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Abstract: The rate of entropy production by a stochastic process quantifies how far it is from
thermodynamic equilibrium. Equivalently, entropy production captures the degree to which global
detailed balance and time-reversal symmetry are broken. Despite abundant references to entropy
production in the literature and its many applications in the study of non-equilibrium stochastic
particle systems, a comprehensive list of typical examples illustrating the fundamentals of entropy
production is lacking. Here, we present a brief, self-contained review of entropy production and
calculate it from first principles in a catalogue of exactly solvable setups, encompassing both
discrete- and continuous-state Markov processes, as well as single- and multiple-particle systems.
The examples covered in this work provide a stepping stone for further studies on entropy production
of more complex systems, such as many-particle active matter, as well as a benchmark for the
development of alternative mathematical formalisms.

Keywords: entropy production; active matter; exact results; stochastic thermodynamics

1. Introduction

Stochastic thermodynamics has progressively evolved into an essential tool in the study of
non-equilibrium systems as it connects the quantities of interest in traditional thermodynamics,
such as work, heat and entropy, to the properties of microscopically resolved fluctuating
trajectories [1–3]. The possibility of equipping stochastic processes with a consistent thermodynamic
and information-theoretic interpretation has resulted in a number of fascinating works, with the
interface between mathematical physics and the biological sciences proving to be a particularly
fertile ground for new insights (e.g., [4–8]). The fact that most of the applications live on the small
scale is not surprising, since it is precisely at the microscopic scale that fluctuations start to play a
non-negligible role.

The concept of entropy and, more specifically, entropy production has attracted particular interest,
as a consequence of the quantitative handle it provides on the distinction between equilibrium systems,
passive systems relaxing to equilibrium and genuinely non-equilibrium, ‘active’ systems. While there
exist multiple routes to the mathematical formulation of entropy production [9–14], the underlying
physical picture is consistent: the entropy production associated with an ensemble of stochastic
trajectories quantifies the degree of certainty with which we can assert that a particular event originates
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from a given stochastic process or from its suitably defined conjugate (usually, its time-reverse).
When averaged over long times (or over an ensemble), a non-vanishing entropy production signals
time-reversal symmetry breaking at the microscopic scale. This implies, at least for Markovian
systems, the existence of steady-state probability currents in the state space, which change sign under
time-reversal. When a thermodynamically consistent description is available, the average rate of
entropy production can be related to the rate of energy or information exchange between the system,
the heat bath(s) it is connected to, and any other thermodynamic entity involved in the dynamics, such
as a measuring device [15–17]. Whilst the rate of energy dissipation is of immediate interest since it
captures how ‘costly’ it is to sustain specific dynamics (e.g., the metabolism sustaining the development
of an organism [18,19]), entropy production has also been found to relate non-trivially to the efficiency
and precision of the corresponding process via uncertainty relations [3,20]. Entropy production
along fluctuating trajectories also plays a fundamental role in the formulation of various fluctuation
theorems [12].

Given the recent interest in stochastic thermodynamics and entropy production in particular,
as well as the increasing number of mathematical techniques implemented for the quantification
of the latter, it is essential to have available a few, well-understood reference systems, for which
exact results are known. These can play the role of benchmarks for new techniques, while helping
neophytes to develop intuition. This is not to say that exact results for more complicated systems
are not available, see for example [21], however they are usually limited to small systems and/or
require numerical evaluation. In this work, we will present results exclusively in the framework
proposed by Gaspard [11], specifically in the form of Equations (4), (15) and (16), which we review and
contextualise by deriving them via different routes in Section 2. In Section 3, we begin the analysis
with processes in discrete state space (Sections 3.1–3.8), and subsequently extend it to the continuous
case (Sections 3.9–3.11). Finally, in Sections 3.12 and 3.13 we consider processes that involve both
discrete and continuous degrees of freedom. Time is taken as a continuous variable throughout.

2. Brief Review of Entropy Production

Entropy production of jump processes. The concept of time-dependent informational entropy associated
with a given ensemble of stochastic processes was first introduced by Shannon [22]. For an arbitrary
probability mass function Pn(t) of time t over a discrete set of states n ∈ Ω, the Shannon entropy is
defined as

S(t) = −∑
n

Pn(t) ln Pn(t) (1)

with the convention henceforth of x ln x = 0 for x = 0. It quantifies the inherent degree of uncertainty
about the state of a process. In the microcanonical ensemble Pn is constant in t and n and upon
providing an entropy scale in the form of the Boltzmann constant kB, Shannon’s entropy reduces to
that of traditional thermodynamics given by Boltzmann’s S = kB ln |Ω|, where |Ω| = 1/Pn is the
cardinality of Ω. In Markovian systems, the probability Pn(t) depends on n and evolves in time t
according to the master equation

Ṗn(t) = ∑
m
(Pm(t)wmn − Pn(t)wnm) (2)

with non-negative transition rates wmn from state m to state n 6= m. Equation (2) reduces to Ṗn(t) =
∑m Pm(t)wmn by imposing the Markov condition ∑m wnm = 0, equivalently wnn = −∑m 6=n wnm,
which we will use in the following. For simplicity, we will restrict ourselves to time-independent
rates wnm but as far as the following discussion is concerned, generalising to time-dependent rates is a
matter of replacing wnm by wnm(t). The rate of change of entropy for a continuous time jump process
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can be derived by differentiating S(t) in Equation (1) with respect to time and substituting (2) into the
resulting expression [11,23], thus obtaining

Ṡ(t) = −∑
m,n

Pm(t)wmn ln (Pn(t)) = ∑
m,n

Pn(t)wnm ln
(

Pn(t)
Pm(t)

)
= Ṡe(t) + Ṡi(t) (3)

where we define

Ṡe(t) = −
1
2 ∑

m,n
(Pn(t)wnm − Pm(t)wmn) ln

(
wnm

wmn

)
(4a)

= −∑
m,n

Pn(t)wnm ln
(

wnm

wmn

)
= −∑

m,n
(Pn(t)wnm − Pm(t)wmn) ln

(
wnm

w0

)
Ṡi(t) =

1
2 ∑

m,n
(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

Pm(t)wmn

)
(4b)

= ∑
m,n

Pn(t)wnm ln
(

Pn(t)wnm

Pm(t)wmn

)
= ∑

m,n
(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

w0

)
with arbitrary positive rate w0 to restore dimensional consistency, that cancel trivially. Here we follow
the convention [1] to split the rate of entropy change into two contributions: the first, Equation (4a),
commonly referred to as “external" entropy production or entropy flow, is denoted by Ṡe. It contains a
factor ln(wnm/wmn) corresponding, for systems satisfying local detailed balance, to the net change
in entropy of the reservoir(s) associated with the system’s transition from state n to state m. For such
thermal systems, Ṡe can thus be identified as the rate of entropy production in the environment [9,24].
The second contribution, Equation (4b), termed “internal" entropy production and denoted by Ṡi is
non-negative because (x − y) ln(x/y) ≥ 0 for any two real, positive x, y and using the convention
z ln z = 0 for z = 0. The internal entropy production vanishes when the global detailed balance
condition Pn(t)wnm = Pm(t)wmn is satisfied for all pairs of states. In this sense, a non-vanishing Ṡi is
the fingerprint of non-equilibrium phenomena. Defining πn = limt→∞ Pn(t) as the probability mass
function at steady-state, the internal entropy production rate can be further decomposed into two
non-negative contributions, Ṡi(t) = Ṡa

i (t) + Ṡna
i (t), of the form

Ṡa
i (t) = ∑

m,n
Pn(t)wnm ln

(
πnwnm

πmwmn

)
(5a)

Ṡna
i (t) = ∑

m,n
Pn(t)wnm ln

(
Pn(t)πm

Pm(t)πn

)
= −∑

n
Ṗn(t) ln

(
Pn(t)

πn

)
. (5b)

These contributions are usually referred to as adiabatic (or housekeeping) and non-adiabatic (or excess)
entropy production rates, respectively [1]. The non-adiabatic contribution vanishes at steady-state,
limt→∞ Ṡna

i (t) = 0. While these quantities have received attention in the context of fluctuation
theorems [23], they will not be discussed further here. At steady-state, namely when Ṗn(t) = 0 for all
n, Ṡ(t) in Equation (3) vanishes by construction, so that the internal and external contributions to the
entropy production cancel each other exactly, Ṡ(t) = Ṡe(t) + Ṡi(t) = 0, while they vanish individually
only for systems at equilibrium. Equations (4) will be used throughout the present work to compute
the entropy productions of discrete-state processes.

Entropy production as a measure of time-reversal-symmetry breaking. As it turns out, a deeper
connection between internal entropy production and time-reversal symmetry breaking can be
established [11]. The result, which we re-derive below, identifies Ṡi as the relative dynamical entropy
(i.e., the Kullback–Leibler divergence [25]) per unit time of the ensemble of forward paths and their
time-reversed counterparts. To see this, we first need to define a path n = (n0, n1, . . . , nM) as a set
of trajectories starting at time t0 and visiting states nj at successive discrete times tj = t0 + jτ with
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j = 0, 1, . . . , M, equally spaced by a time interval τ. For a time-homogeneous Markovian jump process
in continuous time, the joint probability of observing a particular path is

P(n; t0, Mτ) = Pn0(t0)W(n0 → n1; τ)W(n1 → n2; τ) . . . W(nM−1 → nM; τ) (6)

where Pn0(t0) is the probability of observing the system in state n0 at time t0, while W(nj → nj+1; τ) is
the probability that the system is in state nj+1 time τ after being in state nj. This probability can be
expressed in terms of the transition rate matrix w with elements wmn. It is W(n→ m; τ) = [exp(wτ)]nm,
the matrix elements of the exponential of the matrix wτ with the Markov condition imposed. It can be
expanded in small τ as

W(n→ m; τ) = δn,m + wnmτ + O(τ2) , (7)

where δn,m is the Kronecker-δ function. We can now define a dynamical entropy per unit time [22] as

h(t0, ∆t) = lim
M→∞

− 1
∆t ∑

n0,...,nM

P(n; t0, ∆t) lnP(n; t0, ∆t) . (8)

where the limit is to be considered a continuous time limit taken at fixed ∆t = tM − t0 = Mτ [26],
thus determining the sampling interval τ, and the sum runs over all possible paths n. Other than τ,
the paths are the only quantity on the right-hand side of Equation (8) that depend on M. The dynamical
entropy h(t0, ∆t) may be considered the expectation of ln(P(n; t0, ∆t)) across all paths. Similarly to the
static Shannon entropy, the dynamical entropy h(t0, ∆t) quantifies the inherent degree of uncertainty
about the evolution over a time ∆t of a process starting at a given time t0. To compare with the dynamics
as observed under time-reversal, one introduces the time-reversed path nR = (nM, nM−1, . . . , n0) and
thus the time-reversed dynamical entropy per unit time as

hR(t0, ∆t) = lim
M→∞

− 1
∆t ∑

n0,...,nM

P(n; t0, ∆t) lnP(nR; t0, ∆t) . (9)

While similar in spirit to h(t0, ∆t), the physical interpretation of hR(t0, ∆t) as the expectation
of ln

(
P(nR; ∆t)

)
under the forward probability P(n; t0, ∆t) is more convoluted since it involves

the forward and the backward paths simultaneously, which have potentially different statistics.
However, time-reversal symmetry implies precisely identical statistics of the two ensembles, whence
h(t0, ∆t) = hR(t0, ∆t). The motivation for introducing hR(t0, ∆t) is that the difference of the two
dynamical entropies defined above is a non-negative Kullback–Leibler divergence given by

hR(t0, ∆t)− h(t0, ∆t) = lim
M→∞

1
∆t ∑

n
P(n; t0, ∆t) ln

(
P(n; t0, ∆t)
P(nR; t0, ∆t)

)
. (10)

Using Equation (6) in (10) with Equation (7) provides the expansion

hR(t0, ∆t)− h(t0, ∆t) = ∑
nm

Pn(t0)wnm ln
(

Pn(t0)wnm

Pm(t0)wmn

)
+O(∆t) , (11)

which is an instantaneous measure of the Kullback–Leibler divergence. The limit of hR(t0, ∆t) −
h(t0, ∆t) in small ∆t is finite and identical to the internal entropy production (4b) derived above.
This result establishes the profound connection between broken global detailed balance, Equation (4),
and Kullback–Leibler divergence, Equation (11), both of which can thus be recognised as fingerprints
of non-equilibrium systems. In light of this connection, it might not come as a surprise that the
steady-state rate of entropy production is inversely proportional to the minimal time needed to decide
on the direction of the arrow of time [27].

