
entropy

Article

Anisotropic Nucleation, Growth and Ripening under
Stirring—A Phenomenological Model

Andriy Gusak 1,* , Yaroslav Huriev 1 and Jürn W. P. Schmelzer 2

1 Department of Physics, Cherkasy National University, 18000 Cherkasy, Ukraine; yaroslavhuriev@gmail.com
2 Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany;

juern-w.schmelzer@uni-rostock.de
* Correspondence: amgusak@ukr.net; Tel.: +38-097-4571521

Received: 20 October 2020; Accepted: 2 November 2020; Published: 4 November 2020
����������
�������

Abstract: The anisotropic formation of elongated metal-oxide aggregates in water under intensive
stirring is analyzed. It is treated in terms of anisotropic ballistically mediated aggregation kinetics
in open systems. The basic kinetic equations describing the stages of homogeneous nucleation,
independent growth, and ripening of the aggregates are formulated for the open system under the
external influence with the stirring intensity as the main parameter governing the process. The most
significant elongation of the aggregates is shown to evolve at the ripening stage.

Keywords: kinetics; nucleation; growth; ripening; anisotropy; driven system; stirring; ballistic events;
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1. Introduction

Some years ago, a new method of production of rod-like and belt-like metal oxide structures
(TiO2, V2O5) was suggested involving intensive stirring of salted water with initially more or less
equiaxially shaped oxide powder particles at elevated or even at room temperatures [1,2]. This new
method connected the problem of anisotropic nucleation, growth, and ripening [3–6] with the problem
of phase and structural transformations in open driven systems [7–17]. In order to develop a theoretical
interpretation of these interconnected phenomena, the first very simplified models were advanced
recently in [18]. Among other steps, ballistic terms (proportional to stirring intensity) were added to the
kinetic equations of anisotropic precipitate growth and shrinkage following general ideas formulated
long ago by G. Martin et al. [7–10].

In the present paper, we develop a more systematic approach to the general problem of description
of anisotropic nucleation/growth/coarsening under ballistic influence. Taking into account such process
conditions, new phenomena may occur not found at standard process conditions. In particular,
the coarsening (Ostwald ripening) stage of phase/structural transformation in closed systems at
constant pressure and temperature is driven by the tendency to decrease the total surface energy of
the aggregates keeping the total volume of the newly evolving phase constant. This is a consequence
of the thermodynamic evolution criterion implying for such conditions a decrease in the Gibbs free
energy of the system. For these boundary conditions specified, any evolution process has to obey the
mentioned thermodynamic requirements.

In contrast, in open systems, the situation is not that straightforward, because external factors acting
on the system under consideration may compete with this tendency. For example, in the so-called Flux
Driven Ripening (FDR)—the ripening of Cu6Sn5 scallops in the reaction zone between solid copper and
liquid tin-based solder—the total surface remains almost constant instead of decreasing. The decrease
in the Gibbs free energy is not anymore the basic criterion of evolution and has to be replaced by other
evolutions criteria accounting for externally induced fluxes and chemical reactions [15]. In our case of
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nucleation and growth under stirring, the latter mentioned factors may retain the supersaturation at
finite values, so it will not tend to zero as is the case in segregation processes in solutions in closed
systems [12]. As a consequence, common regularities of ripening in closed systems may be violated.
Such new unexpected in advance effects may occur, in particular, in cases if the kinetics of attachment
and detachment differs at different facets of anisotropic particles. The analysis of this problem is the
aim of the present paper.

The paper is structured as follows. In Section 2, we formulate the basic kinetic equations employed
for the description of growth and shrinkage under stirring. These equations are written within the
framework of the linear approximation of non-equilibrium thermodynamics (Onsager approach)
but with the addition of ballistic terms (going beyond standard non-equilibrium thermodynamics).
In Section 3.1, we discuss anisotropic nucleation in open systems under stirring. According to classical
nucleation theory (CNT), nucleation implies overcoming of clusters of the newly evolving phase of
the nucleation barrier following a path of evolution passing the barrier somewhere in the vicinity
of the saddle-point of the Gibbs free energy. This process is generated by random attachments and
detachments of monomers (diffusion in cluster size space) additionally to the drift factors (shrinkage
at subcritical sizes and growth at supercritical sizes). In this paper, we mainly analyze the influence
of stirring on the drift terms in the equations governing nucleation and leave for future the possible
modifications in the noise terms. In Section 3.2, we analyze briefly the evolution of sizes and of aspect
ratios for supercritical particles under stirring at almost constant supersaturation (the growth stage).
In Section 3.3 we will develop a theoretical approach to the description of the ripening stage in open
systems advancing the well-known Lifshitz–Slezov–Wagner (LSW) theory valid for coarsening in
closed systems. To obtain an impression on typical time scales for the processes under consideration,
one should keep in mind that the typical real time to obtain fibers or nanobelts with mean length up
to several tens of microns and lateral size up to one micron, under stirring with rotation frequency
up to 1000 rotations per minute, is up to 300,000 s. A discussion of the results and possible future
developments completes the paper.

2. Methods (Basic Equations)

In [18], we derived simple kinetic equations allowing one to describe, in the first approximation,
the anisotropic growth or shrinkage of nanobelts. These kinetic equations consist of a set
of three equations containing parameters describing the surface tension, kinetic coefficients for
attachment/detachment at quasi-equilibrium conditions, and ballistic detachment frequencies (per unit
area) for the different directions (three facets). Here, we present a more advanced method of analysis
allowing one to treat the phenomena in more detail. In order to proceed, we assume a definite shape of
the evolving aggregates in line with the experimental evidence discussed in the introduction. We take
as a model system simple fiber (cylindrical) structures which may be described by two different
size parameters, length l and diameter D, and two different surface tensions γR (side tension) and
γl (top tension). Alternatively, one could consider hexagonal prismatic structures [6], the methods
developed here are applicable directly also to such and other similar cases.

