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Abstract: Sub-Saharan Africa has been the epicenter of the outbreak since the spread of acquired
immunodeficiency syndrome (AIDS) began to be prevalent. This article proposes several regression
models to investigate the relationships between the HIV/AIDS epidemic and socioeconomic factors
(the gross domestic product per capita, and population density) in ten countries of Sub-Saharan Africa,
for 2011–2016. The maximum likelihood method was used to estimate the unknown parameters of
these models along with the Newton–Raphson procedure and Fisher scoring algorithm. Comparing
these regression models, there exist significant spatiotemporal non-stationarity and auto-correlations
between the HIV/AIDS epidemic and two socioeconomic factors. Based on the empirical results,
we suggest that the geographically and temporally weighted Poisson autoregressive (GTWPAR)
model is more suitable than other models, and has the better fitting results.

Keywords: HIV/AIDS epidemic; regression model; Newton–Raphson procedure; Fisher scoring
algorithm; time series

1. Introduction

Acquired immunodeficiency syndrome (AIDS) is a malignant infectious disease with a high
fatality rate caused by human immunodeficiency virus (HIV). The HIV/AIDS epidemic has been
one of the greatest global public health and social development problems since 1981, particularly in
Sub-Saharan Africa. As of 31 December 2016, over 30 million people had died from the disease [1].
More than 70% of the 35 million people are infected with the HIV/AIDS disease in Sub-Saharan Africa.
Thus, the HIV/AIDS epidemic of Sub-Saharan Africa has attracted extensive attention from researchers
around the world [2–4].

In earlier studies, Janet et al. [5] and Hallman et al. [6] demonstrated the relationship between
the disease and socioeconomic status. Chris et al. [7] indicated socioeconomic factors to explain this
disease outperformed cultural ones in South Africa. Mathematical models always play an important
role in evaluating the trends of the HIV/AIDS epidemic [8]. For example, regression models have
been widely used in the study of the relationship between this disease and influencing factors.
Shiboski et al. [9] considered a generalized linear model to obtain the statistical analysis of the
HIV/AIDS disease. A mixed-effects linear regression model was used to analyze the correlation
between national population and antenatal care [10]. Laurence et al. [11] applied a spatial regression
model to show that the epidemic had substantial geographic variance across Sub-Saharan Africa.

This paper proposes several regressive models to investigate the relationships between the
HIV/AIDS epidemic, the gross domestic product (GDP) per capita and the population density in
ten countries of Sub-Saharan Africa. The Poisson regression model is introduced in Section 2.1.
Sections 2.2 and 2.3 describe two spatial models, respectively. A spatiotemporal autoregressive model
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is proposed in Section 2.4. The maximum likelihood method is used to obtain the iterative formulas of
coefficient estimations in Section 3. The main results are shown in Section 4, followed by discussion in
Section 5.

2. Methodologies

2.1. Poisson Regression Model

Regression models are a set of statistical processes for estimating the relationships between
response and explanatory variables. The classical model is a linear regression. Nelder and
Wedderburn [12] extended the linear model to a generalized linear regression for solving the discrete
data problem. This kind of models are very important in ecology, medicine and economics [13–15].
Suppose that Y = (Y1, Y2, . . . , Yn) is the response variable, where Yi(i = 1, . . . , n) are independent.
The density function is

f (yi; θi, φi) = exp
(yiθi − b(θi)

a(φi)
+ c(yi, φi)

)
,

where a(·), b(·), c(·, ·) are known functions, and θi, φi are unknown parameters for i = 1, 2, . . . , n.
Denote µi = E(Yi), and g(µi) = ln(µi) is a link function. Let Xij be explanatory variables for the ith
observation in the jth variable. Then, the Poisson regression (PR) model is given by

g(µi) , ηi =
p

∑
j=1

β jXij, (1)

where i = 1, 2, . . . , n, and β j(j = 1, 2, . . . , p) are unknown parameters.

2.2. Geographically Weighted Poisson Regression Model

With in-depth study, regression models have been frequently applied in epidemiology and health
geography for trying to investigate the persistent geographical variations in disease [16]. Based on the
generalized linear regression, Brunsdon et al. [17] proposed the geographically weighted regression
model to analyze the spatial non-stationary processes of discrete data. The disease maps arising
from this process are considered through the establishment of the geographically weighted Poisson
regression (GWPR) model [18–20] below

g(µi) , ηi =
p

∑
j=1

β j(ui, vi)Xij, (2)

where (ui, vi)(i = 1, 2, . . . , n) are the geographical locations, and β j(ui, vi)(j = 1, 2, . . . , p) are unknown
parameters at the position (ui, vi).