Entropy production for continuous degrees of freedom. The results above were obtained for Markov
jump processes within a discrete state space. However, the decomposition of the rate of change of
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entropy in Equation (3) into internal and external contributions can be readily generalised to Markovian
processes with continuous degrees of freedom, for example a spatial coordinate. For simplicity, we will
restrict ourselves to processes in one dimension but as far as the following discussion is concerned,
generalising to higher dimensions is a matter of replacing spatial derivatives and integrals over the
spatial coordinate with their higher dimensional counterparts. The dynamics of such a process with
probability density P(x, t) to find it at x at time t are captured by a Fokker–Planck equation of the form
Ṗ(x, t) = −∂x j(x, t), with j the probability current, augmented by an initial condition P(x, 0). Starting
from the Gibbs–Shannon entropy for a continuous random variable S(t) = −

∫
dx P(x, t) ln(P(x, t)/P0)

with some arbitrary density scale P0 for dimensional consistency, we differentiate with respect to time
and substitute −∂x j(x, t) for Ṗ(x, t) to obtain

Ṡ(t) = −
∫

dx Ṗ(x, t) ln
(

P(x, t)
P0

)
= −

∫
dx

(∂xP(x, t))j(x, t)
P(x, t)

, (12)

where the second equality follows upon integration by parts using
∫

dx Ṗ(x, t) = 0 by normalisation.
For the paradigmatic case of an overdamped colloidal particle, which will be discussed in more detail
below (Sections 3.9–3.11), the probability current is given by j(x, t) = −D∂xP(x, t) + µF(x, t)P(x, t)
with local, time-dependent force F(x, t). We can then decompose the entropy production Ṡ(t) =

Ṡi(t) + Ṡe(t) into internal and external contributions as

Ṡi(t) =
∫

dx
j(x, t)2

DP(x, t)
≥ 0 (13)

and
Ṡe(t) = −

∫
dx

µ

D
F(x, t)j(x, t) , (14)

respectively. The Kullback–Leibler divergence between the densities of forward and time-reversed
paths can be calculated as outlined above for discrete state systems, thus producing an alternative
expression for the internal entropy production in the form

Ṡi(t) = lim
∆t→0

hR(t, ∆t)− h(t, ∆t)

= lim
τ→0

1
2τ

∫
dxdx′ (P(x, t)W(x → x′, τ)− P(x′, t)W(x′ → x, τ)) ln

P(x, t)W(x → x′, τ)

P(x′, t)W(x′ → x, τ)
.

(15)

Here we have introduced the propagator W(x′ → x, τ), the probability density that a system observed
in state x′ will be found at x time τ later. In general, here and above, the density W(x → x′, τ)

depends on the absolute time t, which we have omitted here for better readability. The corresponding
expression for the entropy flow is obtained by substituting (15) into the balance equation Ṡe(t) =

Ṡ(t)− Ṡi(t), whence

Ṡe(t) = − lim
τ→0

1
2τ

∫
dxdx′ (P(x, t)W(x → x′, τ)− P(x′, t)W(x′ → x, τ)) ln

W(x′ → x, τ)

W(x → x′, τ)
. (16)

Since limτ→0 W(x → x′, τ) = δ(x − x′) [28] and P(x, t)δ(x − x′) = P(x′, t)δ(x′ − x), the factor in
front of the logarithm in (15) and (16) vanishes in the limit of small τ, limτ→0 P(x, t)W(x → x′; τ)−
P(x′, t)W(x′ → x; τ) = 0. Together with the prefactor 1/τ, this necessitates the use of L’Hôpital’s rule

lim
τ→0

1
τ

(
P(x, t)W(x → x′; τ)− P(x′, t)W(x′ → x; τ)

)
= P(x, t)Ẇ(x → x′)− P(x′, t)Ẇ(x′ → x) (17)

where we used the shorthand

Ẇ(x → x′) := lim
τ→0

d
dτ

W(x → x′; τ) , (18)
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which is generally given by the Fokker–Planck equation of the process, so that

Ṗ(x, t) =
∫

dx′ P(x′, t)Ẇ(x′ → x) . (19)

In the continuum processes considered below, in particular Sections 3.11–3.13, Ẇ(x → x′) is a kernel
in the form of Dirac δ-functions and derivatives thereof, acting under the integral as the adjoint
Fokker–Planck operator on P(x, t). With Equation (17) the internal entropy production of a continuous
process (15) may conveniently be written as

Ṡi(t) =
1
2

∫
dxdx′

(
P(x, t)Ẇ(x → x′)− P(x′, t)Ẇ(x′ → x)

)
× lim

τ→0
ln
(

P(x, t)W(x → x′; τ)

P(x′, t)W(x′ → x; τ)

)
(20a)

=
∫

dxdx′ P(x, t)Ẇ(x → x′)× lim
τ→0

ln
(

P(x, t)W(x → x′; τ)

P(x′, t)W(x′ → x; τ)

)
(20b)

=
∫

dxdx′
(

P(x, t)Ẇ(x → x′)− P(x′, t)Ẇ(x′ → x)
)
× lim

τ→0
ln
(

P(x, t)W(x → x′; τ)

W0P0

)
(20c)

with suitable constants W0 and P0. Correspondingly, the (external) entropy flow (16) is

Ṡe(t) = −
1
2

∫
dxdx′

(
P(x, t)Ẇ(x → x′)− P(x′, t)Ẇ(x′ → x)

)
× lim

τ→0
ln
(

W(x → x′; τ)

W(x′ → x; τ)

)
(21a)

= −
∫

dxdx′ P(x, t)Ẇ(x → x′)× lim
τ→0

ln
(

W(x → x′; τ)

W(x′ → x; τ)

)
(21b)

= −
∫

dxdx′
(

P(x, t)Ẇ(x → x′)− P(x′, t)Ẇ(x′ → x)
)
× lim

τ→0
ln
(

W(x → x′; τ)

W0

)
. (21c)

All of these expressions assume that the limits of the logarithms exist. Naively replacing them by
ln(δ(x− x′)/δ(x′ − x)) produces a meaningless expression with a Dirac δ-function in the denominator.
Equations (20) and (21) are identically obtained in the same manner as Equation (4) with the master
Equation (2) replaced by the Fokker–Planck Equation (19). All of these expressions, Equations (4), (20)
and (21), may thus be seen as Gaspard’s [11] framework.

Langevin description and stochastic entropy. We have seen in Equations (13) and (14) how the
notion of entropy production can be extended to continuous degrees of freedom by means of a
Fokker–Planck description of the stochastic dynamics. The Fokker–Plank equation is a deterministic
equation for the probability density and thus provides a description at the level of ensembles, rather
than single fluctuating trajectories. A complementary description can be provided by means of a
Langevin equation of motion, which is instead a stochastic differential equation for the continuous
degree of freedom [29]. The presence of an explicit noise term, which usually represents faster
degrees of freedom or fluctuations induced by the contact with a heat reservoir, allows for a clearer
thermodynamic interpretation. A paradigmatic example is that of the overdamped colloidal particle
mentioned above, whose dynamics is described by

ẋ(t) = µF(x, t) + ζ(t) (22)

with µ a mobility, F(x, t) a generic force and ζ(t) a white noise term with covariance 〈ζ(t)ζ(t′)〉 =
2Dδ(t − t′). For one-dimensional motion on the real line, the force F(x, t) can always be written
as the gradient of a potential V(x, t), namely F(x, t) = −∂xV(x, t), so that it is conservative.
For time-independent, stable potentials, V(x, t) = V(x), this leads over long timeframes to an
equilibrium steady-state. This property does not hold in higher dimensions and for different boundary
conditions (e.g., periodic), in which case the force F(x, t) need not have a corresponding potential
V(x, t) for which F(x, t) = −∇V(x, t) [30].
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The concept of entropy is traditionally introduced at the level of ensembles. However, due to
its role in fluctuation theorems [1,24], a consistent definition at the level of single trajectories is
required. This can be constructed along the lines of [12] by positing the trajectory-dependent entropy
S(x∗(t), t) where x∗(t) is a random trajectory as given by Equation (22) and

S(x, t) = − ln(P(x, t)/P0) . (23)

Here, P(x, t) denotes the probability density of finding a particle at position x at time t as introduced
above and P0 is a scale as used above to maintain dimensional consistency. Given that x∗(t) is a
random variable, so is S(x∗(t), t), which may be regarded as an instantaneous entropy. Taking the
total derivative with respect to t produces

d
dt

S(x∗(t), t) = − ∂tP(x, t)
P(x, t)

∣∣∣∣
x=x∗(t)

− ∂xP(x, t)
P(x, t)

∣∣∣∣
x=x∗(t)

◦ ẋ∗(t)

= − ∂tP(x, t)
P(x, t)

∣∣∣∣
x=x∗(t)

+
j(x∗(t), t)

DP(x∗(t), t)
◦ ẋ∗(t)− µ

D
F(x∗(t), t) ◦ ẋ∗(t)

(24)

where we have used the processes’ Fokker–Planck equation ∂tP(x, t) = −∂x j(x, t) with j(x, t) =

µF(x, t)P(x, t)− D∂xP(x, t). The total time derivative has been taken as a conventional derivative
implying the Stratonovich convention indicated by ◦, which will become relevant below. The term
in (24) containing ∂tP(x, t) accounts for changes in the probability density due to its temporal evolution,
such as relaxation to a steady state, and any time-dependent driving protocol. The product F(x∗(t), t) ◦
ẋ∗(t) can be interpreted as a power expended by the force and in the absence of an internal energy of
the particle, dissipated in the medium. With Einstein’s relation defining the temperature of T = D/µ

of the medium, the last term may be written as

Ṡm(t) =
F(x∗(t), t) ◦ ẋ∗(t)