In the present analysis, we will consider only “free-standing” rods (with diameter D and length l),
though, according to [2], they may nucleate and then grow in one direction at the base of some facet of
an initially more or less equiaxial precipitate. Simple considerations, treating the chemical potential µ
of a given facet via an additional contribution to the Gibbs free energy per atom due to the adding of a
thin layer to this facet, result in the following form of the Gibbs–Thomson relations for aggregates of
cylindrical shape: 

µ
cryst
D = µside = ∂G

∂N

∣∣∣
dD =

µcryst
·
πDldD/2

Ω +γDl·πdD+2γld(πD2/4)
πDldD/2

Ω
=

= µbulk +
2γDΩ

D +
2γlΩ

l

µ
cryst
l = µtop = ∂G

∂N

∣∣∣
dl =

µcryst
·
πD2/4·dl

Ω +γDdl·πD
πD2/4·dl

Ω

= µbulk +
4γDΩ

D

(1)
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Here G is the Gibbs free energy, N is the number of monomers in the rod of diameter D and length
l, Ω is the volume per monomer (atom or molecule), In the case of thermodynamic equilibrium (equal
chemical potentials at all facets), one obtains Wulff’s rule γD

D =
γl
l as a special case from these relations.

Evidently, surface tensions at different facets cannot differ by several orders of magnitude. Thus,
the formation of fibers and belts is a process possible only at substantially non-equilibrium conditions.

Following the ideas of ballistic growth in driven systems [7–10], one may write down the main
phenomenological kinetic equations for a “free-standing” cylinder in solution under stirring [18]:

dD
dt = −2LD

∂G
∂Ncryst

∣∣∣
l
− 2UD = −2LD

∂(Gliq+Gcryst+Gsur f ace)
∂Ncryst

∣∣∣∣∣
l
− 2UD =

= 2LD
(
µliq
− µ

cryst
D

)
− 2UD

dl
dt = −2Ll

∂G
∂Ncryst

∣∣∣
D
− 2Ul = −2Ll

∂(Gliq+Gcryst+Gsur f ace)
∂Ncryst

∣∣∣∣∣
D
− 2Ul =

= 2Ll
(
µliq
− µ

cryst
l

)
− 2Ul

(2)

In such an approach, growth and shrinkage are interface-controlled processes since stirring makes
effective diffusion practically instantaneous. Here, LD, Ll are the kinetic (actually, Onsager) coefficients
for thermally activated atomic detachments (in case of undersaturation) and attachments (in case of
supersaturation) from the side surface and top surface, respectively. A simplified atomistic derivation
of these coefficients and of Equation (2) can be found in [18]. UD, Ul are the velocities of ballistic
(athermal) erosion (due to intensive stirring) of the side and top surfaces, respectively. Factors 2 in
Equation (2) account for growth/shrinkage of the free-standing wire from both sides of rod length and
at opposite points of diameter.

In principle, the kinetic coefficients LD, Ll may depend also on the stirring intensity. Such an effect
can be described, for example, via the effective temperature, Tef, introduced by Martin [7,8]

Te f = T · (1 + ∆) = T ·
(
1 + αJstirring

)
, L ∼ exp

− Q

kT
(
1 + αJstirring

) 
Here Q is the activation energy of detachment and k is the Boltzmann constant. The parameter

∆ as introduced in [7] (where the ballistic effect was caused by irradiation) was just the ratio of
irradiation-induced diffusivity and temperature-induced diffusivity. In our case. the value ∆ = αJstirring

should depend on the ratio of stirring-induced detachments and temperature-induced detachments.
The resulting nonlinearities (typical in such an approach) lead to a more complex treatment, which will
be analyzed elsewhere. In the present paper, we treat LD, Ll as constants.

The chemical potential of the solute in the liquid is determined by the concentration of its atoms
per unit volume, C. We will use for the description the dimensionless ratio, x, of the concentration,
C, of the solute in the liquid and of its concentration, Ccryst, in the crystalline state, i.e., x ≡ C

Ccryst .
The solubility of oxides in water is commonly not high, so that we may use the approximation of the
ideal solution. Moreover, we will consider (so far) the supersaturation ∆ ≡ x− xeq as small (∆/xeq << 1).
Then, we may write

µliq
− µbulk = kT ln

x
xeq

= kT ln
xeq + ∆

xeq
= kT ln

(
1 +

∆
xeq

)
≈

kT
xeq

∆ (3)

So, 
dD
dt = 2LD

(
kT
xeq

∆ − 2γDΩ
D −

2γlΩ
l

)
− 2UD =

= 2LDkT
xeq

(
∆ −

xeq·2γDΩ/kT
D −

xeq·2γlΩ/kT
l −

xeqUD
kTLD

)
dl
dt =

2LlkT
xeq

(
∆ − 2

xeq·2γDΩ/kT
D −

xeqUl
kTLl

) (4)
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In general, supersaturation is correlated with the size distribution of the evolving aggregates by
the mass conservation law [12]:

(
xeq + ∆(t)

)1−

N(t)∑
i

π
4 D2

i li

Vtot

+
N(t)∑

i

π
4 D2

i li

Vtot =

=
(
xeq + ∆(t = 0)

)1−

N0∑
i

π
4 D2

0il0i

Vtot

+
N0∑

i

π
4 D2

0il0i

Vtot

(5)

These equations contain many parameters with dimensions. In order to simplify the theoretical
analysis, we now introduce a characteristic length, and then, using it, dimensionless sizes, time, and
dimensionless ballistic terms via:

λ0 = xeq
2
√
γDγLΩ
kT , λD = xeq

2γDΩ
kT =

√
γD
γL
λ0, λl = xeq

2γlΩ
kT =

√
γL
γD
λ0,

rtherm
≡

√
γD
γL

, rkinet
≡

√
LD
Ll

, rbal
≡

√
UD
Ul

, J ≡
xeq
√

UDUl

kT
√

LDLl

τ ≡
√

LDLl
2kT
λ0xeq

t, ρ ≡ D
λ0

, z ≡ l
λ0

(6)

As the result, we obtain the dimensionless version of the kinetic equations in the form:

dρ
dτ = rkinet

(
∆ − rtherm

ρ −
1/rtherm

z −
rbal

rkinet J
)

dz
dτ = 1

rkinet

(
∆ − 2rtherm

ρ −
rkinet

rbal J
) (7)

Let us roughly estimate the main characteristic parameters: The Onsager coefficients L for the
proportionality factors between velocity and excess chemical potential, may be evaluated (very roughly)
from the Nernst–Einstein relation, the width “delta” of crystal/liquid interface (a few Angstroems),
and from the analogue of diffusion coefficient for crossing the interface:

V =
Di f f usivity

kT F =
Di f f usivity

kT
µliq
−µbulk

δ = L∆µ⇒
L ∼ Di f f usivity

kTδ ∼
νDδ
kT exp

(
−

Q
kT

)
∼

∼
101210−10

0.4·10−20 exp
(
−

10−19

0.4·10−20

)
∼ 3.5 · 1011 m

s·Joule

λ0 = xeq
2
√
γDγLΩ
kT ∼ 2 · 10−2 2·1 J

m2 10−29m3

4·10−21 J ∼ 10−10m,

J ≡
xeq
√

UDUl

kT
√

LDLl
∼

10−2
·3·10−10 m

s
4·10−21 Joule·3·1011 m

Joule·s
∼ 2 · 10−3

We will see below that in the case of stirring the inequality rbal

rkinet > 1 implies the formation of

elongated particles, and rbal

rkinet < 1 corresponds to the formation of disc-like particles.
The conservation law is given in such notations via:

(
xeq + ∆(t)

)1−

N(t)∑
i

π
4 ρ

2
i zi

Vtot/λ3
0

+
N(t)∑

i

π
4 ρ

2
i zi

Vtot/λ3
0

=

=
(
xeq + ∆(t = 0)

)1−

N0∑
i

π
4 ρ

2
0iz0i

Vtot/λ3
0

+
N0∑

i

π
4 ρ

2
0iz0i

Vtot/λ3
0

(8)

Equation (7) will be used for the description of the drift terms in the kinetic equations for the
description of nucleation and of the size and shape evolution under stirring at the growth stage. The set
of Equations (7) and (8) will be employed in the treatment of ripening under stirring.
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3. Results

3.1. Peculiarities of Anisotropic Nucleation

3.1.1. Some Introductory Comments

Nucleation is caused by the random walk of the new phase clusters in size space (stochastic
term), but the critical size of the aggregates is determined by the drift term in the relations describing
nucleation. Here we concentrate the attention on the drift term in order to describe some of the essential
characteristics of anisotropic nucleation. Here we concentrate the attention on the drift term in order
to describe some of the essential characteristics of anisotropic nucleation. A detailed Fokker–Planck
approach will be advanced after acquiring and analysis of new experimental information about
heterogeneous nucleation at the facets of the powder particles.

In CNT, the drift in size space (the difference between the attachment and detachment frequencies) is
proportional to the derivative of the Gibbs free energy over cluster size (in analogy to the Nernst–Einstein
relation in the size space):

∆ν ≡ ν+ − ν− = −
(ν+ + ν−)/2

kT
∂∆G

∂Ncluster
= −

ν
kT

∂∆G
∂Ncluster

Therefore, in CNT, the thermodynamic criterion for the determination of the critical size (zero
derivatives over size which corresponds to the maximum (or, in general, to a saddle point) of the
nucleation barrier) coincides with the kinetic criterion (zero drift). In open systems, this coincidence
may not be retained [19]. Of course, in cases when the evolution path is determined by more
than one parameter (say, two sizes, or size and composition within the cluster) the situation is not
that straightforward.

In the present section, we treat supersaturation as fixed and not perturbed by the nucleation of a
single nucleus. In the anisotropic case, Nernst–Einstein-type relations should be written separately for
each facet. In our case, we arrive at

∆νD = − νD
kT

∂∆G
∂Ncluster

∣∣∣∣
l
+ ∆νbal

D = − νD
kT

(
µliq
− µ

cryst
D

)
+ ∆νbal

D

∆νl = −
νl
kT

∂∆G
∂Ncluster

∣∣∣∣
D
+ ∆νbal

l = −
νl
kT

(
µliq
− µ

cryst
l

)
+ ∆νbal

l

Obviously, in terms of mean growth/shrinkage velocities, these equations for mean values coincide
with Equations (2)–(7).

3.1.2. Anisotropic Nucleation without Stirring

For further analysis, we introduce the new variables

ξ ≡
1
∆

rtherm

ρ
, η ≡

1
∆

1/rtherm

z
,

so those kinetic equations without stirring are now obtained by

dρ
dτ

= rkinet∆(1− ξ− η),
dz
dτ

=
1

rkinet
∆(1− 2ξ) (9)

As mentioned above, these kinetic equations represent drift terms in nucleation.
The critical state (both time derivatives are equal to zero) is determined via the relations:

dD
dt = 0 ⇔ ξ+ η = 1
dl
dt = 0 ⇔ ξ = 1

2

}
⇒ ξcrit =

1
2

, ηcrit =
1
2
⇒

rtherm

ρcrit =
1/rtherm

zcrit ⇒
ρcrit

zcrit =
(
rtherm

)2
=
γD

γl
(10)
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Equality Dcrit

lcrit =
γD
γl

is the well-known Wulff’s rule determining the equilibrium shape of an
aggregate in a closed system. Let us now analyze at which conditions aggregates of the newly evolving
phase will either grow or disappear, again.