2.3. Geographically Weighted Poisson Autoregressive Model

Another issue deserving of special attention is whether there exists an interaction between
different regions in terms of spatial data. Previous studies [21–24] showed that spatial data has not
only spatial non-stationarity but also correlation. Zhang [25] proposed the geographically weighted
Poisson autoregressive (GWPAR) model as follows:

g(µi) , ηi = ρ
n

∑
k=1

cikηk +
p

∑
j=1

β j(ui, vi)Xij, (3)
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where ρ is a scalar autoregressive parameter, and cik(i, k = 1, 2, . . . , n) is the adjacency relation between
the ith and kth locations. Let ci be the number of regions adjacent to the ith position. If the kth position
is next to the ith’s, then cik = 1/ci. Otherwise, cik = 0.

2.4. Geographically and Temporally Weighted Poisson Autoregressive Model

Recently, many spatiotemporal models have been proposed to describe the spatiotemporal
variations in the relationships of response and explanatory variables [26,27]. Concerning the modeling
of spatiotemporal data, there are two important properties: non-stationarity and auto-correlation.
The non-stationarity indicates that there exists more than one linear relation between response and
explanatory variables. It can be used to identify where interesting relationships are likely to occur or
where detailed investigation is necessary in the study areas [28]. Spatiotemporal auto-correlation is
an important factor to determine the temporal correlations of observations [29]. These two problems
always appeared together [30]. A geographically and temporally weighted autoregressive (GTWPAR)
model can be applied to account for non-stationary and auto-correlated effects simultaneously.

Let Y be the response variable, and Yik(i = 1, 2, . . . , nk, k = 1, 2, . . . , T) be the independent
variables of Y in the ith position and the kth time. The density function can be defined as follows:

f (yik; θik, φik) = exp
(yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
,

where the parameters are similar to Section 2.1. Denote µik = E(Yik), and g(µik) = ln(µik).
Let Xijk(j = 1, 2, . . . , p) be the jth explanatory variable. The GTWPAR model is expressed by

g(µik) , ηik = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm +
p

∑
j=1

T

∑
k=1

β jk(uik, vik, tk)Xijk, (4)

where {β jk(uik, vik, tk)} is a set of unknown parameters at the ith position in the kth time, and c(ik)lm is
the adjacent relation between the location (uik, vik, tk) and (ulm, vlm, tm). Following the work of [31],
the spatiotemporal distance between the locations (uik, vik, tk) and (ulm, vlm, tm) can be defined as

d(ik)lm =
√

λ[(uik − ulm)2 + (vik − vlm)2] + µ(tk − tm)2,

where µ and λ are used to balance spatiotemporal distances. Suppose that

c(ik)lm =

{
1/cik, 0 < d(ik)lm < d,
0, otherwise,

where d is a constant and satisfies min{d(ik)lm } < d < max{d(ik)lm }.
Next, we rewrite the model (4) in a matrix form

η = ρCη + B′X′,

where η = (η11, · · · , ηn11, η12, · · · , ηn22, · · · , η1T , · · · , ηnT T)
′
, C = (c(ik)lm ), X = (Xijk) and B =

(β jk(uik, vik, tk)). For convenience, define ηK as the Kth element of η; CIK and XIK are the Ith row and
the Kth column of the matrices C and X, respectively. The detailed expressions of C, X and B are given
in Appendix A.1.

Remark 1. For the GTWPAR model (4), if ρ = 0 and β jk(uik, vik, tk) is independent of the spatiotemporal
effect, the model is a PR model. If ρ = 0 and β jk(uik, vik, tk) is dependent on spatial effect but independent of
temporal effect, the model becomes GWPR model. If ρ 6= 0 and β jk(uik, vik, tk) is independent of temporal effect,
it is the GWPAR model. Thus, PR, GWPR and GWPAR models are the special cases of the GTWPAR model.
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3. Coefficient Estimation

In this section, we only provide the estimation method of the GTWPAR model since the PR,
GWPR and GWPAR models are its special cases (Remark 1). Let (uik, vik, tk)(i = 1, 2, . . . , nk, k =

1, 2, . . . , T) be any point in the studied spatiotemporal region. We fix a point (u00, v00, t0) and assume
that β jk(uik, vik, tk) ≈ β j0(u00, v00, t0)(j = 1, 2, . . . , p). Then, the model (4) can be rewritten by

ηik = g(µik) = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm +
p

∑
j=1

T

∑
k=1

β j0(u00, v00, t0)Xijk. (5)

Denote β(u00, v00, t0) = (β10, . . . , βp0)
′, X = diag(Xi.) and Xi· = (Xi1, . . . , Xip). The corresponding

matrix form can be represented as η = ρCη + β′(u00, v00, t0)X′.