T
(25)

and thus interpreted as the entropy change in the medium. Together with the entropy change of the
particle, this gives the total entropy change of particle and medium,

Ṡtot(t) =
d
dt

S(x∗(t), t) + Ṡm(t) = −
∂tP(x, t)
P(x, t)

∣∣∣∣
x=x∗(t)

+
j(x∗(t), t)

DP(x∗(t), t)
◦ ẋ∗(t) , (26)

which is a random variable, as it depends on the position x∗(t). It also draws on P(x, t) and j(x, t)
which are properties of the ensemble. To make the connection to the entropies constructed above we
need to take an ensemble average of the instantaneous Ṡtot(t). To do so, we need an interpretation
of the last term of (26), where the noise ζ(t) of ẋ∗(t), Equation (22), multiplies j(x∗(t), t)/P(x∗(t), t).
Equivalently, we need the joint density P(x, ẋ; t) of position x and velocity ẋ at time t. In the spirit of
Ito, this density trivially factorises into a normally distributed ẋ− µF(x, t) and P(x, t) as the increment
ẋdt on the basis of (22) depends only on the particle’s current position x(t). However, this is not so
in the Stratonovich interpretation of P(x, ẋ; t), as here the increment depends equally on x(t) and
x(t + dt) [1,31,32]. Taking the ensemble average of Ṡtot thus produces

〈Ṡtot(t)〉 =
∫

dx∗dẋ∗ Ṡtot(t)P(x∗, ẋ∗; t)

= −
∫

dx∗
∂tP(x∗, t)
P(x∗, t)

∫
dẋ∗ P(x∗, ẋ∗; t) +

∫
dx∗dẋ∗

j(x∗, t)
DP(x∗, t)

ẋ∗P(x∗, ẋ∗; t) ,
(27)

where x∗ and ẋ∗ are now dummy variables. The first term on the right hand side vanishes,
because P(x∗, t) =

∫
dẋ∗ P(x∗, ẋ∗; t) is the marginal of P(x∗, ẋ∗; t) and

∫
dx∗ ∂tP(x∗, t) = 0 by
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normalisation. The integral over ẋ∗ in the second term produces the expected particle velocity
conditional to its position,

〈ẋ∗|x∗, t〉 =
∫

dẋ∗ ẋ∗
P(x∗, ẋ∗; t)

P(x∗, t)
(28)

in the Stratonovich sense, where it gives rise to the current [12], 〈ẋ∗|x∗, t〉 = j(x∗, t)/P(x∗, t), so that

〈Ṡtot(t)〉 =
∫

dx∗
j2(x∗, t)

DP(x∗, t)
≥ 0 , (29)

which vanishes only in the absence of any probability current, i.e., in thermodynamic equilibrium.
In the Ito sense, the conditional expectation (28) would have instead given rise to the
ensemble-independent drift, 〈ẋ∗|x∗, t〉 = µF(x∗, t). Comparing to Equation (13), the expectation
〈Ṡtot(t)〉 turns out to be the internal entropy production Ṡi(t), so that Ṡtot(t) of Equation (26) may be
regarded as its instantaneous counterpart.

Path integral methods. An interesting aspect of working with the Langevin description is the
possibility of casting probability densities p([x]; t) for paths x(t′) with t′ ∈ [0, t] into path integrals, for
example in the Onsager–Machlup formalism [33,34]. For the colloidal particle introduced in (22), it
gives p([x]; t) = N exp (−A([x]; t)) with the action functional

A([x]; t) =
∫ t

0
dt′

(ẋ(t′)− µF(x(t′), t′))◦2

4D
− µ

2

∫ t

0
dt′ ∂xF(x(t′), t′) (30)

in the Stratonovich discretisation, which differs from the Ito form only by the second term ([34],
Section 4.5), which is the Jacobian of the transform of the noise ζ(t) to x(t), Equation (22).
The Stratonovich form is needed so that the action does not give preference to a particular time
direction [35]. This choice plays a role in every product of white noise, as is implicit to ẋ, and a random
variable. We therefore indicate the choice by a ◦ also in powers, reminding us that F(x(t′), t′) should
be read as F((x(t′) + x(t′ + ∆t))/2, t′ + ∆t) and ẋ(t′) as (x(t′ + ∆t)− x(t′))/2 with discretisation time
step ∆t. Evaluating the action for the reversed path xR(t′) = x(t− t′) then gives

A([xR]; t) =
∫ t

0
dt′

(ẋR(t′)− µF(xR(t′), t′))◦2

4D
− µ

2

∫ t

0
dt′ ∂xF(xR(t′), t′) (31)

=
∫ t

0
dt′

(ẋ(t′) + µF(x(t′), t− t′))◦2

4D
− µ

2

∫ t

0
dt′ ∂xF(x(t′), t− t′) . (32)

If the force is even under time reversal, F(x, t′) = F(x, t− t′), in particular when it is independent of
time, the path probability density obeys

ln
p([x]; t)

p([xR]; t)
=
∫ t

0
dt′

F(x(t′), t′) ◦ ẋ(t′)
T

= Sm(t) , (33)

with random variables multiplied with Stratonovich convention. With Equation (25), the integral in
Equation (33) can be identified as the entropy of the medium. When the driving is time-independent
and the system’s probability distribution eventually becomes stationary, such that limt→∞〈Ṡ(x∗, t)〉 =
0, Equation (23), the only contribution to the total entropy change is due to change of entropy
in the medium, Equation (26). Assuming that the system is ergodic, we have the equivalence
limt→∞ Sm(t)/t = limt→∞〈Ṡtot(t)〉, where 〈•〉 denotes an ensemble average. Using Equations (13)
and (29) gives limt→∞ Sm(t)/t = limt→∞ Ṡi(t). Equation (33) can therefore be used directly to compute
the steady-state internal entropy production rate. The equivalence between the long-time limit t→ ∞
and the ensemble average holds only for ergodic systems, whose unique steady-state does not depend
on the specific initialisation x(0). This connection between stochastic thermodynamics and field theory
has stimulated a number of works aimed at characterising the non-equilibrium features of continuum
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models of active matter [13,36]. Extensions of this formalism to systems driven by correlated noise
have also been proposed [37].

3. Systems

In this section, we calculate the entropy production rate on the basis of Gaspard’s framework [11],
Equations (4), (15) and (16), for different particle systems. We cover the systems listed in Table 1,
with both discrete and continuous states and with one or multiple particles.

Table 1. List of particle systems for which we have calculated their entropy production Ṡi(t).

Section System Ṡi(t)

Section 3.1 Two-state Markov process (37)
Section 3.2 Three-state Markov process (41)
Section 3.3 Random walk on a complete graph (44), (45)
Section 3.4 N independent, distinguishable Markov processes (52)
Section 3.5 N independent, indistinguishable two-state Markov processes (55b)
Section 3.6 N independent, indistinguishable d-state processes (68)
Section 3.7 Random Walk on a lattice (82)
Section 3.8 Random Walk on a ring lattice (87), (89)
Section 3.9 Driven Brownian particle (94)

Section 3.10 Driven Brownian particle in a harmonic potential (100)
Section 3.11 Driven Brownian particle on a ring with potential (113d)
Section 3.12 Run-and-tumble motion with diffusion on a ring (122)
Section 3.13 Switching diffusion process on a ring (128)

3.1. Two-State Markov Process

Consider a particle that hops between two states, 1 and 2, with transition rates Ẇ(1 → 2) = α

and Ẇ(2 → 1) = β, see Figure 1 [23,38], and using the notation in Equation (18) for discrete states.
The rate-matrix (see Equation (7)) may thus be

w =

(
−α α

β −β

)
, (34)

with P(t) = (P1(t), P2(t)) the probability of the particle to be in state 1 or 2 respectively as a function
of time. By normalisation, P1(t) + P2(t) = 1, with probabilistic initial condition P(0) = (p, 1− p).
Solving the master equation in Equation (2) yields

P(t) = (P1(t), P2(t)) =
1

α + β

(
β + r e−(α+β)t, α− r e−(α+β)t

)
, (35)

with r = αp− β(1− p), corresponding to an exponentially decaying probability current

P1(t)α− P2(t)β = r e−(α+β)t . (36)

The internal entropy production (4b) is then

Ṡi(t) = [P1(t)α− P2(t)β] ln
[

P1(t)α
P2(t)β

]
= re−(α+β)t ln

[
1 + r

β e−(α+β)t

1− r
α e−(α+β)t

]
, (37)

see Figure 2, and the entropy flow (4a),

Ṡe(t) = −r e−(α+β)t ln
(

α

β

)
. (38)
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At stationarity, Ṡi = Ṡe = 0 and therefore the two-state Markov process reaches equilibrium. In this
example, the topology of the transition network does not allow a sustained current between states,
which inevitably leads to equilibrium in the steady state and, therefore, there is production of entropy
only due to the relaxation of the system from the initial state.

1 2
α

β

Figure 1. Two-state Markov chain in continuous time. The black blob indicates the current state of the
system. Independently of the choice of α and β, this processes settles into an equilibrium steady-state
over long timeframes (in the absence of an external time-dependent diving).

0.0 0.2 0.4 0.6 0.8 1.0
t

10 2

10 1

100

101

102

S i
(t)

2-state ( = = 1)
2-state ( = 3, = 1)
3-state ( = = 1)
3-state ( = 3, = 1)

Figure 2. Entropy production of the two- and three-state Markov processes (black and grey lines
respectively) discussed in Sections 3.1 and 3.2 as a function of time. For the two-state system we plot
Equation (37) with p = 1 both for the symmetric, α = β (solid lines), and for the asymmetric case, α 6= β

(dashed lines). In both, the entropy production decays exponentially over long timeframes. For the
three-state system, Equation (41), the asymmetric case displays a finite entropy production rate over
long timeframes, consistent with Equation (42) and the condition that at stationarity Ṡi(t) = −Ṡe(t).

3.2. Three-State Markov Process

We extend the system in Section 3.1 to three states, 1, 2 and 3, with transition rates Ẇ(1→ 2) = α,
Ẇ(2 → 3) = α, Ẇ(3 → 1) = α, Ẇ(2 → 1) = β, Ẇ(3 → 2) = β, and Ẇ(1 → 3) = β, see Figure 3,
and using the notation Equation (18) for discrete states. The rate matrix (see Equation (7)) is then

w =

−(α + β) α β

β −(α + β) α

α β −(α + β)

 . (39)

Assuming the initial condition P(0) = (1, 0, 0), the probabilities of states 1, 2 and 3 respectively, evolve
according to Equation (2), which has solution

P1(t) =
1
3

(
1 + 2e−3φt cos (

√
3ψt)

)
, (40a)

P2(t) =
1
3

(
1− 2e−3φt cos (

√
3ψt− π/3)

)
, (40b)

P3(t) =
1
3

(
1− 2e−3φt cos (

√
3ψt + π/3)

)
, (40c)
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with φ = (α + β)/2 and ψ = (α− β)/2.
The entropy production (4b) is then, using (40),

Ṡi(t) = (α− β) ln
α

β
+
(

P1(t)α− P2(t)β
)

ln
(

P1(t)
P2(t)

)
+
(

P2(t)α− P3(t)β
)

ln
(

P2(t)
P3(t)

)
+
(

P3(t)α− P1(t)β
)

ln
(

P3(t)
P1(t)

)
,

(41)

see Figure 2, and the entropy flow (4a),

Ṡe(t) = −(α− β) ln
(

α

β

)
, (42)

which is constant throughout. At stationarity, the system is uniformly distributed and, if α 6= β,
the entropy production and flow satisfy Ṡi = −Ṡe 6= 0. If α 6= β, the particle has a net drift that sustains
a probability current (α− β)/3 in the system, which prevents the system from reaching equilibrium.
This setup can be generalised straightforwardly to M-state Markov processes characterised by the
same cyclic structure Ẇ(i → i + 1 (mod M)) = α and Ẇ(i → i− 1 (mod M)) = β, to find that the
steady-state entropy production is independent of M. These can be seen as simple models of protein
conformational cycles driven by instantaneous energy inputs of order kBT ln(α/β), for example ATP
hydrolysis [39].