The condition of guaranteed further shrinking, regardless of the values of the kinetic coefficients
(we will call the respective states absolutely unstable or absolutely subcritical), is given by:

dD
dt < 0⇔ ξ+ η > 1
dl
dt < 0 ⇔ ξ > 1

2
(11)

These conditions hold in region I in Figure 1. In this case, both size parameters, D and l, decrease,
so that both parameters ξ+ η and ξ grow. Consequently, both inequalities hold until the complete
disappearance of such subcritical particles.
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Figure 1. Anisotropic nucleation regimes (without stirring). The fate of any nucleus in region I consists
in further shrinking to full disappearance, at any combination of kinetic coefficients. The fate of any
nucleus in region II is further growth, also at any combination of kinetic coefficients. The fate of nuclei

in regions III and IV is defined by the ratio of kinetic coefficients rkinet
≡

√
LD
Ll

—see Figure 2.

The condition of guaranteed further growth, regardless of the values of the kinetic coefficients
(we will call the respective states absolutely stable or absolutely overcritical), is given by:

dD
dt > 0⇔ ξ+ η < 1
dl
dt > 0⇔ ξ < 1

2
(12)

These conditions hold in region II in Figure 1. In this case, both size parameters, D and l, grow,
so that both ξ+ η and ξ decrease. Consequently, both inequalities will hold as long as supersaturation
is kept constant (which means that we consider growth processes sufficiently far away from the
ripening stage).

Regions III and IV shown in Figure 1 contain states which may lead either to growth or to
shrinkage in dependence on the ratio of kinetic coefficients:

• Region III:

dD
dt > 0⇔ ξ+ η < 1
dl
dt < 0⇔ ξ > 1

2
(13)
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• Region IV:

dD
dt < 0⇔ ξ+ η > 1
dl
dt > 0 ⇔ ξ < 1

2
(14)
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and 2).

In such cases, both thermodynamic and kinetic factors determine the direction of the further
evolution of the aggregates.

To describe in more detail the origin of such type of behavior, we have now a close look at the
shape of the surface, ∆G(ρ, z), of Gibbs free energy change in nucleation. For that purpose, we express
it as a function of two size parameters and determine the first- and second-order derivatives. We obtain:

∂G
∂ρ = ∂G

∂Ns

∣∣∣∣
ρ

1
ΩπDl· dD

2
dρ =

λ3
0π

2Ω ρz ∂G
∂Ns

∣∣∣∣
ρ
= −

λ3
0π

2Ω ρz
(

kT
xeq

∆ − 2γDΩ
D −

2γlΩ
l

)
=

= −
λ3

0πkT
2Ωxeq

ρz
(
∆ − rtherm

ρ −
1/rtherm

z

)
= −ε0ρz

(
∆ − rtherm

ρ −
1/rtherm

z

) (15)

where
ε0 ≡

λ3
0πkT

2Ωxeq

∂G
∂z = ∂G

∂Ns

∣∣∣∣
z

1
ΩπD2/4·dl

dz =
λ3

0π

4Ω ρ
2 ∂G
∂Ns

∣∣∣∣
z
= −

λ3
0π

4Ω ρ
2
(

kT
xeq

∆ − 4γDΩ
D

)
=

= −
λ3

0πkT
4Ωxeq

ρ2
(
∆ − 2rtherm

ρ

)
= − ε0

2 ρ
2
(
∆ − 2rtherm

ρ

) (16)

The second-order derivatives read:

∂2G
∂ρ2

∣∣∣∣
st
= ε0

(
∆ + rtherm

ρ −
1/rtherm

z

)
∂2G
∂z2 = 0
∂2G
∂ρ∂z = ∂2G

∂z∂ρ = ε0
(
ρ · ∆ − rtherm

) (17)
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Simple algebraic transformations (employing the results for first and second-order derivatives
and the condition of zero value of the Gibbs free energy change at zero sizes) leads to the following
expression for the Gibbs free energy surface:

∆G = ε0 ·

ρ
2
(
1− rthermz · ∆

)
2rtherm

+ 2rthermρz

 (18)

Nucleation barrier (value of Gibbs free energy at the stationary (critical) point coinciding with the
saddle-point) is given by

∆G∗ = G
(
ρ = ρst =

2rtherm

∆
, z = zst =

2/rtherm

∆

)
= ε0 ·

2rtherm

∆2 (19)

At that, ρ
ρst =

ρ∆
2rtherm = 1

2ξ , z
zst =

zrtherm∆
2 = 1

2η .
Dimensionless Gibbs free energy as a function of reduced sizes now is:

∆G
∆G∗

=

(
ρ

ρst

)2(
1− 2

z
zst

)
+ 2

ρ

ρst
z

zst (20)

This function is illustrated at Figure 2.
The stationary point is given by

dρ
dt

= 0,
dz
dt

= 0⇔ ρst =
2rtherm

∆
, zst =

2/rtherm

∆
(ξst = 1/2, ηst = 1/2).

It corresponds to a saddle-point of the Gibbs free energy surface. Indeed, a saddle point has the
feature that both first-order derivatives are equal to zero, one of the second-order derivatives (along
the optimal path) is negative and the other one is positive (along the line perpendicular to it).