3.1. Estimation of Parameter Vector β

For the fixed point (u00, v00, t0), we define a spatiotemporal distance d(0)ik from this point to

(uik, vik, tk) as d(0)ik =
√

λ[(u00 − uik)2 + (v00 − vik)2] + µ(t0 − tk)2. The Gauss kernel function of these
two points can be written by

wik(u00, v00, t0) =
1√
2π

exp
{
− 1

2

(d(0)ik
hST

)2}
=

1√
2π

exp
{
− 1

2
λ[(u00 − uik)

2 + (v00 − vik)
2] + µ(t0 − tk)

2

h2
ST

}
=

1√
2π

exp
{
− 1

2

( (u00 − uik)
2 + (v00 − vik)

2

h2
S

+
(t0 − tk)

2

τh2
S

)}
,

where hST and hS are the space-time bandwidth and space bandwidth, respectively.
Meanwhile, we have h2

ST = λh2
S, and τ = λ/µ is a spatiotemporal factor. Without loss of generality,

let λ = 1. Then, the weighted maximum likelihood of Yik(i = 1, 2, . . . , nk, k = 1, 2, . . . , T) at the point
(u00, v00, t0) is

L(β10, β20, · · · , βp0) =
T

∏
k=1

nk

∏
i=1

f (yik; θik, φik)wik(u00, v00, t0),

where f (yik; θik, φik) is the density function. The log-likelihood can be obtained as follows:

L1(β(u00, v00, t0)) =
T

∑
k=1

nk

∑
i=1

( yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
wik(u00, v00, t0).

Note that c(yik, φik) = − ln(yik!), b(θik) = µik = exp(θik), and a(φik) = φik = 1. Thus, E(Yik) =

b′(θik) = exp(θik) = µik, Var(Yik) = b′′(θik)a(φik) = exp(θik) = µik. Differentiating L1 with respect to
β(u00, v00, t0) yields

∂L1

∂βr0
=

T

∑
k=1

nk

∑
i=1

(yik − µik
aikφ

∂θik
∂βr0

)
wik(u00, v00, t0) = 0, (6)

where βr0 = βr(u00, v00, t0)(r = 1, 2, · · · , p), and

∂θik
∂βr0

=
(∂µik

∂θik

)−1 ∂µik
∂g(µik)

∂g(µik)

∂βr0
=

1
b′′(θik)

1
g′(µik)

∂ηik
∂βr0

.
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For convenience, let N = ∑N
k=1 nk and W = (wik(u00, v00, t0))N×N . Denote A = (IN −

ρC)−1, Y = (Y11, · · · , Yn11, · · · , Y1T , · · · , YnT T)
′
, µ = (µ11, · · · , µn11, · · · , µ1T , · · · , µnT T)

′
, θ =

(θ11, · · · , θn11, · · · , θ1T , · · · , θnT T)
′
, φ = (φ11, · · · , φn11, · · · , φ1T , · · · , φnT T)

′
. Suppose that YK, µK, θK

and φK are the Kth elements of Y, µ, θ and φ, respectively. Then, we take the derivative of the model (5)
with respect to βr0, and obtain

∂ηl
∂βr0

=
N

∑
h=1

AlhXhr = Al·X·r, l = 1, 2, . . . , N.

The calculation process is given in Appendix A.2. Thus, the Equation (6) can be rewritten as

∂L1

∂βr0
=

1
φ

N

∑
l=1

Tl Al·X·r(Yl − µl)g′(µl)Wl(u00, v00, t0) = 0.