β

α

α

β

α

β

1

32

Figure 3. Three-state Markov chain in continuous time. The black blob indicates the current state of
the system. Symmetry under cyclic permutation is introduced by imposing identical transition rates α

and β for counter-clockwise and clockwise transition, respectively.

3.3. Random Walk on a Complete Graph

Consider a random walker on a complete graph with d nodes, where each node is connected to all
other nodes, and the walker jumps from node j ∈ {1, 2, . . . , d} to node k ∈ {1, 2, . . . , d}, k 6= j, with rate
wjk, see Figure 4. These are the off-diagonal elements of the corresponding Markov matrix whose
diagonal elements are wjj = −∑d

i=1,i 6=j wji. The probability vector P(t) = (P1(t), P2(t), . . . , Pd(t)) has
components Pj(t) that are the probability that the system is in state j at time t. The general case of
arbitrary transition rates is impossible to discuss exhaustively. In the uniform case, wjk = α, the Markov
matrix has only two distinct eigenvalues, namely eigenvalue αd with degeneracy d− 1 and eigenvalue
0 with degeneracy 1. Assuming an arbitrary initial condition P(0), the probability distribution at a
later time t is

Pj(t) =
1
d
+ e−dαt

(
Pj(0)−

1
d

)
. (43)
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The steady state, which is associated with the vanishing eigenvalue, is the uniform distribution
limt→∞ Pj(t) = 1/d for all j ∈ {1, 2, . . . , d}. The entropy production (4b) of the initial state relaxing to
the uniform state is

Ṡi(t) =
1
2

αe−dαt ∑
j,k

(
Pj(0)− Pk(0)

)
ln

(
1 + e−dαt (Pj(0)d− 1

)
1 + e−dαt (Pk(0)d− 1)

)
, (44)

and the entropy flow (4a) is Ṡe = 0 throughout. If the walker is initially located on node k, so that
Pj(0) = δj,k, the entropy production simplifies to

Ṡi(t) = (d− 1)αe−dαt ln

(
1 +

de−dαt

1− e−dαt

)
. (45)

We can see that the system reaches equilibrium at stationarity, since limt→∞ Ṡi(t) = Ṡe(t) = 0.
Over long timeframes (de−dαt � 1), the asymptotic behaviour of Ṡi is

Ṡi(t) = d(d− 1)αe−2dαt +O(e−3dαt) , (46)

by expanding the logarithm in the small exponential.

Figure 4. Random walk on a complete graph of d nodes (here shown for d = 6). The black blob
indicates the current state of the system. For uniform transition rates, the symmetry under node
relabelling leads to an equilibrium, homogeneous steady-state with Pj = 1/d for all j.

3.4. N Independent, Distinguishable Markov Processes

In the following, we consider N non-interacting, distinguishable particles undergoing Markovian
dynamics on a discrete state space, see Figure 5. Each of the N particles carries an index ` ∈
{1, 2, . . . , N} and is in state n` ∈ {1, 2, . . . , d`}, so that the state of the entire system is given by
an N-particle state n = (n1, n2, . . . , nN). Particle distinguishability implies the factorisation of state
and transition probabilities into their single-particle contributions, whence the joint probability Pn(t)
of an N-particle state n factorises into a product of single particle probabilities P(`)

n`
(t) of particle ` to

be in state n`,

Pn(t) =
N

∏
`=1

P(`)
n`

(t) . (47)

Further, the Poissonian rate wnm from N-particle state n to N-particle state m 6= n vanishes for all
transitions n→ m that differ in more than one component `, i.e., wnm = 0 unless there exists a single
` ∈ {1, 2, . . . , N} such that mk = nk for all k 6= `, in which case wnm = w(`)

n`m`
, the transition rates of the

single particle transition of particle `.
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The entropy production of this N-particle system according to Equation (4b),

Ṡi(t) =
1
2 ∑

nm
(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

Pm(t)wmn

)
(48)

simplifies considerably due to wnm, as the sum may be re-written as

∑
nm

. . . wnm . . . = ∑
n

∑
`

∑
m`

. . . wnm`
. . . (49)

with m` = (n1, n2, . . . , n`−1, m`, n`+1, . . . , nN) so that wnm`
= w(`)

n`m`
and

Ṡi(t) =
1
2 ∑

n

N

∑
`=1

∑
m`

{(
N

∏
k=1

P(k)
nk (t)

)
w(`)

n`m`
−
(

N

∏
k=1

P(k)
mk (t)

)
w(`)

m`n`

}
ln

(
∏N

k=1 P(k)
nk (t)w(`)

n`m`

∏N
k=1 P(k)

mk (t)w
(`)
m`n`

)
. (50)

Since mk = nk for any k 6= ` inside the curly bracket, we may write

N

∏
k=1

P(k)
nk (t) = P(`)

n`
(t)

N

∏
k=1
k 6=`

P(k)
nk (t) and

N

∏
k=1

P(k)
mk (t) = P(`)

m`
(t)

N

∏
k=1
k 6=`

P(k)
nk (t) . (51)

The product ∏N
k 6=` P(k)

nk (t) can thus be taken outside the curly bracket in Equation (50) and be summed
over, as well as cancelled in the logarithm. After changing the dummy variables in the remaining
summation from n` and m` to n and m respectively, the entropy production is

Ṡi(t) =
1
2

N

∑
`=1

∑
nm

(
P(`)

n (t)w(`)
nm − P(`)

m (t)w(`)
mn

)
ln

(
P(`)

n (t)w(`)
nm

P(`)
m (t)w(`)

mn

)
, (52)

which is the sum of the entropy productions of the single particle ` ∈ {1, 2, . . . , N}, Equation (4b),
irrespective of how each particle is initialised. The same argument applies to Ṡe, the entropy flow
Equation (4a). The entropy production and flow obviously simplify to an N-fold product of the
single particle expressions if w(`)

nm do not depend on ` and all particles are initialised by the same
P`

n(0) independent of `. This result may equally be found from the dynamical entropy per unit time,
Equation (8).

Figure 5. Example of N = 5 non-interacting, distinguishable processes with d1 = 4, d2 = 2, d3 = 3,
d4 = 5 and d5 = 5. The black blobs indicate the current state of each sub-system.

3.5. N Independent, Indistinguishable Two-State Markov Processes

Suppose that N identical, indistinguishable, non-interacting particles follow the two-state Markov
process described in Section 3.1, Figure 6 [23]. There are Ω = N + 1 distinct states given by the
occupation number n ∈ {0, 1, . . . , N} of one of the two states, say state 1, as the occupation number
of the other state follows as N − n given the particle number N is fixed under the dynamics. In the
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following, P(n, t) denotes the probability of finding n particles in state 1 at time t. The master equation
is then

Ṗ(n, t) = −αnP(n, t) + α(n + 1)P(n + 1, t)− β(N − n)P(n, t) + β(N − n + 1)P(n− 1, t) . (53)

The state space and the evolution in it can be thought of as a hopping process on a one-dimensional
chain of states with non-uniform rates. Provided P(n, 0) initially follows a binomial distribution,
P(n, 0) = (N

n )pn(1− p)N−n with probability p for a particle to be placed in state 1 initially, the solution
of Equation (53) is easily constructed from the solution P1(t) in Equation (35) of Section 3.1 via

P(n, t) =
(

N
n

)
Pn

1 (t)(1− P1(t))N−n for 0 ≤ n ≤ N (54)

with P1(0) = p, as Ṗ1(t) = −αP1(t) + β(1− P1(t)), which can be verified by substituting Equation (54)
into Equation (53). Using Equations (34) and (54) in (4b), the entropy production reads

Ṡi(t) =
N

∑
n=1

[P(n, t)αn− P(n− 1, t)β(N − n + 1)] ln
[

P(n, t)αn
P(n− 1, t)β(N − n + 1)

]
(55a)

= N[P1(t)α− (1− P1(t))β] ln
[

P1(t)α
(1− P1(t))β

]
, (55b)

which is the N-fold multiple of the result of the corresponding single particle system, Equation (37).
This result, Equation (55b), depends on the initialisation being commensurable with Equation (54)
which otherwise is recovered only asymptotically and only if the stationary distribution is unique.

Further, the entropy production of N indistinguishable particles being the N-fold entropy
production of a single particle does not extend to the external entropy flow, which lacks the
simplification of the logarithm and gives

Ṡe(t) = −N[αP1(t)− β(1− P1(t))]

{
ln
(

α

β

)
+

N−1

∑
n=0

Pn
1 (t)(1− P1(t))N−1−n

(
N − 1

n

)
ln
(

n + 1
N − n

)}
(56)

thus picking up a correction in the form of the additional sum in the curly bracket that vanishes only
at N = 1 or P1(t) = 1/2, but does not contribute at stationarity because of the overall prefactor αP1 −
β(1− P1) that converges to 0. To make sense of this correction in relation to particle indistinguishability,
with the help of Equation (54) we can rewrite the difference between the right hand side of Equation (56)
and the N-fold entropy flow of a single two-state system (38) as

−N[αP1(t)− β(1− P1(t))]
N−1

∑
n=0

Pn
1 (t)(1− P1(t))N−1−n

(
N − 1

n

)
ln
(

n + 1
N − n

)

= −
N−1

∑
n=0

[α(n + 1)P(n + 1, t)− β(N − n)P(n, t)] ln
(

n + 1
N − n

) (57)

which now explicitly involves the net probability current from the occupation number state with n + 1
particles in state A to that with n particles in state A, as well as a the logarithm

ln
(

n + 1
N − n

)
= ln

[(
N
n

)]
− ln

[(
N

n + 1

)]
. (58)

Written in terms of the same combinatorial factors appearing in Equation (54), the logarithm (58)
can be interpreted as a difference of microcanonical (Boltzmann) entropies, defined as the logarithm
of the degeneracy of the occupation number state if we were to assume that the N particles are
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distinguishable. With the help of the master Equation (53) as well as Equation (54) and (58), the term
Equation (57) may be rewritten to give

Ṡe(t) = −N[αP1(t)− β(1− P1(t))] ln
(

α

β

)
−

N−1

∑
n=0

Ṗ(n, t) ln
[(

N
n

)]
(59)

This result is further generalised in Equation (70).