The determinant of the matrix of second-order derivatives has a negative value

det

 ∂2G
∂ρ2

∣∣∣∣
st

∂2G
∂ρ∂z

∣∣∣∣
st

∂2G
∂z∂ρ

∣∣∣∣
st

∂2G
∂z2

∣∣∣∣
st

 = det
(

2ε0/rtherm ε0rtherm

ε0rtherm 0

)
= −

(
ε0rtherm

)2
< 0 (21)

It means that the matrix of second-order derivatives has one positive and one negative eigenvalue

G′′1,2 =
1

rtherm
±

√( 1
rtherm

)2
+ (rtherm)

2, G′′1 > 0, G′′2 < 0. (22)

Regions III and IV exhibit a very important peculiarity of anisotropic nucleation, which may occur,
as shown, even in closed systems. In some cases, the chemical potential in the liquid can be higher than
that at one facet and simultaneously lower than that at another facet. In this case, the nucleus/embryo
should have the tendency to grow in one direction and dissolve in another direction (if one considers
only drift terms in the kinetic equations and neglects random walk in the size space). Of course,
as shown explicitly above, in all cases the drift terms may lead only to a decrease in Gibbs free energy.
Indeed, utilizing the above relations, we obtain, for the change of the Gibbs free energy dependant on
time, the following result:

dG
dt

=
∂G
∂D

dD
dt

+
∂G
∂l

dl
dτ

= −2LD

(
∂G
∂D

)2

− 2Ll

(
∂G
∂l

)2

< 0
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Derivative over dimensionless time is similarly derived by:

dG
dτ = ∂G

∂ρ
dρ
dτ +

∂G
∂z

dz
dτ = −ε0ρz

(
∆ − rtherm

ρ −
1/rtherm

z

)
· rkinet

(
∆ − rtherm

ρ −
1/rtherm

z

)
+

−
ε0
2 ρ

2
(
∆ − 2rtherm

ρ

)
1

rkinet

(
∆ − 2rtherm

ρ

)
=

= −ε0ρ ·

{
zrkinet

(
∆ − rtherm

ρ −
1/rtherm

z

)2
+

ρ

2rkinet

(
∆ − 2rtherm

ρ

)2
} (23)

Note that the time derivative of the free energy, generated by drift terms, is always negative in the
absence of stirring (as it should be the case!).

However, whether this decrease in the Gibbs free energy leads eventually to the disappearance of
the cluster or to its growth, is determined by the ratio of kinetic coefficients. Within some array of
states, the fate of a nucleus is not determined only by thermodynamics. Instead, it depends also on the
ratio of kinetic coefficients

rkinet
≡

√
LD

Ll
,

see Figure 3. In other words, thermodynamic and kinetic criteria of critical nuclei may not coincide for
anisotropic nucleation (more correctly: thermodynamic information–dependence of Gibbs free energy
on both sizes, in case of regions III and IV, is not enough to say whether the cluster is subcritical or
overcritical). Since this statement sounds radical (though actually being not so radical), let us try to
formulate it more explicitly.
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(
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Standard explanation in physics course tells us that thermodynamics dictates the general direction
of evolution and kinetics determines the rate of evolution and, most probably, the choice of evolution
path. This picture is absolutely correct if the state of the nucleus is determined by only a single
parameter. If not, then the choice of evolution path is also the responsibility of kinetics. In other words,
there may exist some “hidden kinetic parameters” which determine the direction of the evolution
path together with thermodynamics. Many attempts have been suggested to increase the role of
thermodynamics in determining the choice of evolution path. The most popular hypothesis is the
maximum of Gibbs free energy decrease rate but it was never proved. Popular statements of the
minimum of entropy production do not have a direct connection with the choice of the path—instead,
it determines the final state of the path, which is equilibrium with zero entropy production in closed
systems and steady-state with minimum entropy production in open systems. Moreover, even this
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rather limited statement is proven by Prigogine et al. to hold only for the case of constant kinetic
coefficients [20].

In CNT for spherical or other clusters with an optimized surface (described by a single size
parameter), if one has some cluster and at some moment “switches off” the random walk (the noise)
in size space, one can predict the fate of the cluster (it either dissolves or grows) independently on
any specific properties of the kinetic coefficients. In our case, for regions III and IV, this is not the
case—without noise, clusters in these regions may grow eventually or shrink eventually, depending on
kinetic coefficients. (We emphasize that in ALL four regions the evolution without noise always leads
to a DECREASE in Gibbs free energy, as shown above.) Note that the discussed effects are different
as compared with the deviation of the real evolution path from the optimal path along the steepest
path over Gibbs free energy surface (and the corresponding deviation from the saddle-point) due to
stochastic effects. The discussed here peculiar effects occur already in cases if only the drift terms are
accounted for as it is done in the present study.

A possible difference between thermodynamically critical size and size with zero drift term during
nucleation in binary alloys with large differences of diffusivities between the cluster and surrounding
matrix was discussed in [21].

3.1.3. Anisotropic Nucleation under Stirring

Now, let us consider nucleation criteria under stirring. Nucleation in open systems is known from
other fields–for example, nucleation in the contact zone of reacting materials (in a sharp concentration
gradient)—when thermodynamically stable (in closed system) nuclei can be kinetically suppressed in
an open system (in reaction and diffusion zone) by the fast-growing neighboring compound layers [19].
Like in the previous subsection, let us “switch off” for the moment the noise terms in the equations
governing nucleation. In such case, drift terms are determined by Equation (7), which we reformulate
in the following form:

dρ
dτ = rkinet∆

(
1− rtherm

ρ∆ −
1/rtherm

z∆ −
rbal

rkinet
J
∆

)
= rkinet∆(1− bD j− ξ− η)

dz
dτ = 1

rkinet ∆(1− bl j− 2ξ)
(24)

Here

ξ ≡
1
∆

rtherm

ρ
, η ≡

1
∆

1/rtherm

z
∆ ≡ x− xeq, j =

J
∆

, bD ≡
rbal

rkinet
, bl ≡

rkinet

rbal
=

1
bD

In this paper, we consider only the case bD > bl
(
rbal/rkinet > 1

)
leading to elongated

structures under stirring. The alternative case bD < bl
(
rbal/rkinet < 1

)
of disc-like structures will

be considered elsewhere.
Note that in the symmetrical case bD = bl

(
rbal/rkinet = 1

)
an effective Gibbs free energy could be

introduced instead of Equation (18) having the form:

Ge f (ρ, z
∣∣∣J) = G(ρ, z) − 1

2ε0 Jρ2z =

= ε0 ·

{
ρ2(1−rthermz·∆)

2rtherm + 2rthermρz− 1
2 Jρ2z

}
=

= ε0 ·

{
ρ2(1−rthermz·(∆−J))

2rtherm + 2rthermρz
} (25)

so that the analysis is reduced to the definition of an effective supersaturation ∆ − J. (In the case of
high enough ballistic factor J, J > ∆, all particles are dissolved. In our anisotropic case under stirring
one cannot use the notion of effective Gibbs free energy).
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The critical (stationary) state (both time derivatives are equal to zero):

dD
dt = 0⇔ ξ+ η = 1− bD j
dl
dt = 0⇔ ξ = 1

2 −
bl
2 j

⇒
⇒ ξcrit = 1

2 −
bl
2 j, ηcrit = 1

2 −
(
bD −

bl
2

)
j :

rtherm

ρcrit = ∆
2 −

bl
2 J, 1/rtherm

zcrit = ∆
2 −

(
bD −

bl
2

)
J

(26)

Thus, under stirring (in an open system), instead of Wulff’s rule for the equilibrium shape, one has

rtherm

ρcrit −
1/rtherm

zcrit = (bD − bl)J =
(

rbal

rkinet
−

rkinet

rbal

)
J (27)

As can be expected, in open systems the Wulff rule is violated even for critical nuclei. Here,
depending on stirring intensity, one can distinguish two cases (Figures 4 and 5).
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Figure 4. Anisotropic nucleation regimes under stirring of “small” intensity: j ≡ J
∆ < 1

2bD−bl
. The fate

of any nucleus in region I is further shrinking to full disappearance, at any combination of kinetic
coefficients. The fate of any nucleus in region II is further growth, also at any combination of kinetic
coefficients. The fate of nuclei in regions III and IV depends on the ratio of the kinetic coefficients

rkinet
≡

√
LR
Ll

.

Case 1:

1− bD j >
1
2
−

bl
2

j⇔ j <
1

2bD − bl
(28)

Case 2:

0 < 1− bD j <
1
2
−

bl
2

j⇔
1

bD
> j >

1
2bD − bl

(29)

In this case, a critical point in its usual meaning (both drift velocities simultaneously are equal to
zero) does not exist. Three regions, instead of four above, exist: Region 1 of inevitable (at any ratio
of kinetic factors) growth in both directions is separated from region 2 of inevitable (at any ratio of
kinetic factors) shrinking by the region, in which the final direction of evolution is determined not only
by thermodynamics (Gibbs free energy and its dependence on two sizes) but as well by the ratio of
kinetic factors.

Region IV contains the states, for which the further evolution of the nucleus is determined not only
by thermodynamics. Instead, the knowledge of the ratio of kinetic coefficients is needed, to predict the

direction of evolution, rkinet
≡

√
LR
Ll

—see Figure 6.
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Figure 5. Anisotropic nucleation regimes under stirring of “large” intensity: 1
bD
> j ≡ J

∆ > 1
2bD−bl

.
The fate of any nucleus in region I is further shrinking to full disappearance, at any combination of
kinetic coefficients. Fate of any nucleus in region II is further growth, also at any combination of kinetic
coefficients. Region III is absent (compare with Figure 4). Regions I and II are separated by region IV.

The fate of nuclei in region IV depends on the ratio of kinetic coefficients rkinet
≡

√
LR
Ll

.
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Here we considered homogeneous nucleation processes. Most probably, the real nucleation
process is heterogeneous, and the initial nuclei nucleate at some special facets of the preexisting
particles [2]. In any case, the basic features concerning the possible fate of sufficiently large aggregates
elaborated in the present analysis are expected to remain the same. Models of heterogeneous anisotropic
nucleation at non-ideal facets under stirring will be considered elsewhere.
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3.2. Growth Stage (at Constant Supersaturation)

In this subsection, we analyze the growth and shape evolution of individual cylinders under
stirring at constant supersaturation by numerical integration of Equation (7). We choose initial sizes
within region II and trace the change of both sizes and aspect ratio with time, at various stirring
intensities. The results are presented in Figure 7.
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Asymptotically, if both sizes tend to infinity, one gets

dρ
dτ = rkinet

(
∆ − rtherm

ρ −
1/rtherm

z −
rbal

rkinet J
)
≈ rkinet∆ − rbal J

dz
dτ = 1

rkinet

(
∆ − 2rtherm

ρ −
rkinet

rbal J
)
≈

∆
rkinet −

J
rbal

(30)

so that for very long annealing times (if supersaturation is kept constant)

d
(
rthermz− ρ/rtherm

)
dτ

≈

(
rtherm

rkinet
−

rkinet

rtherm

)
∆ +

(
rbal

rtherm
−

rtherm

rbal

)
J (31)
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z
ρ
→

∆
rkinet −

J
rbal

rkinet∆ − rbal J
=

(
rkinet

)−2 ∆ − rkinet

rbal J

∆ − rbal

rkinet J
(32)

For the parameters used in Figure 7, we obtain asymptotic values of the aspect ratio equal to 2.25,
4 and 7.75, which practically coincide with the results of numerical calculations shown in Figure 7.

