di(u, v)−E
( 1

N

N

∑
i=1

di(u, v)
)∣∣∣ > t

}

≤2 exp

{
− 2N2t2

4‖diag{vec{E>}}(Z⊗ IK)v‖2
2

}

≤2 exp

{
− Nt2

2ς2
2‖v‖2

2

}
.

Thus Pr{R(v) > Λ3} ≤ 2(Kp)−(se+K)c2
3 with

R(v) =
|∆L(u, v)−E{∆L(u, v)}|

‖v‖2
and Λ3 = c3ς2

√
2(se + K) log(pK)

N
.

Next, we consider covering V with ε-balls such that for any v1 and v2 in the same ball,∣∣ v1
‖v1‖2

− v1
‖v1‖2

∣∣ ≤ ε, where ε is a small positive number. The number of ε-balls required to cover

a m-dimensional unit ball is bounded by ( 2
ε + 1)m. Then for those v

‖v‖2
, we require a covering number

of at most (3(Kp)/ε)se+K. Let N denote such an ε-net. We have that

Pr

{
sup
v∈N

R(v) > Λ3

}
≤
(3Kp

ε

)se+K
2(Kp)−(se+K)c2

3 = 2
{3

ε
(Kp)1−c2

3

}se+K
.

Furthermore, for any v1, v2 ∈ V ,

|R(v1)− R(v2)| ≤
2
N

∥∥∥diag{vec{E>}}(Z⊗ IK)
( v1

‖v1‖2
− v1

‖v1‖2

)∥∥∥
1

≤ 2√
N

∥∥∥diag{vec{E>}}(Z⊗ IK)
( v1

‖v1‖2
− v1

‖v1‖2

)∥∥∥
2

≤2ς2ε.
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Therefore supv∈V R(v) ≤ supv∈N R(v) + 2ς2ε. Taking ε =

√
(se + K) log(pK)

2N
, we have that

Pr

{
sup
v∈V

R(v) > Λ3

}
≤Pr

{
sup
v∈N

R(v) > (c3 − 1)ς1

√
2(se + K) log(pK)

N

}

≤2
{√ 2N

(se + K) log(pK)
3(Kp)1−(c3−1)2

}se+K

≤2
{
(Kp)2−(c3−1)2

}se+K
.

Setting c3 = 1 +
√

2c4 and c4 > 1, we obtain the desired result that

Pr

{
sup
v∈V

R(v) > (1 +
√

2c4)ς2

√
2(se + K) log(pK)

N

}
≤ 2(Kp)2(se+K)(1−c2

4).

Proof of Theorem 2. Consider a disjoint partition on the coordinate set δ = ϑ̂ − ϑ∗, that is,
δ = ∑M

m=1 vm with vm ∈ V . Note that, each subvector vm has at most se + K non-zero coordinates.
Denote v0 = 0 and um = ϑ∗ + ∑m−1

l=0 vl so that u1 = ϑ∗ and uM + vM = ϑ∗ + δ. We have
the decomposition

∆L(ϑ∗, δ) =L
(

ϑ∗ +
M

∑
m=1

vm

)
− L(ϑ∗) =

M

∑
m=1

L
(

ϑ∗ +
m

∑
l=0

vl

)
− L

(
ϑ∗ +

m−1

∑
l=0

vl

)
=

M

∑
m=1

L(um + vm)− L(um) =
M

∑
m=1

∆L(um, vm).

By Lemma A7,

M

∑
m=1

∆L(um, vm) ≥
M

∑
m=1

E
{

∆L(um, vm)
}
−Λ3‖vm‖2 = E

{
∆L(ϑ∗, δ)

}
−Λ3‖δ‖2

with high probability. By Lemma A5, L is twice differentiable so that

E
{

∆L(ϑ∗, δ)
}
=

1
N

N

∑
i=1

E
(

E>i φq
{

Fi(ϑ
∗ + δ)

})
−E

(
E>i φq

{
Fi(ϑ

∗)
})

=L(ϑ∗ + δ)−L(ϑ∗)

=S(ϑ∗)>δ +
1
2

δ>H(ϑ∗)δ + o(‖δ‖2
2)

≥0 +
ς2

3
2
‖δ‖2

2 + o(‖δ‖2
2).