1 2
α

β

Figure 6. N independent, indistinguishable two-state Markov processes in continuous time. The black
blobs indicate the current state of the single-particle sub-system. Since processes are indistinguishable,
states are fully characterised by the occupation number of either state, if the total number of particles
is known.

3.6. N Independent, Indistinguishable d-State Processes

We generalise now the results in Sections 3.3 and 3.5 to N independent d-state Markov processes,
see Figure 7. These results represent a special case of those obtained in [40] when the N processes are
non-interacting. In this section, we consider non-interacting, indistinguishable particles hopping on a
graph of d nodes with edge-dependent hopping rates wjk. As in the two-state system in Section 3.5,
we find that the internal (but not the external) entropy production of the d-state system Ṡi is N times
the entropy production of the individual processes assuming the initial condition is probabilistically
identical for all single-particle sub-systems. The entropy productions of a single such process according
to Equation (4) read

Ṡ(1)
i (t) =

1
2 ∑

jk
[Pj(t)wjk − Pk(t)wkj] ln

(
Pj(t)wjk

Pk(t)wkj

)
, (60a)

Ṡ(1)
e (t) = −1

2 ∑
jk
[Pj(t)wjk − Pk(t)wkj] ln

(
wjk

wkj

)
, (60b)

where Pj(t) is the time-dependent probability of a single-particle process to be in state j, Section 3.3.
To calculate the entropy production of the N concurrent indistinguishable processes using

the occupation number representation, we first derive the probability of an occupation number
configuration n = (n1, n2, . . . , nd), with ∑d

j=1 nj = N, which similarly to Equation (54) is given by the
multinomial distribution

Pn(t) = N!
d

∏
j=1

P
nj
j (t)

nj!
(61)

for the probability Pn(t) of the system to be in state n at time t assuming that each particle is subject to
the same single-particle distribution Pj(t), j ∈ {1, 2, . . . , d} for all t, i.e., in particular assuming that all
particles are initialised identically, by placing them all at the same site or, more generally, by placing
them initially according to the same distribution Pj(0). Given this initialisation, Equation (61) solves
Equation (2)

Ṗn(t) = ∑
m

Pm(t)wmn − Pn(t)wnm (62)

with the transition rates wmn discussed below.
For non-interacting processes with a unique stationary distribution, Equation (61) is always

obeyed in the limit of long times after initialisation, since the single-particle distributions Pj(t) are
identical at steady state. The entropy production Equation (4b) of the entire system has the same
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form as Equation (48) of Section 3.4 (N independent, distinguishable particles) with wnm, however now
the transition rate between the occupation number state n = (n1, n2, . . . , nd) with 0 ≤ nk ≤ N to
occupation number state m = (m1, m2, . . . , md). The rate wnm vanishes except when m differs from
n in exactly two distinct components, say mj = nj − 1 ≥ 0 and mk = nk + 1 ≥ 1 in which case
wnm = njwjk with wjk the transition rates of a single particle from j to k as introduced above. For such
m, the rate obeys wmn = mkwkj and the probability Pm(t) fulfills

Pm(t) = Pn(t)
Pk(t)nj

Pj(t)mk
= Pn(t)

Pk(t)wnmwkj

Pj(t)wmnwjk
, (63)

which simplifies the entropy production Equation (48) to

Ṡi(t) =
1
2 ∑

nm
(Pn(t)wnm − Pm(t)wmn) ln

(
Pn(t)wnm

Pm(t)wmn

)
=

1
2 ∑

n
∑
jk
(Pn(t)njwjk − Pm(t)mkwkj) ln

(
Pj(t)wjk

Pk(t)wkj

) (64)

where the sum ∑n runs over all allowed configurations, namely 0 ≤ nj ≤ N for j = 1, 2, . . . , d with
∑j nj = N and m = (n1, n2, . . . , nj − 1, . . . , nk + 1, . . . , nd) is derived from n as outlined above. Strictly,
Pn(t) has to be defined to vanish for invalid states n, so that the first bracket in the summand of
Equation (64) vanishes, in particular when nj = 0, in which case mj = −1. To proceed, we introduce
the probability

P̄n̄j(t) = (N − 1)!
P

nj−1
j

(nj − 1)!

d

∏
i=1,i 6=j

Pni
i

ni!
, (65)

defined to vanish for nj = 0, so that Pn(t)nj = NPj(t)P̄n̄j(t). The probability P̄n̄j(t) is that of finding ni
particles at states i 6= j and nj − 1 particles at state j. It is Equation (61) evaluated in a system with
only N − 1 particles and configuration n̄j = (n1, n2, . . . , nj−1, nj − 1, nj+1, . . . , nd) = m̄k a function of
n. Equation (64) may now be rewritten as

Ṡi(t) =
N
2 ∑

jk

{(
∑
n

P̄n̄j(t)

)
Pj(t)wjk −

(
∑
n

P̄m̄k (t)

)
Pk(t)wkj

}
ln

(
Pj(t)wjk

Pk(t)wkj

)
(66)

where we have used that the arguments of the logarithm are independent of n and m. The summation
over n gives

∑
n

P̄n̄j(t) = ∑
n

P̄m̄k (t) = 1 (67)

so that

Ṡi(t) =
N
2 ∑

jk
(Pj(t)wjk − Pk(t)wkj) ln

(
Pj(t)wjk

Pk(t)wkj

)
= NṠ(1)

i (t) (68)
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which is the N-fold entropy production of the single particle system Ṡi(t), Equation (60a),
or equivalently that of N distinguishable particles, Equation (52), Section 3.4. As in Section 3.5,
this dramatic simplification does not carry over to the external entropy flow Equation (4a)

Ṡe(t) = −
N
2 ∑

jk
∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln

(
njwjk

(nk + 1)wkj

)

= −N
2 ∑

jk
(Pj(t)wjk − Pk(t)wkj) ln

(
wjk

wkj

)

− N
2 ∑

jk
∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln
( nj

nk + 1

)
,

(69)

where of the last two terms only the first is the N-fold entropy flow of the single particle system Ṡe(t),
Equation (60b). The reason for the second term is the lack of a cancellation mechanism to absorb the nj
and nk + 1 from the logarithm. Rewriting the second term as

− N
2 ∑

jk
∑
n

P̄n̄j(t)(Pj(t)wjk − Pk(t)wkj) ln
( nj

nk + 1

)

=− 1
2 ∑

n
∑
jk

(
Pn(t)njwjk − Pn

(
Pk(t)nj

Pj(t)(nk + 1)

)
(nk + 1)wkj

)
ln
( nj

nk + 1

)
(70)

=−∑
n

Ṗn(t) ln
[(

N
n1, ..., nd

)]
, (71)

using Equation (62) where we re-expressed the logarithm as

ln
( nj

nk + 1

)
= ln

[(
N

n1, . . . , nj − 1, . . . , nk + 1, . . . , nd

)]
− ln

[(
N

n1, . . . , nd

)]
, (72)

shows that the correction term has the same form as the corresponding term in the two-state system,
Equation (57), namely that of a difference of microcanonical (Boltzmann) entropies of the multi-particle
states. It vanishes when all nj are either 0 or 1, as expected for d� N and also at stationarity when
Ṗn(t) = 0. In that limit Ṡe = −Ṡi when indeed Equation (60a) gives

lim
t→∞

Ṡ(1)
i (t) =

1
2 ∑

k
(Pjwjk − Pkwkj) ln

(
wjk

wkj

)
, (73)

with Pj = limt→∞ Pj(t). As far as the entropy production Ṡi(t) is concerned, we thus recover and
generalise the result in Section 3.5 on indistinguishable particles in a two-state system, which produce
N times the entropy of a single particle. In Section 3.4, it was shown that N distinguishable particles
have the same entropy production and flow as the sum of the entropy productions of individual
particles. In Sections 3.5 and 3.6, it was shown that the entropy production of indistinguishable particles,
which require the states to be represented by occupation numbers, show the N-fold entropy production
of the single particle system, provided suitable initialisation, but asymptotically independent of
initialisation, provided the stationary state has a unique distribution. The same does not apply to the
entropy flow, which generally acquires additional logarithmic terms accounting for the degeneracy
of the occupation number states. The extra terms, however, are bound to vanish at stationarity,
when Ṡe(t) = −Ṡi(t).
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Figure 7. N independent, indistinguishable d-state Markov processes (here shown for d = 6 and
N = 8) in continuous time. Black blobs indicate the current state of the single-particle sub-systems.
Due to indistinguishability, multi-particle states are fully characterised by the occupation number of an
arbitrary subset of d− 1 states, if the total number of particles is known.

3.7. Random Walk on a Lattice

In this section, we study a particle on a one-dimensional lattice that hops to the right nearest
neighbouring site with rate r and to the left with rate `, see Figure 8. The case of unequal hopping
rates, ` 6= r, is generally referred to as an asymmetric random walk and can be seen as a minimal
model for the directed motion of a molecular motor on a cytoskeletal filament [41]. The position x of
the particle at time t, after N(t) jumps, is

x = x0 +
N(t)

∑
i=1

∆xi, (74)

where the random hops ∆xi are independent and identically distributed, and x0 is the initial position
at time t = 0. If a is the lattice spacing, the distance increments are ∆xi = +a with probability r/(`+ r)
and ∆xi = −a with probability `/(`+ r). The probability distribution of the particle position is

P(x, t; x0) =
∞

∑
n=0

H(n, t)Pn(x; x0) , (75)

where H(n, t) is the probability that by time t, the particle has hopped N(t) = n times, and Pn(x; x0) is
the probability that the particle is at position x after n hops starting from x0. Since jumping is a Poisson
process with rate r + `, the random variable N(t) has a Poisson distribution,

H(n, t) =
((`+ r)t)n

n!
e−(`+r)t . (76)

On the other hand, the distribution of the position x after n jumps is the binomial distribution

Pn(x; x0) =

(
n
kx

)
rkx`n−kx

(`+ r)n , (77)

where kx = (n + (x − x0)/a)/2 is the number of jumps to the right, 0 ≤ kx ≤ n with (77) implied
to vanish if kx is not integer. From Equation (74), the parity of (x − x0)/a and N(t) are identical.
Using (76) and (77), the probability distribution in (75) reads

P(x, t; x0) =e−(`+r)t
( r
`

) x−x0
2a I

(
|x− x0|

a
, 2t
√

r`
)

, (78)
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where I(n, z) is the modified Bessel function of the first kind of n, z ∈ C, which is defined as [42]

I(m, z) =
∞

∑
j=0

1
j!Γ(j + m + 1)

( z
2

)2j+m
. (79)

The transition probability is then

W(x → y; τ) = e−(`+r)τ
( r
`

) y−x
2a I

(
|y− x|

a
, 2τ
√

r`
)

. (80)

Using (78) and (80) to calculate the entropy production (4b), we need the following identity for
|y− x|/a = |m| ≥ 1,

lim
τ→0

1
τ
I
(
|m|, 2τ

√
r`
)
=
√

r`δ|m|,1 , (81)

which follows immediately from the definition of the modified Bessel function, Equation (79).
It indicates that the only transitions that contribute to the entropy production are those where the
particle travels a distance equal to the lattice spacing a. Then, the entropy production reads