Thus, at this stage, the asymmetry appears as a competition between two factors–asymmetry
of thermally activated attachment/detachment kinetics and ballistic detachments at different facets.
From Equation (30) one may see that the growth rate of the length tends to zero if the supersaturation
tends to ∆2 = rkinet

rbal J, and the growth rate of diameter tends to zero if ∆→ ∆1 = rbal

rkinet J . In this paper,

we treat the case rbal

rkinet > 1, so that ∆1 > ∆2. So, one may expect that at the ripening stage, the system

will choose the larger asymptotic supersaturation ∆1 = rbal

rkinet J = bD J. Otherwise (if ∆ <= rbal

rkinet J),
according to the first of Equation (30), diameters of all rods will shrink up to their complete dissolution
which is physically impossible at the growth and ripening stage. Instead, when ∆→ ∆1 = rbal

rkinet J ,
the growth rate of mean length tends to a constant, and the growth rate of mean diameter decreases but
remains positive. Therefore, as we will see in the next Section 3.3, with an account of supersaturation
decrease, the aspect ratio should grow much more rapidly. Note that for this one does not need the
ballistic erosion in one direction much larger than in another: at the ripening stage, even a small excess

of the ballistic ratio rbal
≡

√
UD
UL

over the kinetic one rkinet
≡

√
LD
Ll

may lead to an unlimited (in time)
increase in the shape parameter (but the rate of this growth, of course, depends on the magnitude of
the excess). This effect will be studied in the next subsection.

3.3. Asymptotic Ripening Stage

Here we concentrate on the asymptotic ripening stage of an almost constant volume of the cluster
phase which is only redistributed among different fibers. In conventionally treated ripening processes
in closed systems, the supersaturation in the surrounding medium tends to zero, so that nucleation
of new particles becomes impossible. As a consequence, the number, N(t), of remaining particles
decreases. (Finally, “Only one will remain” according to “Highlander” (https://highlander.fandom.
com/wiki/There_can_be_only_one), but such a situation is beyond statistical approach.)

Under stirring, one may assume that initially, just after switching on the stirring, the powder
particles should at least partially dissolve, and supersaturation should increase. Asymptotically,
the total volume of the parent phase approaches some constant value, supersaturation also tends to
some constant, but this constant is not equal to zero, contrary to the case of commonly treated ripening
without stirring. Despite non-zero supersaturation, nucleation of the new particles at the ripening
stage can be neglected since the critical size under stirring (and the corresponding nucleation barrier)
is increased by stirring (see Equation (16)).

In this paper, we consider analytically only the asymptotic behavior of ripening under stirring.
Due to continuous growth of length at non-zero stirring, one should be careful with typical (for the
asymptotic stage) simplifications.

Let

bD ≡
rbal

rkinet
> 1, bl = 1/bD ≡

rkinet

rbal
< 1, J > 0, t→∞

In this case, one has a tendency for rods to grow (in the opposite case, one should expect the
discs to grow). Then, for a sufficiently advanced stage of ripening the supersaturation should tend to
the maximum of two stirring factors bD J, bl J. Indeed, otherwise (if supersaturation is less than bD J)

https://highlander.fandom.com/wiki/There_can_be_only_one
https://highlander.fandom.com/wiki/There_can_be_only_one
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all diameter growth rates are negative, so that diameters of all cylinders will shrink to zero, and the
ripening problem loses sense. Thus, ∆→ bD J ≡ rbal

rkinet J . Then, one obtains

dρ
dτ = rkinet

(
(∆ − bD J) − rtherm

ρ −
1/rtherm

z

)
dz
dτ = 1

rkinet

(
(bD − bl)J − 2rtherm

ρ

) (33)

The second of these equations leads to the conclusion that at t→∞ one expects

(bD − bl)J >>
2rtherm

< ρ >

so that
dz
dτ ≈

1
rkinet ((bD − bl)J) ≈ const at t→∞⇒

⇒ zi(t) ≈ zi0 +
bD−bl
rkinet Jτ⇒< z >≈ bD−bl

rkinet Jτ ≡ Vτ at t→∞
(34)

Thus, at the asymptotic stage, the distribution of rod lengths will shift with constant velocity and
with almost constant shape (formed at the transient stage) and without further broadening. Thus, at a
very late stage <z> tends to infinity much faster than the diameter. Consequently, we arrive at

dρ
dτ ≈ rkinet

(
∆′ − rtherm

ρ

)
∆′ ≡ (∆ − bD J)

(35)

This equation is similar to the kinetic equation for grain growth [22] suggested by Hillert in
analogy to the LSW model for ripening [23,24]. It should lead to parabolic growth of the mean diameter

< ρ >2
∼ τ, ∆′ ≡ (∆ − bD J) ∼

1
√
τ

(36)

The Hillert model employs the constraint of the constant total area in 2D grain structure

(
N(t)∑

i
R2

i ≈ const) or constant total volume (
N(t)∑

i
R3

i ≈ const). In our case, we also use the constraint of

almost constant volume but for another geometry (rods instead of spheres) and with mean length

growing with a time faster than the diameter (
N(t)∑

i
ρ2

i zi ≈ const). Therefore, one might expect that the

asymptotic size distribution will differ from the Hillert distribution of diameters:

gHillert(ρ) = const ·
(ρ/ρcrit)

2

(2− ρ/ρcrit)
4

exp
(
−4ρ/ρcrit

2− ρ/ρcrit

)
(37)

Let us check this by explicit substitution.
Equations (34) and (35) imply that one can expect the size distribution function to have the

multiplicative form:

f (ρ, z, τ) = fρ(ρ, τ)ϕ(z−Vτ), with V =
bD − bl

rkinet
J. (38)

Here fρ(ρ, τ)dρ is the number of cylinders per unit volume with diameters within the interval
(ρ,ρ+ dρ), ϕ(z)dz is a probability for any cylinder to have a length within the interval (z, z + dz).