Consequently, ∆L(ϑ∗, δ) is bounded below by
ς2

3
2
‖δ‖2

2 −Λ3‖δ‖2 with high probability.
Note that

P(β∗)− P(β∗ + δ̃) ≤τ
(
‖δE+‖1 − ‖δE c‖1

)
+ (1− τ)

(
∑

j∈G+

‖δj‖2 − ∑
j/∈G

‖δj‖2

)
≤
(

τ‖δE+‖1 + (1− τ) ∑
j∈G+

‖δj‖2

)
.
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From (A8),

L(ϑ∗) + λP(β∗) ≥L(ϑ̂) + λP(β̂)

λ
{

P(β∗)− P(β∗ + δ̃)
}
≥L(ϑ∗ + δ)− L(ϑ∗)

λ
(

τ‖δE+‖1 + (1− τ) ∑
j∈G+

‖δj‖2

)
≥

ς2
3

2
‖δ‖2

2 −Λ3‖δ‖2.

Clearly, ‖δE+‖1 ≤
√

se + K‖δE+‖2 ≤
√

se + K‖δ‖2 and ∑j∈G+
‖δj‖2 ≤

√
sg + 1‖δ‖2.

We conclude that

ς2
3

2
‖δ‖2

2 ≤λ
(

τ‖δE+‖1 + (1− τ) ∑
j∈G+

‖δj‖2

)
+ Λ3‖δ‖2

‖δ‖2
2 ≤2ς−2

3

{
λ
(

τ
√

se + K + (1− τ)
√

sg + 1
)
+ Λ3

}
‖δ‖2,

after which the desired result follows from straightforward algebraic manipulation.

Appendix A.5. Proof of Lemma 3

Proof. Since

vec(F>)> = vec
{
(1Nα> + XB)>

}>
= α>(1>N ⊗ IK) + vec(B>)>(X> ⊗ IK),

we have that

∂vec(F>)>

∂α
=

∂α>(1>N ⊗ IK)

∂α
=

∂α>

∂α
(1>N ⊗ IK) = IK(1>N ⊗ IK) = 1>N ⊗ IK

∂vec(F>)>

∂vec(B>)
=

∂vec(B>)>(X> ⊗ IK)

∂vec(B>)
= IpK(X> ⊗ IK) = X> ⊗ IK.

The derivative with respect to α is

NS(α) =N
∂L(θ)

∂α
=

∂

∂α
vec{E>}>vec

{
φq(F>)

}
=

∂vec(F>)>

∂α

∂φq
{

vec(F>)>
}

∂vec(F>)
vec{E>}

=(1>N ⊗ IK)diag
(
vec
{

φ′q(F
>)
})

vec{E>}

=vec
(
IK

{
E ◦ φ′q(F)

}>
1N
)

=
{

E ◦ φ′q(F)
}>

1N .
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Thus, ∥∥S(α)|uv
∥∥2

2 =
∥∥S(u)− S(v)

∥∥2
2 = N−2∥∥(1>N ⊗ IK)vec

{(
E ◦ φ′q{F(α)}

∣∣u
v

)>}∥∥2
2

≤N−2∥∥1>N ⊗ IK
∥∥2

2

∥∥vec
{(

E ◦ φ′q{F(α)}
∣∣u
v

)>}∥∥2
2

=N−1
K

∑
k=1

N

∑
i=1

e2
ik
(
φ′q{ fik(uk)} − φ′q{ fik(vk)}

)2

≤N−1
K

∑
k=1

( N

∑
i=1

eik

)
L2

q(uk − vk)
2

≤N−1nmaxL2
q‖u− v‖2

2,

where Lq = (q+1)2

q is the Lipschitz constant of φ′q. We have that Lα =
√

nmax
N Lq.

The derivative with respect to vec(B>) is

N
∂L(θ)

∂vec(B>)
=

∂

∂vec(B>)
vec{E>}>vec

{
φq(F>)

}
=

∂vec(F>)>

∂vec(B>)
∂φq
{

vec(F>)>
}

∂vec(F>)
vec{E>}

=(X> ⊗ IK)diag
(
vec
{

φ′q(F
>)
})

vec{E>}

=vec
(

IK
{

E ◦ φ′q(F)
}>X

)
=vec

({
E ◦ φ′q(F)

}>X
)

.