Ṡi(t) =
1
2
(r− `) ln

( r
`

)
+ e−(`+r)t

∞

∑
m=−∞

( r
`

)m
2 I
(
|m|, 2t

√
r`
)

×

r ln

 I
(
|m|, 2t

√
r`
)

I
(
|m + 1|, 2t

√
r`
)
+ ` ln

 I
(
|m|, 2t

√
r`
)

I
(
|m− 1|, 2t

√
r`
)
 ,

(82)

see Figure 9. The entropy flow is Ṡe(t) = −(r− `) ln(r/`) independent of t, which owes its simplicity
to the transition rates being independent of the particle’s position. We are not aware of a method to
perform the sum in (82) in closed form and, given that this expression involves terms competing at
large times t, we cannot calculate the stationary entropy production limt→∞ Ṡi(t). If we naively assume
that the sum in Equation (82) converges such that it is suppressed by the exponential exp (−(r + `)t),
then the entropy production Ṡi appears to converge to 1

2 (r− `) ln(r/`). If that were the case, Ṡ = Ṡi + Ṡe

would converge to a negative constant, while S(t), Equation (1), which vanishes at t = 0 given the
initialisation of P(x, t; x0) = δ(x−x0)/a,0, is bound to be strictly positive at all finite t. Given that
P(x, t; x0) does not converge, not much else can be said about S(t) or Ṡ. Numerically, using the GNU
Scientific Library [43] implementation of Bessel functions, we find that, asymptotically for large times,
Equation (82) is

Ṡi(t) ' (r− `) ln
( r
`

)
+

1
2t

+O
(

t−2
)

(83)

if r 6= ` and Ṡi(t) ' 1/(2t) +O
(
t−3) if r = `, see Figure 9.

r`

Figure 8. Simple random walk on an infinite, one-dimensional lattice in continuous time. The black
blob indicates the current position of the random walker. The left and right hopping rates, labelled `

and r respectively, are assumed to be homogeneous but not equal in general, thus leading to a net drift
of the average position.
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10 2 10 1 100 101

t

10 1

100

101

102

S i
(t)

RW on  (r = = 1)
RW on  (r = 3, = 1)
1/(2t)
1/(2t) + (r )ln(r/ )

Figure 9. Entropy production of a random walk on a one-dimensional lattice (RW on Z), for symmetric
and asymmetric hopping rates, as a function of time, Equation (82) (solid lines). The asymptotic
behaviour at large t, Equation (83) (dotted lines), decays algebraically in the symmetric case (r = `)
and converges to a positive constant in the asymmetric case (r 6= `).

To take the continuum limit a → 0 of the probability distribution (78), we define v and D such
that r + ` = 2D/a2 and r− ` = v/a. Using the asymptotic expansion of I(m, z) in m [42]

I(m, z) ∼ exp (z)√
2πz

(
1− 4m2 − 1

8z
+

(
4m2 − 1

) (
4m2 − 9

)
2!(8z)2 −

(
4m2 − 1

) (
4m2 − 9

) (
4m2 − 25

)
3!(8z)3 + . . .

)
, (84)

which is valid for | arg z| < π/2, we obtain in fact the Gaussian distribution,

lim
a→0

1
a

P
( x

a
, t;

x0

a
; r(v, D, a), `(v, D, a)

)
=

1√
4πDt

e−
(x−x0−vt)2

4Dt , (85)

which corresponds to the distribution of a drift–diffusive particle, which is studied in Section 3.9.
Therefore, all results derived in Section 3.9, apply to the present system in the continuum limit.

3.8. Random Walk on a Ring Lattice

In this section, we extend the system in Section 3.7 to a random walk on a ring lattice of length
L > 2, so that 1 ≤ x ≤ L, see Figure 10. The probability distribution PL(x, t) of the particle on the ring
follows from the distribution on the one-dimensional lattice P(x, t) in (78), by mapping all positions
x + jL on the one-dimensional lattice to position x ∈ {1, 2, . . . , L} on the ring with j being the winding
number irrelevant to the evolution of the walker. Then, the distribution on the ring lattice reads,

PL(x, t; x0) =
∞

∑
j=−∞

P(x + jL, t; x0) (86)

and similarly for the transition probability W(x → y, τ) = PL(y, τ; x). To calculate the entropy
production (4b), each pair of points x, y on the lattice is mapped to a pair of points on the ring.

For L > 2, as τ → 0 only transitions to distinct, nearest neighbours contribute and the expression
for the entropy production simplifies dramatically,

Ṡi(t) = (r− `) ln
( r
`

)
+

L/a

∑
m=1

PL(ma, t; x0)

{
r ln

(
PL(ma, t; x0)

PL((m + 1)a, t; x0)

)
+ ` ln

(
PL(ma, t; x0)

PL((m− 1)a, t; x0)

)}
(87)
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and similarly for

Ṡe(t) = −(r− `) ln
( r
`

)
. (88)

While the entropy flow Ṡe on a ring is thus identical to that of a particle on a one-dimensional lattice,
the entropy production Ṡi on a ring is in principle more complicated, but with a lack of cancellations of√

r/` in the logarithm as found in Section 3.7 and PL reaching stationarity comes the asymptote

lim
t→∞

Ṡi(t) = (r− `) ln
( r
`

)
. (89)

This is easily derived from limt→∞ PL(x, t; x0) = 1/L taken into the finite sum of Equation (87).
It follows that Ṡ(t) = Ṡi(t) + Ṡe(t) converges to 0 at large t, as expected for a convergent stationary
distribution.

r

`

Figure 10. Simple random walk on an periodic, one-dimensional ‘ring’ lattice in continuous time.
This model generalises the three-state Markov chain discussed in Section 3.2 to L states. The black blob
indicates the current position of the random walker. Due to the finiteness of the state space, this process
is characterised by a well defined steady-state, which is an equilibrium one for symmetric rates ` = r.

The case L = 2 and the less interesting case L = 1 are not covered above, because of the different
topology of the phase space of L > 2 compared to L = 2. The difference can be observed in the
different structure of the transition matrices (34) and (39). The framework above is based on each
site having two outgoing and two incoming rates, 2L in total. However, for L = 2 there are only two
transitions, which cannot be separated into four to fit the framework above, because even when rates
of concurrent transitions between two given states are additive, their entropy production generally is
not. The case of L = 2 is recovered in the two-state system of Section 3.1 with α = β = r + `, which is
at equilibrium in the stationary state.

3.9. Driven Brownian Particle

In continuum space, the motion of a freely diffusive particle with diffusion constant D and drift v
is governed by the Langevin equation ẋ = v +

√
2Dξ(t), where ξ(t) is a Gaussian white noise with

zero mean, 〈ξ(t)〉 = 0, and covariance 〈ξ(t)ξ(t′)〉 = δ(t− t′), see Figure 11 [44]. The corresponding
Fokker–Planck equation for the probability distribution P(x, t) is [45]

∂tP(x, t) = −v∂xP(x, t) + D∂2
xP(x, t) . (90)

Assuming the initial condition P(x, 0) = δ(x− x0), the solution to the Fokker–Planck equation is the
Gaussian distribution

P(x, t) =
1√

4Dπt
e−

(x−x0−vt)2

4Dt , (91)
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which is also the Green function of the Fokker–Planck Equation (90). We therefore also have the
transition probability density from state x to state y over an interval τ,

W(x → y, τ) =
1√

4Dπτ
e−

(y−x−vτ)2
4Dτ . (92)

Substituting (91) and (92) into Equation (15) for the internal entropy production of a continuous
system gives

Ṡi = lim
τ→0

1
τ

∫
dxdy

1√
4Dπt

e−
(x−x0−vt)2

4Dt
1√

4Dπτ
e−

(y−x−vτ)2

4Dτ

(
(y− x0)

2 − (x− x0)
2

4Dt
+

(y− x)v
2D

)
, (93)

where the Gaussian integrals can be evaluated in closed form, Ṡi(t) =

limτ→0
[
1/(2t) + v2/D + v2τ/(2Dt)

]
. Taking the limit τ → 0 then gives the entropy production

rate [44,46,47],

Ṡi(t) =
1
2t

+
v2

D
, (94)

see Figure 12. Similarly, following (16), the entropy flow reads Ṡe(t) = −v2/D independent of time
t. As Ṡi(t) 6= 0, we see that for finite t or v 6= 0, the system is out of equilibrium with a sustained
probability current, so that there is in fact no steady-state distribution. We can verify Equation (94) for
the time-dependent internal entropy production by computing the probability current

j(x, t) = (v− D∂x)P(x, t) =
(

v
2
+

(x− x0 − vt)
4t

)
e−

(x−x0−vt)2

4Dt
√

πDt
(95)

and substituting it together with (91), into (29). As expected, the two procedures return identical
results. The independence of the transient contribution 1/(2t) to the internal entropy production on
the diffusion constant is remarkable although necessary on dimensional grounds, as a consequence of
Ṡi having dimensions of inverse time. The diffusion constant characterising the spatial behaviour of
diffusion suggests that it is the temporal, rather than the spatial, features of the process that determine
its initial entropy production.

v
D

Figure 11. Driven Brownian particle on the real line. The black blob indicates the particle’s
current position.

3.10. Driven Brownian Particle in a Harmonic Potential

Consider a drift–diffusive particle such as in Section 3.9 that is confined in a harmonic potential
V(x) = 1

2 kx2, where k is the potential stiffness, see Figure 13 [48]. The Langevin equation is ẋ =

v− kx +
√

2Dξ(t), where 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′) and the Fokker–Planck equation for
P(x, t) is [45]

∂tP(x, t) = −∂x((v− kx)P(x, t)) + D∂2
xP(x, t) . (96)

Assuming the initial condition P(x, 0) = δ(x− x0), the solution to the Fokker–Plank equation is the
Gaussian distribution

P(x, t) =

√
k

2πD(1− exp (−2kt))
e−

(kx−v−(kx0−v) exp(−kt))2

2Dk(1−exp(−2kt)) , (97)
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corresponding to a probability current j(x, t) = (v− kx− D∂x)P(x, t) of the form

j(x) =

√
k

2πD(1−e−2kt)
e−kt

(
v
(

1− e−kt
)
− k

(
x0 − xe−kt

))
1− e−2kt e

− (v(1−e−kt)−k(x−x0e−kt)2

2Dk(1−e−2kt) . (98)

The transition probability density within τ is then also of Gaussian form, namely

W(x → y, τ) =

√
k

2πD(1− exp (−2kτ))
e−

(ky−v−(kx−v) exp(−kτ))2

2Dk(1−exp(−2kτ)) . (99)

Using (97) and (99) in (15) gives the entropy production rate

Ṡi =

(
(v− kx0)

2

D
− k
)

e−2kt +
k exp (−2kt)

1− exp (−2kt)
, (100)

see Figure 12, and in (16) the external entropy flow

Ṡe = −
(
(v− kx0)

2

D
− k
)

e−2kt . (101)

In the limit t → ∞, the system will reach equilibrium as P(x, t) in Equation (97) converges to the

Boltzmann distribution
√

k
2πD exp

(
− (kx−v)2

2Dk

)
of the effective potential 1

2 kx2 − vx at temperature D.