However, there is not a close-form solution for β(u00, v00, t0). The Newton–Raphson procedure
and Fisher scoring algorithm are used to get the estimation of β. The iterative formula is expressed as

β̂(m+1)(u00, v00, t0) = β̂(m)(u00, v00, t0) + I−1(β̂(m)(u00, v00, t0))S(β̂(m)(u00, v00, t0))

= ((A(m)X)′T(m)W(u00, v00, t0)(A(m)X))−1

×(A(m)X)′T(m)W(u00, v00, t0)Z(m), (7)

where the Fisher information matrix I(β) = E(I(β)), and

S(β̂(m)(u00, v00, t0)) =
( ∂L1

∂β10
,

∂L1

∂β20
, · · · ,

∂L1

∂βp0

)′
is the scalar vector. The detail process is provided in Appendix A.2. For the fixed point (uik, vik, tk)(i =
1, 2, . . . , nk; k = 1, 2, . . . , T), β̂ jk(uik, vik, tk) can be obtained by (7).

Remark 2. The estimations β̂(uik, vik, tk)(i, l = 1, 2, . . . , nk, k, m = 1, 2, . . . , T) are related to the temporal
and spatial effects in the GTWPAR model. If m 6= k, wik(ulm, vlm, tm) = 0 and c(ik)lm = 0, then β̂(uik, vik, tk) =

β̂(ui, vi) correspond to the parameter estimations of the GWPAR model. If wik(ulm, vlm, tm) = 0(m 6= k) and
C = 0, they are the estimations of the GWPR model. If W = 0 and C = 0, then β̂(uik, vik, tk) = β̂ are the
global estimation values of the PR model.

3.2. Estimation of Parameter ρ

Based on the density function, the log-likelihood function of ρ is

L2(ρ) =
T

∑
k=1

nk

∑
i=1

(yikθik − b(θik)

a(φik)
+ c(yik, φik)

)
.

Differentiating L2(ρ) with respect to ρ, we have

∂L2

∂ρ
=

T

∑
k=1

nk

∑
i=1

(yik − µik
aikφ

∂θik
∂ρ

)
= 0, (8)

where dθik
dρ = 1

b′′(θik)g′(µik)
dηik
dρ . Then, we take the derivative of the model (5) with respect to ρ as follows:

dηl
dρ

=
dg(µl)

dρ
=

N

∑
h=1

Al·C·hηh.
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The detail calculation is given in Appendix A.3. Then, the Equation (8) can be rewritten in the following
nonlinear form

dL2

dρ
=

N

∑
l=1

(Yl − µl)∑N
h=1 Al·C·hηh

alφV(µl)g′(µl)
= 0.

According to the Newton–Raphson procedure and Fisher scoring algorithm, the iterative formula
of ρ̂(m+1) is

ρ̂(m+1) = ρ̂(m) + I−1(ρ̂(m))S(ρ̂(m))

= ρ̂(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1

×(A(m)Cη(m))′T(m)(Z(m) − η(m)), (9)

where the scalar vector S(ρ̂(m)) = 1
φ (ACη)′T(Z − η) and the Fisher information matrix I(ρ) =

1
φ (ACη)′T(ACη). The calculation process of the scalar vector S(ρ̂(m)) and the information matrix I is
given in Appendix A.3.

4. Main Results

In this section, we apply the PR, GWPR, GWPAR and GTWPAR models to analyze the
relationships between the HIV/AIDS epidemic, the GDP per capita and population density in ten
countries of Sub-Saharan Africa from 2011 to 2016. The ten countries are Angola, Botswana, Lesotho,
Malawi, Mozambique, Namibia, South Africa, Swaziland, Zimbabwe and Zambia. The parameters
of these four models are estimated by the Newton–Raphson procedure and Fisher scoring algorithm.
The coefficient of determination R2, the corrected Akaike information criterion (AICc), the deviation
(D) and mean-square error (MSE) are used to compare the performances of the four models [18].

4.1. The HIV/AIDS Epidemic Models

The data of HIV/AIDS incidence, GDP per capita and population density were derived from
http://data.cnki.net/InternationalData/Report. Readers should note that authorization is required
to access the database on this website. Figure 1 describes the HIV/AIDS incidence in ten countries
from 2011 to 2016. It shows that the incidence varies significantly in different regions. Angola has a
minimum incidence of less than 5%, while Botswana and Swaziland have higher incidences of more
than 20% every years. Therefore, it may be necessary to consider the temporal and spatial factors in
analyzing the HIV/AIDS epidemic.

Angola Botswana Lesotho Malawi Mozambique Namibia South AfricaSwaziland Zimbabwe Zambia
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Figure 1. Spatiotemporal HIV/AIDS incidence of ten countries, 2011–2016.