Therefore, the derivative with respect to B is S(B) = N−1X>
{

E ◦ φ′q(F)
}

. Note that

vec
(

X>
{

E ◦ φ′q(F)
})

=(IK ⊗ X>)diag{vec(E)}vec{φ′q(F)}

=

{
K⊕

k=1

X>diag(ek)

}
vec{φ′q(F)}

and

N

∑
i=1

{
eikX>i (uk − vk)

}2
= ‖diag(ek)X(uk − vk)‖2

2 ≤ ‖diag(ek)X‖2
2‖uk − vk‖2

2;
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thus

N2∥∥vec{S(U)− S(V)}
∥∥2

2 =
K

∑
k=1

∥∥∥X>diag(ek)φq{ fk(bk)}
∣∣uk
vk

∥∥∥2

2

≤
K

∑
k=1
‖X>diag(ek)‖2

2‖diag(ek)φq{ fk(bk)}|
uk
vk‖

2
2

≤
K

∑
k=1
‖diag(ek)X‖2

2

N

∑
i=1

eik
(
φq{ fik(uk)} − φq{ fik(vk)}

)2

≤L2
q

K

∑
k=1
‖diag(ek)X‖2

2

N

∑
i=1

{
eikX>i (uk − vk)

}2

≤L2
q

K

∑
k=1
‖diag(ek)X‖4

2‖uk − vk‖2
2

≤max
k

{
‖diag(ek)X‖2

2

}2
‖vec(U−V)‖2

2.

We conclude that LB = LqN−1 maxk ‖diag(ek)X‖2
2.

Appendix A.6. Proof of Theorem 3

Lemma A8. The indicator function

δR(x) =

{
0, if x ∈ R
∞, if x /∈ R,

whereR = {x ∈ Rp | 1>p x = 0}, has subdifferential

∂δR(x) =

{
{g ∈ Rp | g = s1p, s ∈ R}, if x ∈ R
∅, if x /∈ R.

Proof. Suppose that x ∈ R. Then g ∈ ∂δR(x) if and only if both

δR(y) ≥ δR(x) + 〈g, y− x〉 for all y ∈ R and

ω>(y− x) ≤ 0.

Let z = y− x. Then z ∈ R since 1>p (y− x) = 0. Thus, g>z ≤ 0. If g>z = 0, then g ∈ {g ∈ Rp |
g = s1p, s ∈ R}. If there exists g ∈ ∂δR(x) satisfying g>z < 0 for some z ∈ R, then −z ∈ R, so we
must have that g>z > 0. This is a contradiction.

Now, for any x /∈ R, we have that g ∈ ∂δR(x) if and only if both

δR(y) ≥ δR(x) + 〈g, y− x〉 for all y ∈ R and

ω>(x− y) ≥ ∞.

For x /∈ R and y ∈ R, since z = x− y ∈ Rp and g>z ≥ ∞, it must be that g ∈ ∅.

Proof of Theorem 3. It is sufficient to minimize the objective function

G(β) =
1
2
‖β− β∗‖2

2 + ρ1‖β‖1 + ρ2‖β‖2 + δR(β),
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whereR = {x ∈ RK | 1>K β = 0}. Then the subdifferential of G(β) is

∂G(β) = β− β∗ + ρ1∂‖β‖1 + ρ2∂‖β‖2 + ∂δR(β).

For an optimal solution β∗ ∈ R, we have that 0p ∈ ∂G(β∗) if and only if there exist u ∈ ∂‖β‖1,
v ∈ ∂‖β‖2 and s ∈ R such that β∗ = β∗ − ρ1u − ρ2v − s1p. Since 1>β∗ = 0, we have that
s = p−11>p (β∗ − ρ1u− ρ2v), so

β∗ = PK(β∗ − ρ1u− ρ2v).

If β∗ = 0p, then |uj| < 1 for j = 1, . . . , p, ‖v‖2 ≤ 1 and

‖PK(β∗ − ρ1u)‖2 = ρ2‖PKv‖2 ≤ ρ2‖PK‖2‖v‖2 = ρ2‖v‖2 ≤ ρ2;

If β∗ 6= 0K, then u ∈ ∂‖x‖1 , v = β∗

‖β∗‖2
and

β∗ = PK

(
β∗ − ρ1u− ρ2

β∗

‖β∗‖2

)
(

1 +
ρ2

‖β∗‖2

)
β∗ = PK(β∗ − ρ1u).