This is consistent with (100) and (101), since limt→∞ Ṡi(t) = limt→∞ Ṡe(t) = 0. Similarly to drift
diffusion on the real line, Equation (94), there is a transient contribution to the entropy production
that is independent of the diffusion constant D but does now depend on the stiffness k, which has
dimensions of inverse time, through the rescaled time kt.

10 2 10 1 100 101

t

10 4

10 3

10 2

10 1

100

101

102

S i
(t)

Drift-diffusion (v = 1, D = 1, k = 0)
Pure diffusion (v = 0, D = 1, k = 0)
Drift-diffusion harmonic pot. (v = 1, D = 1, k = 1)

Figure 12. Entropy production of the drift–diffusion process in an external potential, Equation (100), as a
function of time for different parameter combinations. For vanishing potential stiffness, k→ 0, we recover
Equation (94) for a free drift–diffusion particle. In particular, for v = 0 the entropy production decays
algebraically, while for v 6= 0 it converges to the constant value v2/D. For k > 0, the algebraic decay is
suppressed exponentially over long timeframes as the process settles into its equilibrium steady-state.
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v
D

Figure 13. Driven Brownian particle in a harmonic potential. This process reduces to the standard
Ornstein–Uhlenbeck process upon rescaling x → x′ + v/k. The black blob indicates the particle’s
current position. The presence of a binding potential implies that the system relaxes to an equilibrium
steady-state over long timeframes.

3.11. Driven Brownian Particle on a Ring with Potential

Consider a drift–diffusive particle on a ring x ∈ [0, L) in a smooth potential V(x), Figure 14,
initialised at position x0. The Langevin equation of the particle is [49–51] ẋ = v− ∂xV(x) +

√
2Dξ(t),

where ξ(t) is Gaussian white noise. The Fokker–Planck equation is then

∂tP(x, t; x0) = −∂x((v−V′(x))P(x, t; x0)) + D∂2
xP(x, t; x0) (102)

with V′(x) = d
dx V(x) and boundary condition P(n)(0, t; x0) = P(n)(L, t; x0) for for all n ≥ 0 derivatives

and t ≥ 0. At stationarity, in the limit t→ ∞, where ∂tP(x, t; x0) = 0, the solution to the Fokker–Planck
Equation (102) is [29,51,52]

Ps(x) = lim
t→∞

P(x, t) = Ze−
V(x)−vx

D

∫ x+L

x
dy e

V(y)−vy
D , (103)

where Z is the normalisation constant. The corresponding steady-state probability current j =

(v− ∂xV)Ps − D∂xPs is independent of x by continuity, 0 = ∂tP = −∂x j, and reads [45]

j = Z
(

e−
vL
D − 1

)
. (104)

v
D

Figure 14. Driven Brownian particle on a ring x ∈ [0, L) with a periodic potential satisfying V(x) =
V(x + L). Any finite diffusion constant D > 0 results in a stationary state over long timeframes that is
non-equilibrium for v 6= 0. The black blob indicates the particle’s current position.

In order to calculate the entropy production according to (15) and (16) using (17), we need
W(x → y; τ) for small τ. As discussed after Equation (17), W(x → y; τ) obeys the Fokker–Planck
Equation (102) in the form

∂τW(x → y; τ) = −∂y
[(

v−V′(y)
)

W(x → y; τ)
]
+ D∂2

yW(x → y; τ) (105)
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with limτ→0 W(x → y; τ) = δ(y− x), so that

Ẇ(x → y) = lim
τ→0

∂τW(x → y; τ) = V′′(y)δ(y− x)− (v−V′(y))δ′(y− x) + Dδ′′(y− x) (106)

to be evaluated under an integral, where δ′(y− x) = d
dy δ(y− x) will require an integration by parts.

As for the logarithmic term, we use [28,45]

W(x → y; τ) =
1√

4πDτ
e−

(y−x−τ(v−V′(x)))2

4Dτ (1 +O(τ)) (107)

so that

ln
(

W(x → y; τ)

W(y→ x; τ)

)
=

y− x
2D

(
2v−V′(x)−V′(y)

)
+O(τ). (108)

The entropy flow Equation (16) in the more convenient version Equation (21a) can be obtained
easily using Equations (106) and (108)

Ṡe(t) = −
∫ L

0
dxdy P(x, t)

(
V′′(y)δ(y− x)− (v−V′(y))δ′(y− x) + Dδ′′(y− x)

)
(109)

× y− x
2D

(
2v−V′(x)−V′(y)

)
(110)

= −
∫ L

0
dx P(x, t)

(
1
D
(
v−V′(x)

)2 −V′′(x)
)

(111)

after suitable integration by parts, whereby derivatives of the δ-function are conveniently interpreted
as derivatives with respect to y to avoid subsequent differentiation of P(x, t). Since δ(y− x)(y− x) = 0,
the factor (y− x)/(2D) needs to be differentiated for a term to contribute. In the absence of a potential,
P(x, t) = 1/L at stationarity, so that Equation (111) simplifies to Ṡe(t) = −v2/D and limt→∞ Ṡi(t) =
v2/D, Equation (94). Using the probability current j(x, t) = −D∂xP(x, t) + (v−V′(x)) P(x, t), the
entropy flow simplifies further to

Ṡe(t) = −
∫ L

0
dx j(x, t)

v−V′(x)
D

(112)

so that at stationarity, when the current is spatially uniform, limt→∞ Ṡe(t) = − limt→∞ j(x, t)vL/D as
the potential is periodic, entering only via the current.

An equivalent calculation of Ṡi on the basis of (20a) gives

Ṡi(t) = −Ṡe +
∫ L

0
dxdy P(x, t)

(
V′′(y)δ(y− x)− (v−V′(y))δ′(y− x) + Dδ′′(y− x)

)
ln
(

P(x, t)
P(y, t)

)
(113a)

= −Ṡe +
∫ L

0
dx
{

D
(P′(x, t))2

P(x, t)
− P(x, t)V′′(x)

}
(113b)

= −Ṡe −
∫ L

0
dx j(x, t)∂x ln P(x, t) (113c)

=
∫ L

0
dx

j2(x, t)
DP(x, t)

, (113d)

with the last line identical to Equation (13).
By considering the functional derivative δZ/δV(z) in

∫ L
0 dxP(x) = 1 of Equation (103), one can

show that the stationary current j(x, t) Equation (104) is extremal for constant V(x), indicating that the
magnitude of the stationary entropy flow Equation (113d) is maximised in a constant potential.
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3.12. Run-and-Tumble Motion with Diffusion on A ring

Consider the dynamics of a run-and-tumble particle on a ring x ∈ [0, L) with Langevin equation
ẋ = v(t) +

√
2Dξ(t), where the drift v(t) is a Poisson process with rate α that alternates the speed of the

particle between the constants v1 and v2, and ξ(t) is Gaussian white noise, Figure 15. Run-and-tumble
particles are widely studied as a model of bacterial motion [53]. The drift being v(t) = v1 or v(t) = v2

will be referred to as the mode of the particle being 1 or 2 respectively. Defining P1(x, t) and P2(x, t)
as the joint probabilities that the particle is at position x at time t and in mode 1 or 2 respectively, the
coupled Fokker–Planck equations for P1 and P2 are

∂tP1(x, t) =− v1∂xP1(x, t) + D∂2
xP1(x, t)− α(P1(x, t)− P2(x, t)) (114a)

∂tP2(x, t) =− v2∂xP2(x, t) + D∂2
xP2(x, t)− α(P2(x, t)− P1(x, t)) (114b)

whose stationary solution is the uniform distribution limt→∞ P1(x, t) = limt→∞ P2(x) = 1/(2L), as is
easily verified by direct substitution. The corresponding steady-state probability currents thus read
j1 = v1/(2L) and j2 = v2/(2L).

v1

D
v2

D

Figure 15. Run-and-tumble motion with diffusion on a ring x ∈ [0, L). A run-and-tumble particle
switches stochastically, in a Poisson process with rate α, between two modes 1 and 2 characterised
by an identical diffusion constant D but distinct drift velocities v1 and v2. The two modes are here
represented in black and grey, respectively. For arbitrary positive diffusion constant D or tumbling rate
α with v1 6= v2, the steady state is uniform but generally non-equilibrium.

In the following, we denote by the propagator W(x → y, Q → R; τ) the probability density
that a particle at position x in mode Q is found time τ later at position y in mode R. For Q = R,
this propagation is a sum over all even numbers m of Poissonian switches, that occur with probability
(ατ)m exp (−ατ) /m!, which includes the probability exp (−ατ) of not switching at all over a total of
time τ. For Q 6= R, the propagation is due to an odd number of switches.

For m = 0, the contribution to W(x → y, Q→ R; τ) is thus exp (−ατ)W(x → y; τ), with W(x →
y; τ) of a drift diffusion particle on a ring, Section 3.11, but without potential, approximated at short
times τ by the process on the real line, Equation (92) with drift v = v1 or v = v2 according to the
particle’s mode. For m = 1, the contribution is a single convolution over the time t′ ∈ [0, τ) at which the
particle changes mode, most easily done after Fourier transforming. Before presenting this calculation
in real space, we argue that any such convolution will result in some approximate Gaussian with an
amplitude proportional to 1/

√
τ multiplied by a term of order (ατ)m. In small τ, therefore only the

lowest orders need to be kept, m = 0 for Q = R and m = 1 for Q 6= R.
More concretely,

W(x → y, 1→ 2; τ)

=
∫ ∞

−∞
dz
∫ τ

0
dτ′

1√
4πDτ′

e−
(z−x−v1τ′)2

4Dτ′ e−ατ′ 1√
4πD(τ − τ′)

e
− (y−z−v2(τ−τ′))2

4D(τ−τ′) e−α(τ−τ′) + . . . (115)

=
α exp (−ατ)

2(v1 − v2)

[
erf
(

x− y + v1τ√
4Dτ

)
− erf

(
x− y + v2τ√

4Dτ

)]
+ . . . (116)



Entropy 2020, 22, 1252 27 of 33

which in small τ, when v1,2τ/
√

4Dτ � 1, so that erf(r + ε) = erf(r) + 2ε e−r2
/
√

π + . . ., expands to

W(x → y, 1→ 2; τ) =
ατ√

4πDτ
e−

(y−x)2
4Dτ (1 +O(τ))

= W(x → y, 2→ 1; τ) , (117)

whereas W(x → y, Q → Q; τ), the propagator with an even number of mode switches, is given by
Equation (92) to leading order in τ,

W(x → y, Q→ Q; τ) =
1√

4πDτ
e−

(y−x−vQτ)2

4Dτ −ατ (1 +O(τ)) . (118)

Much of the calculation of the entropy production follows the procedure in Sections 3.9 and 3.11
to be detailed further below. To this end, we also need

lim
τ→0

d
dτ

W(x → y, 1→ 2; τ) = Ẇ(x → y, 1→ 2) = αδ(x− y)

= Ẇ(x → y, 2→ 1) . (119)

As far as processes are concerned that involve a change of particle mode, therefore only the transition
rates enter, not diffusion or drift. Given a uniform stationary spatial distribution of particles of any
mode, mode changes between two modes cannot result in a sustained probability current, even when
the switching rates differ,

(
P1Ẇ(1→ 2)− P2Ẇ(2→ 1)

)
ln
(

P1Ẇ(1→ 2)
P2Ẇ(2→ 1)

)
= 0 (120)

for P1Ẇ(1→ 2) = P2Ẇ(2→ 1) at stationarity as in the process discussed in Section 3.1. A probability
current and thus entropy production can occur when different particle modes result in a different
distribution, Section 3.10, or when mode switching between more than two modes results in a current
in its own rights, Sections 3.2 and 3.13.