The distributions of HIV/AIDS cases, GDP per capita and population density are displayed in
Figure 2. The Pearson correlation coefficients between these cases and GDP per capita and population
density are 0.2739 and −0.1179, respectively. Meanwhile, the two socioeconomic factors have
different effects on the HIV/AIDS cases at the spatiotemporal locations. These reflect a spatiotemporal

http://data.cnki.net/InternationalData/Report
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non-stationarity between the cases and two factors in ten countries from 2011 to 2016. Table 1 lists
the p-values of the first-order autocorrelation of HIV/AIDS cases in the different years of the same
region or the different regions of the same year. Each region has a significant spatial autocorrelation
(p-value < 0.01) each year. Lesotho and South Africa had temporal autocorrelation during 2011 to 2016.
Thus, the spatial and temporal autocorrelation should not be ignored.
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Figure 2. Distributions of HIV/AIDS cases, GDP per capita and population density of ten countries,
2011–2016.

Table 1. p-values of the spatial and temporal autocorrelation analysis.

Time 2011 2012 2013 2014 2015 2016

p-value 0.0024 0.0028 0.0021 0.0019 0.0017 0.0022

Regions Angola Botswana Lesotho Malawi Mozambique Namibia

p-value 0.9094 0.8807 0.0092 0.5300 0.1289 0.8267

South Africa Swaziland Zimbabwe Zambia

0.0045 0.1491 0.5688 0.2231

Next, we standardized the two socioeconomic factors. The multiplex collinear test [32] was
performed by the condition number k =

√
λmax/λmin = 1.804(≤ 15) (λ is the eigenvalue of

explanatory variable matrix). If k > 15, then the data have collinearity. Otherwise, there is
no collinearity. Thus, there is no collinearity between the two factors. Let µik, rik and Pik be
the annual HIV/AIDS cases (Unit: 1/1000 people), incidence (Unit: 1/100) and total population
(unit: 100,000 people) in the kth year of the ith region, respectively. Denote g(µik) = ηik = ln µik =

ln rik + ln Pik(µik = rikPik, i = 1, 2, . . . , 10 and k = 1, 2, . . . , 6). Let Xi1k and Xi2k be the GDP per capita
and population density in the ith region at the kth year, respectively. The PR model is written by

g(µik) = β0 + β1Xi1k + β2Xi2k, i = 1, 2, . . . , 10, k = 1, 2, . . . , 6, (10)

where β j(j = 0, 1, 2) are unknown constants. The GWPR model is introduced as

g(µik) = β0(uik, vik) + β1(uik, vik)Xi1k + β2(uik, vik)Xi2k, i = 1, 2, . . . , 10, (11)

where k is a fixed constant taken from {1, 2, . . . , 6}, and β j(uik, vik) are unknown spatial parameters for
the ith country (uik, vik) in the kth year. Let ρ be a scalar autoregressive parameter, and cil be a constant
that represents an adjacency relation. The GWPAR model is

g(µik) = ρ
n

∑
l=1

cilηik + β0(uik, vik) + β1(uik, vik)Xi1k + β2(uik, vik)Xi2k, (12)
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where n = 10, k is a fixed constant, and β j(uik, vik) are defined as above. Let c(ik)lm be a spatiotemporal
adjacency relation, and β jk(uik, vik, tk)(k = 1, 2, . . . , 6) be unknown spatiotemporal parameters in the
ith country (uik, vik) in the kth year. The GTWPAR model is established as follows:

g(µik) = ρ
T

∑
m=1

nk

∑
l=1

c(ik)lm ηlm + β0k(uik, vik, tk)

+β1k(uik, vik, tk)Xi1k + β2k(uik, vik, tk)Xi2k, (13)

where T = 6; nk = 10 for every k years; and ρ is defined as above.
Algorithms I, II, III and IV of PR, GWPR, GWPAR and GTWPAR models are provided in

Appendix A.4, respectively.