Note that β∗ = PKβ∗ ∈ R. Taking the norm of both sides, we see that(
1 +

ρ2

‖β∗‖2

)
‖β∗‖2 = ‖PK(β∗ − ρ1u)‖2

‖β∗‖2 = ‖PK(β∗ − ρ1u)‖2 − ρ2 > 0.

Substituting this result back into the β∗ 6= 0K case, we have that

β∗ =
{

1− ρ2

‖PK(β∗ − ρ1u)‖2

}
PK(β∗ − ρ1u).

Combining the above two cases gives the desired result.

Appendix A.7. Proof of Theorem 4

Proof. Denote the objective function by

G(b) =
1
2
(b− t)2 + ${|b|+ |b + s|}.

When s = 0, we obtain a lasso problem with

b∗ = argmin
b∈R

1
2
(b− t)2 + 2$|x| = S(t, 2$).

When s 6= 0, the subdifferential of G(b) is

∂G(b) = b− t + ${∂|x|+ ∂|x + s|}.

We see that 0 ∈ ∂G(b∗) if and only if there exist u ∈ ∂|b| and v ∈ ∂|b + s| with

b∗ = b− $(u + v).
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If b∗ = 0, then |u| < 1 and v = sign(s), hence

b∗ = 0 if |t− $sign(s)| ≤ $.

If s > 0, then sign(s) = 1 and 0 ≤ t ≤ 2$. If s < 0, then sign(s) = −1, and−2$ ≤ t ≤ 0. Note that
if t 6= 0, then sign(s) = sign(t) or sign(s)sign(t) = 1.

When b∗ = −s, then u = −sign(s) and |v| < 1, hence

b∗ = −s if |t + s + $sign(s)| ≤ $.

If s > 0, then sign(s) = 1 and −(s + 2λ) ≤ t ≤ −s < 0. If s < 0, then sign(s) = −1 and
0 < −s ≤ t ≤ −(s− 2λ). Note that sign(s) = −sign(t) is equivalent to sign(s)sign(t) = −1.

Let C(s, t) =
1− sign(s)sign(t)

2
|s| ≥ 0. We can summarize the two cases above as

b∗ = −C(s, t) if 0 ≤ C(s, t) ≤|t| ≤ C(s, t) + 2$. (A9)

If b∗ 6= 0,−s, then u = sign(b∗) and v = sign(b∗ + s), thus

b∗ = t− $
{

sign(b∗) + sign(b∗ + s)
}

b∗ + s = t + s− $
{

sign(b∗) + sign(b∗ + s)
}

.

If sign(b∗) = −sign(b∗ + s) = 1, then b∗(b∗ + s) < 0 or 0 < t < −s. Thus b∗ = t > 0 if
0 < t < −s. If sign(b∗) = −sign(b∗ + s) = −1, then b∗(b∗ + s) < 0 or −s < t < 0. Thus b∗ = t < 0 if
−s < t < 0. Rewriting the two cases above, we have that

b∗ = t if 0 < |t| < C(s, t). (A10)

If sign(b∗) = sign(b∗ + s) = 1, then

min{b∗, b∗ + s} > 0

t− 2$ +
s− |s|

2
> 0

sign(t)|t| > sign(t)
( |s|

2
+ 2$

)
− s

2
> 0.

Note that t > 0 and sign(x) = sign(t). If sign(b∗) = sign(b∗ + s) = −1, then

max{b∗, b∗ + s} < 0

t + 2$ +
s + |s|

2
> 0

sign(t)|t| < sign(t)
( |s|

2
+ 2$

)
− s

2
< 0.

Note that t < 0 and sign(x) = sign(t). Rewriting the two cases above, we have that

b∗ = t− 2$sign(t) if |t| > 2$ + C(s, t). (A11)

Summarizing (A9)–(A11),

b∗ =


t, |t| < C(s, t),

−C(s, t), C(s, t) ≤ |t| ≤ C(s, t) + 2$,

sign(t)(|t| − 2$), |t| > C(s, t) + 2$,
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with C(s, t) =
1− sign(s)sign(t)

2
|s| ≥ 0. On one hand, when s 6= 0,

b∗ = t− S
(
t, C(s, t)

)
+ S

{
S
(
t, C(s, t)

)
, 2$
}

.

On the other hand, when s = 0, it follows that b∗ = S(t, 2$) since S(z, 0) = z.
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