Since the full time-dependent density is beyond the scope of the present work, we calculate
entropy flow and production at stationary on the basis of a natural extension of Equations (4), (16)
and (21a) to a mixture of discrete and continuous states

− lim
t→∞

Ṡe(t) = lim
t→∞

Ṡi(t) (121)

= ∑
Q,R∈{1,2}

∫ L

0
dxdyPQ(x, t)Ẇ(x → y, Q→ R) lim

τ→0
ln
(

W(x → y, Q→ R; τ)

W(y→ x, R→ Q; τ)

)

=
v2

1 + v2
2

2D
(122)

which immediately follows from Sections 3.9 and 3.11, as the stationary density is constant, PQ = PR =

1/(2L), and only Q = R contribute, with

lim
τ→0

ln
(

W(x → y, 1→ 2; τ)

W(y→ x, 2→ 1; τ)

)
= 0 . (123)

If the drifts are equal in absolute value |v1| = |v2| = v, then we recover the entropy production
of a simple drift–diffusive particle, Ṡi = v2/D. This is because we can think of run-and-tumble as
a drift–diffusion particle that changes direction instantly. Since changing the direction produces no
entropy, the total entropy production rate should be the same as a drift–diffusion particle. The entropy
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production can alternatively be derived via (29) by computing Ṡi =
∫

dx
(

j21/(DP1) + j22/(DP2)
)

with
the steady-state currents stated above.

3.13. Switching Diffusion Process on a Ring

The dynamics of a one-dimensional run-and-tumble particle discussed above can be readily
generalised to the so called switching diffusion process [54] by allowing for an extended set {vi} of
drift modes i = 1, . . . , M, Figure 16. The corresponding Langevin equation for the particle position on
a ring x ∈ [0, L] is almost identical to that of run-and-tumble, namely ẋ = v(t) +

√
2Dξ(t), with the

exception that the process v(t) is now an M-state Markov process. In the general case, a single
switching rate α is thus not sufficient and the full transition rate matrix αij needs to be provided.
In this formulation, the run-and-tumble dynamics Section 3.12 correspond to the choice M = 2 with
symmetric rates α12 = α21 = α. Defining Pi(x, t) as the joint probability that at time t the particle is at
position x and in mode i, thereby moving with velocity vi, the system (114) of Fokker–Planck equations
generalises to

∂tPi(x, t) = −∂x[(vi − D∂x)Pi(x, t)] + ∑
j

Pj(x, t)αji (124)

where the transmutation rates αij from mode i to mode j are assumed to be independent of position.
To ease notation we use the convention αjj = −∑i 6=j αji. For a non-vanishing diffusion constant,
the stationary solution is uniform for all modes and given by limt→∞ Pi(x, t) = zi/L, where zi is the
ith element of the eigenvector z satisfying ∑j zj = 1 and the eigenvalue relation ∑j zjαji = 0, which we
assume to be unique for simplicity.

v3

D
v2

D

v1
Dv4

D

Figure 16. Switching diffusion process on a ring x ∈ [0, L] in continuous time. A switching diffusion
process involves a stochastic switching between M modes characterised by an identical diffusion
constant D but distinct drifts vi (i = 1, 2, . . . , M). The marginal switching dynamics are characterised
as an M-state Markov process with transition rates αij from mode i to mode j.

The calculation of the steady-state entropy production follows very closely that of run-and-tumble
presented above. The conditional transition probabilities including up to one transmutation event read
to leading order

W(x → y, i→ j; τ) =


eαiiτ
√

4πDτ
exp

(
− (y−x−viτ)

2

4Dτ

)
(1 +O(τ)) for i = j

αij
2(vi−vj)

[
erf
(

x−y+viτ√
4Dτ

)
− erf

( x−y+vjτ√
4Dτ

)]
(1 +O(τ)) for i 6= j ,

(125)

so that

lim
τ→0

d
dτ

W(x → y, i→ j; τ) =

{
D∂2

yδ(y− x)− vi∂yδ(y− x) + αiiδ(y− x) for i = j

αijδ(y− x) for i 6= j .
(126)
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We could perform the calculation of the entropy production using the procedure of Section 3.9
rather than drawing on the operator for i = j, which, however, is used in the following for convenience,
see Section 3.11. Substituting (125) and (126) into (20a) and assuming steady-state densities, we arrive at

lim
t→∞

Ṡi(t) =− lim
t→∞

Ṡe(t)

=
∫ L

0
dxdy ∑

i

zi
L

(
D∂2

yδ(y− x)− vi∂yδ(y− x) + αiiδ(y− x)
)
(y− x)

vi
D

+
∫ L

0
dxdy ∑

i,j 6=i

zi
L

αijδ(y− x) ln

(
αij

αji

)
,

(127)

where we have used Equation (126) in the operators containing the δ-functions and Equation (125)
in the logarithms. The term ln

(
αij/αji

)
is obtained by the same expansion as used in Equation (117),

Section 3.12. Both terms contributing to the entropy production above are familiar from previous
sections: the first is a sum over the entropy production of M drift–diffusion processes with characteristic
drift vi, Section 3.11 without potential, weighted by the steady-state marginal probability zi for the
particle to be in state i; the second is the steady-state entropy production of an M-state Markov
process with transition rate matrix αij, which reduces to Equation (4) after integration. Carrying out all
integrals, we finally have

lim
t→∞

Ṡi(t) = lim
t→∞
−Ṡe(t) = ∑

i
zi

v2
i

D
+

1
2 ∑

i,j
(ziαij − zjαji) ln

(
αij

αji

)
. (128)

Unlike run-and-tumble, Section 3.12, the transmutation process in switching diffusion does in general
contribute to the entropy production for M > 2, since the stationary state generally does not satisfy
global detailed balance. However, contributions to the total entropy production originating from
the switching and those from the diffusion parts of the process are effectively independent at steady
state, as only the stationary marginal probabilities zi of the switching process feature as weights
in the entropy production of the drift–diffusion. Otherwise, the parameters characterising the two
processes stay separate in Equation (128). Further, the drift–diffusion contributions of the form v2

i /D
are invariant under the time-rescaling αij → Tαij. This property originates from the steady-state
distributions Pi(x) being uniform and would generally disappear in a potential, Section 3.10.

4. Discussion and Concluding Remarks

In this work, we calculate the rate of entropy production within Gaspard’s framework [11] from
first principles in a collection of paradigmatic processes, encompassing both discrete and continuous
degrees of freedom. Based on the Markovian dynamics of each system, where we can, we derive
the probability distribution of the particle (or particles) as a function of time P(x, t) from Dirac or
Kronecker-δ initial conditions P(x, 0) = δ(x− x0), from which the transition probability W(x → y; τ)

follows straightforwardly. In some cases, we determine only the stationary density and the (short-time)
propagator W(x → y; τ) to leading order in τ. We then use Equation (4) for discrete systems or
Equations (20) and (21) for continuous systems to calculate the time-dependent entropy production.
We set out to give concrete, exact results in closed form, rather than general expressions that are difficult
to evaluate, even when we allowed for general potentials in Section 3.11. In summary, the ingredients
that are needed to calculate the entropy production in closed form in the present framework are:
(a) the probability (density) P(x, t) to find the system in state x ideally as a function of time t and
(b) the propagator W(x → y; τ), the probability (density) that the system is found at a certain state
y after some short time τ given an initial state x. If the propagator is known for any time τ, it can
be used to calculate the probability P(x, t; x0) = W(x0 → x; t) for some initial state x0. However,
this full time dependence is often difficult to obtain. The propagator is further needed in two forms,
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firstly limτ→0 ∂τW(x → y; τ) when it is most elegantly written as an operator in continuous space,
and secondly limτ→0 ln(W(x → y; τ)/W(y→ x; τ)).

For completeness, where feasible, we have calculated the probability current j(x, t) in continuous
systems at position x. The mere presence of such a flow indicates broken time-reversal symmetry and
thus non-equilibrium. Our results on the discrete systems (Sections 3.1 to 3.8) illustrate two important
aspects of entropy production. First, the need of a probability flow PAẆ(A → B)− PBẆ(B → A)

between states: in the two-state system Section 3.1 there are no transition rates α and β such that there
is a sustained probability flow and therefore, the system inevitably relaxes to equilibrium. However, in
the three-state system Section 3.2 the transition rates can be chosen so that there is a perpetual flow
(α− β)/3 between any two states and therefore there is entropy production not only during relaxation
but also at stationarity. Hence, we can ascertain these as non-equilibrium steady states in the long term
limit due to the non-vanishing rate of internal entropy production. Uniformly distributed steady states
can be far from equilibrium, as a rigorous analysis on the basis of the microscopic dynamics reveals,
although an effective dynamics may suggest otherwise.

Second, we see how the extensivity of entropy production arises in the N-particle systems
(Sections 3.4–3.6), independently of whether the particles are distinguishable or not. We therefore
conclude that the number of particles in the system must be accounted for when calculating the entropy
production, and doing otherwise will not lead to a correct result. This is sometimes overlooked,
especially when using effective theories. In the continuous systems (Sections 3.9 to 3.11), which involve
a drift v and a diffusion constant D, we always find the contribution v2/D to the entropy production
emerging one way or another. Moreover, in the case of drift–diffusion on the real line (Section 3.9)
we find that the contribution due to the relaxation of the system 1/(2t) is independent of any of the
system parameters.

Finally, we have studied two systems (Sections 3.12 and 3.13) where the state space has a discrete
and a continuous component. The discrete component corresponds to the transmutation between
particle species, i.e., their mode of drifting, whereas the continuous component corresponds to the
particle motion. We find that both processes, motion and transmutation, contribute to the entropy
production rate essentially independently since any term that combines both processes is a higher-order
term contribution in τ, and therefore vanishes in the limit τ → 0.

This work has applications to the field of active particle systems, where particles are subject
to local non-thermal forces. In fact, the systems studied in Sections 3.2 and 3.8–3.13 are prominent
examples of active systems. We have shown that their entropy production crucially relies on the
microscopic dynamics of the system, which are captured by the Fokker–Planck equation (or the master
equation for discrete systems) and its solution. However, in interacting many-particle systems, such a
description is not available in general. Instead, we may choose to use the Doi–Peliti formalism [55–63]
to describe the system, since it provides a systematic approach based on the microscopic dynamics
and which retains the particle entity.
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