4.2. Statistical Analysis

For the PR model, we get the estimated values of unknown parameters by Algorithm I.
Then, the best space bandwidth is chosen by the cross-validation method. Following
Huang et al. [28], the range [0.09, 2.49] of the space bandwidth is selected according to the
minimum and maximum distance of the geographical positions. In the GWPR model, the best
space bandwidth is h = 0.62, 0.59, 0.62, 0.61, 0.60, 0.60, and the estimations of coefficient functions
are given by Algorithm II. The optimal space bandwidth of the GWPAR model is selected as
h = 1.2895, 1.1316, 1.1316, 1.0526, 1.0526, 1.0526. Based on Algorithm III, we can get the estimations of
coefficient functions and the scalar autoregressive parameter ρ̂ = 0.267, 0.269, 0.263, 0.264, 0.264, 0.264.
For the GTWPAR model, we chose hs = 1.1316, 0.9737, 0.8947, 0.9211, 0.7842, 0.8789 and τ = 0.1,
where τ(> 0) is a balanced parameter. The coefficient estimations and scalar autoregressive parameter
ρ̂ = 0.126 can be obtained by Algorithm IV. The quantile and mean values of coefficient estimations
and response variables are shown in Table 2. We note that the GWPR, GWPAR and GTWPAR
models can reflect the non-stationarity property of the influencing factors; the PR model cannot.
Moreover, the GTWPAR model has a better performance than other models by comparing the true and
fitted values.

Table 2. The quantile and mean values of coefficient estimations and response variables.

Model Coefficient Min 1st Qu Median 3rd Qu Max Mean

True η 5.293 5.644 6.455 7.288 8.871 6.559

PR β̂1 0.581 0.581 0.581 0.581 0.581 0.581
β̂2 0.385 0.385 0.385 0.385 0.385 0.385
η̂ 6.344 6.527 7.185 7.447 8.162 7.078

GWPR β̂1 −0.519 −0.249 0.009 0.641 1.774 0.288
β̂2 −0.672 −0.139 0.068 2.044 3.803 0.747
η̂ 5.618 6.422 7.022 7.202 8.813 6.932

GWPAR β̂1 −6.286 −1.258 −0.910 0.240 3.036 −0.556
β̂2 −2.089 −0.669 0.019 2.281 9.152 0.912
η̂ 5.176 5.625 6.435 7.219 8.940 6.539

GTWPAR β̂1 −5.642 −0.956 −0.677 0.186 2.992 −0.443
β̂2 −1.865 −0.464 0.215 2.134 9.104 0.988
η̂ 5.200 5.589 6.387 7.215 8.803 6.489

The average estimated coefficients are visualized in Figure 3. For the PR model, the GDP per
capita and population density had the same effect on the HIV/AIDS epidemic for ten countries in
six years. However, there exist significant spatial non-stationarity and auto-correlation for different
countries under the GWPR, GWPAR and GTWPAR models. Figure 4 shows the spatial distribution
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of the average MSE of their response variables. The lighter the color, the smaller the average error is.
Thus, the GWPAR and GTWPAR models have the better fitting results.

Figure 3. The spatial distribution of the average coefficient estimations in four models.

Figure 4. The average MSE of response variables.

These four indicators can effectively compare the performances of the proposed models (Table 3).
The calculation formulas of R2, AICc, D and MSE are given in Appendix A.5. The coefficient of
determination R2 gradually increases from 12.91% of the PR model to 99.57% of the GTWPAR model.
The MSE, AICc and D values of the GTWPAR model are smaller than those of other models.
Therefore, the GTWPAR model is more suitable to investigate the spatiotemporal HIV/AIDS epidemic.

Table 3. The comparison of the four models.

Model R2 AICc D MSE

PR 0.1291 42,504.40 42,624.07 1.6488
GWPR 0.6139 6495.12 6613.02 0.4326
GWPAR 0.9940 155.46 236.02 0.0067
GTWPAR 0.9957 115.25 190.05 0.0048

Based on the GTWPAR model, the mean values and 95% confidence intervals of the coefficient
estimations are shown in Figure 5. The mean estimations are represented by the dot, and the
95% confidence intervals are given by the upper and lower lines. Note that the GDP per capita
in Botswana, Namibia and South Africa has a positive effect on the HIV/AIDS cases. Six other
countries (except Lesotho) had the opposite results. The population density for five countries had
a positive effect on the HIV/AIDS cases—Angola, Botswana, Namibia, South Africa and Zambia.
The population density of other five countries had the negative effect. Moreover, the impact of the
GDP per capita on HIV/AIDS epidemic had a strong spatiotemporal non-stationarity in Lesotho,
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Malawi and Zimbabwe, while the population density had a strong spatiotemporal non-stationarity
in Angola.
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Figure 5. The mean values and 95% confidence intervals of coefficient estimations.