At that, n(τ) =
∞∫
0

fρ(ρ, τ)dρ is the number of cylinders per unit volume, i.e.,

1 =

∞∫
Vτ

ϕ(z−Vτ)dz (39)
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The total volume of all nanobelts per unit volume should tend to a constant,

∞∫
0

π
4 ρ

2 fρ(ρ, τ)dρ
∞∫

Vτ
zϕ(z−Vτ)dz =

∞∫
0

π
4 ρ

2 fρ(ρ, τ)dρ · z→ const⇒

⇒

∞∫
0
ρ2 ∂

∂τ

(
fρ(ρ, τ)

)
dρ · z +

∞∫
0
ρ2 fρ(ρ, τ)dρ · dz

dτ = 0⇒

⇒ −

∞∫
0
ρ2 ∂

∂ρ

(
rkinet

(
∆′ − rtherm

ρ

)
fρ(ρ, τ)

)
dρ ·Vτ+

∞∫
0

fρ(ρ, τ)dρ· < ρ2 > V = 0⇒

⇒ −

∞∫
0

∂
∂ρ

(
ρ2

(
rkinet

(
∆′ − rtherm

ρ

)
fρ(ρ, τ)

))
dρ · τ+

∞∫
0

2ρ
(
rkinet

(
∆′ − rtherm

ρ

)
fρ(ρ, τ)

)
dρ · τ+

+
∞∫
0

fρ(ρ, τ)dρ· < ρ2 >= 0⇒

⇒ 0 + 2rkinet∆′ < ρ > τ− 2rkinetrthermτ+ < ρ2 >= 0⇒

⇒ ∆′ ≡ ∆ − bD J = rtherm

<ρ> −
<ρ2>

2rkinet<ρ>τ

(40)

Thus,
dρ
dτ ≈ rkinet

(
rtherm

<ρ> −
<ρ2>

2rkinet<ρ>τ
−

rtherm

ρ

)
=

= rkinetrtherm
(

1
<ρ>

(
1− <ρ2>

2rkinetrthermτ

)
−

1
ρ

) (41)

Thus, at asymptotic stage the distribution over diameters satisfies the following approximate
equation:

∂ fρ
∂τ = − ∂

∂ρ

(
rkinetrtherm

(
1

<ρ>

(
1− <ρ2>

2rkinetrthermτ

)
−

1
ρ

)
fρ
)
=

= −rkinetrtherm ∂
∂ρ

((
1
ρcrit
−

1
ρ

)
fρ
) (42)

Here the critical diameter is determined as

ρcrit =
< ρ >(

1− <ρ2>

2rkinetrthermτ

) (43)

We may look for a solution to Equation (42) in the form

fρ = Ψ(τ)g
(
ρ

ρcrit

)
,

∞∫
0

g(x)dx = 1 (44)

Ψ(τ) =
n(τ)
ρcrit(τ)

(45)

Here, n(τ) is the number of rods per unit volume. Its product with mean squared diameter
(< ρ >2

∼ τ) and mean length (< z >∼ τ) should be asymptotically constant at the ripening stage.
It means that

n(τ) ∼
const

< ρ2 >< z >
∼ τ−2 (46)

Then, according to Equation (45),

Ψ(τ) = const · τ−5/2 (47)

The solution of Equation (42) of the type (44) with volume constraint in the form (46) is found by
standard but long algebra. (We used the math developed in [14], but one may follow also the widely
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known logic of the classical LSW papers or book [12]). In any case, anyone can check this solution by
direct substitution:

ρcrit =

√
1
2

rkinrthermτ (48)

g(x = ρ/ρcrit) = const · (ρ/ρcrit)
1

(2−ρ/ρcrit)
6 exp

(
−4ρ/ρcrit
2−ρ/ρcrit

)
,

< x >= 13
16 , < x2 >= 3

4 , < x >= 1− 1
4 < x2 >√

< ρ2 > =
√

3
2 ρcrit =

√
3
8 rkinetrthermτ

(49)

One may see that Equation (49) contains the same exponent as in the Hillert distribution (37),
but the powers of factors before exponent differ—see Figure 8.
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distribution (red line, Equation (37)).

Thus, in the asymptotic region of long stirring, the mean length is proportional to time, and the
mean diameter is proportional to the square root of time. It means that at the ripening stage of the
intensive stirring, the aspect ratio may grow without limits.

4. Discussion and Conclusions

1. Processes of redistribution between different particles and between different facets of the same
particle are very complicated. In this paper, we consider only the simplest approximation of
such redistribution (adding ballistic detachment rates). Such modification, in the isotropic case,
would just redefine an effective supersaturation. In anisotropic case, when ballistic terms are
different at different facets, they lead to much more interesting behavior.

2. At the nucleation stage, even if stochastic terms are switched off, the size space contains three
regions: (1) absolutely unstable (embryo shrinks in volume to zero at any kinetic coefficients),
(2) absolutely stable (nuclei increase their volume at any kinetic coefficients) and (3) transient
region, in which the fate of the particle is determined but the set of kinetic coefficients.

3. Stirring shifts the boundaries of these regions and even may make the nucleation impossible.
4. At the growth stage, one may suggest at least two possible reasons for anisotropic growth

of elongated particles: (1) large anisotropy of the kinetic factors of growth/dissolution in two
directions (rtherm << 1, LD << Ll), (2) moderate anisotropy of ballistic terms (rbal/rtherm > 1, UD/LD
> Ul/Ll). In this paper, we concentrate on the analysis of the second possibility. We demonstrate
that this possibility provides results that are qualitatively similar to some experimental results [1,2]
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(large mean aspect ratio l/D after a long stirring period and approximately linear dependence of
mean length on the stirring intensity, also see item 5).

5. Under stirring, at the growth stage, both sizes grow with time so that the aspect ratio tends to a
constant determined by Equation (32) depending on stirring intensity.

6. At advanced ripening stages, the mean length tends to infinity linearly with time (the growth rate
being proportional to ballistic factor, J), the mean diameter grows parabolically, and the aspect
ratio tends to infinity.

7. Asymptotic diameter distribution satisfies the modified Hillert relation (49).
8. In future work, one should pay special attention to anisotropic heterogeneous nucleation at the

facets under stirring. This is a part of the general problem of flow-induced crystallization that is
known in polymer science [25,26].
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