5. Conclusions

In this paper, we propose four regression models, including the PR, GWPR, GWPAR and
GTWPAR, to investigate the non-stationary and auto-correlation properties. The relationships between
the HIV/AIDS epidemic, GDP per capita and population density were analyzed in ten countries of
Sub-Saharan Africa from 2011 to 2016. The unknown parameters of these models can be estimated by
the Newton–Raphson procedure and Fisher scoring algorithm.

The PR model is a classical generalized model, which considers the global relationships between
the response and explanatory variables. The GWPR and GWPAR models have been introduced to
determine the spatial non-stationarity or auto-correlation. The GTWPAR model proposed by this article
can be used to investigate not only spatiotemporal non-stationary but also auto-correlation. Thus,
the PR, GWPR and GWPAR models are several special cases of the GTWPAR model (see Remark 1 and
Remark 2). The performances of these models were evaluated by analyzing the correlations between
the HIV/AIDS epidemic and two socioeconomic factors. The parameter estimations of the models can
be obtained by Algorithms I, II, III and IV in Appendix A.4.

The results show that the impacts of GDP per capita and population density on HIV /AIDS
cases had significant spatiotemporal non-stationarity and auto-correlation. The GWPR, GWPAR and
GTWPAR models can reflect the strong spatial or spatiotemporal non-stationarity. The auto-correlation
can be reflected in the GWPAR and GTWPAR models. Compared with other models, the GTWPAR
model is more effective in terms of four comparison indicators. Thus, we suggest that the GTWPAR
model can be used to analyze the spatiotemporal characteristics of the HIV/AIDS epidemic and the
influences of the GDP per capita and population density.

Further work also exists in our study. For example, we observed that the effects of the GDP per
capita for Lesotho, Malawi and Zimbabwe and the population density for Angola on HIV/AIDS had
strong spatiotemporal non-stationarity. These may be the result of local environmental or political
factors. Whether the fitting results of these regions will perform better if explanatory variables such as
local unique environmental or political factors are added needs to be further investigated.
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GTWPAR Geographically and temporally weighted Poisson autoregressive model
GDP Gross domestic product

Appendix A. Detailed Processes

Appendix A.1. The Expressions of C, X and B

In model η = ρCη + B′X′, the expressions of C, X and B are

C =



c(11)
11 · · · c(n11)

11 · · · c(1T)
11 · · · c(nT T)

11
...

...
...

...
...

...
...

c(11)
(n11) · · · c(n11)

(n11) · · · c(1T)
(n11) · · · c(nT T)

(n11)
...

...
...

...
...

...
...

c(11)
1T · · · c(n11)

1T · · · c(1T)
1T · · · c(nT T)

1T
...

...
...

...
...

...
...

c(11)
(nT T) · · · c(n11)

(nT T) · · · c(1T)
(nT T) · · · c(nT T)

(nT T)


, X =



X111 X121 · · · X1p1
...

...
...

...
Xn111 Xn121 · · · Xn1 p1

...
...

...
...

X11T X12T · · · X1pT
...

...
...

...
XnT1T XnT2T · · · XnT pT


,

where CIK, XIK are respectively the Ith row and the Kth column of the matrices C and X. Moreover,

B = (β11(u11, v11, t1), · · · , βp1(u11, v11, t1), · · · , β11(un11, vn11, t1), · · · , βp1(un11, vn11, t1), · · · ,

β1T(u1T , v1T , tT), · · · , βpT(u1T , v1T , tT), · · · , β1T(unT1, vnT1, t1), · · · , βpT(unT1, vnT1, t1))
′.

Appendix A.2. Formula and Information Matrix of β(u, v, t)

(1) For the matrix form of model (5), we obtain

(1− ρC11)η1 − ρC12η2 − · · · − ρC1NηN =
p

∑
j=1

β j0X1j,

−ρC21η1 + (1− ρC22)η2 − · · · − ρC2NηN =
p

∑
j=1

β j0X2j,

...

−ρCN1η1 − ρCN2η2 − · · ·+ (1− ρCNN)ηN =
p

∑
j=1

β j0XNj.
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Differentiating the above equations with βr0 yields

(1− ρC11)
∂η1
∂βr0

− ρC12
∂η2
∂βr0

− · · · − ρC1N
∂ηN
∂βr0

= X1r,

− ρC21
∂η1
∂βr0

+ (1− ρC22)
∂η2
∂βr0

− · · · − ρC2N
∂ηN
∂βr0

= X2r,

...

− ρCN1
∂η1
∂βr0

− ρCN2
∂η2
∂βr0

− · · ·+ (1− ρCNN)
∂ηN
∂βr0

= XNr.

Then, 
1− ρC11 −ρC12 · · · −ρC1N
−ρC21 1− ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1− ρCNN




∂η1
∂βr0
∂η2
∂βr0

...
∂ηN
∂βr0

 =


X1r
X2r

...
XNr

 .

Denote ∂η
∂βr0

= ( ∂η1
∂βr0

, ∂η2
∂βr0

, . . . , ∂ηN
∂βr0

)′ and

A =


1− ρC11 −ρC12 · · · −ρC1N
−ρC21 1− ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1− ρCNN


−1

,

X·r = (X1r, X2r, . . . , XNr)
′, Al· = (Al1, Al2, . . . , AlN)

′.

Thus, ∂η
∂βr0

= AX·r, that is

∂ηl
∂βr0

=
N

∑
h=1

AlhXhr = Al·X·r, l = 1, 2, . . . , N.

(2) The element Irb of I(β) satisfies

Irb(β) = − ∂2L1

∂βb0∂βr0

= − ∂

∂βb0

( N

∑
l=1

(Yl − µl
alφ

)( Al·X·r
V(µl)g′(µl)

)
Wl(u00, v00, t0)

)
= −

N

∑
l=1

(Yl − µl
alφ

) ∂

∂βb0

( Al·X·r
V(µl)g′(µl)

)
Wl(u00, v00, t0)

−
N

∑
l=1

( Al·X·r
V(µl)g′(µl)

) ∂

∂βb0

(Yl − µl
alφ

)
Wl(u00, v00, t0)

= −
N

∑
l=1

(Yl − µl
alφ

) ∂

∂βb0

( Al·X·r
V(µl)g′(µl)

)
Wl(u00, v00, t0)

+
N

∑
l=1

Al·X·r Al·X·b
alφV(µl)(g′(µl))2 Wl(u00, v00, t0).
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The Fisher information matrix is

I(β) = E(I(β)) = E((Irb(β))p×p) =
N

∑
l=1

Al·X·r Al·X·b
alφV(µl)(g′(µl))2 Wl(u00, v00, t0)

=
1
φ

N

∑
l=1

Tl Al·X·r Al·X·bWl(u00, v00, t0).

Appendix A.3. Formula and Information Matrix of ρ

(1) Differentiating (4) with ρ yields

(1− ρC11)
dη1
dρ
− ρC12

dη2
dρ
− · · · − ρC1N

dηN
dρ

= C11η1 + C12η2 + · · ·+ C1NηN ,

− ρC21
dη1
dρ

+ (1− ρC22)
dη2
dρ
− · · · − ρC2N

dηN
dρ

= C21η1 + C22η2 + · · ·+ C2NηN ,

...

− ρCN1
dη1
dρ
− ρCN2

dη2
dρ
− · · ·+ (1− ρCNN)

dηN
dρ

= CN1η1 + CN2η2 + · · ·+ CNNηN .

That is to say


1− ρC11 −ρC12 · · · −ρC1N
−ρC21 1− ρC22 · · · −ρC2N

...
...

...
...

−ρCN1 −ρCN2 · · · 1− ρCNN




dη1
dρ
dη2
dρ

...
dηN
dρ

 =


C11 C12 · · · C1N
C21 C22 · · · C2N

...
...

...
...

CN1 CN2 · · · CNN




η1
η2
...

ηN

 .

Let dη
dρ = ( dη1

dρ , . . . , dηN
dρ )′. Then, dη

dρ = ACη, where

dηl
dρ

=
dg(µl)

dρ
=

N

∑
h=1

Al·C·hηh, l = 1, 2, · · · , N.

(2) The scalar vector of ρ is

S(ρ) =
dL2

dρ
=

1
φ

N

∑
l=1

Tl

( N

∑
h=1

Al·C·hηh

)
(Yl − µl)g′(µl)

=
1
φ
(ACη)′T(Z− η).

The information matrix is

I(ρ) = −∂2L2

∂ρ2 = − d
dρ

N

∑
l=1

(Yl − µl
alφ

)(∑N
h=1 Al·C·hηh

V(µl)g′(µl)

)
= −

N

∑
l=1

(Yl − µl
alφ

) d
dρ

(∑N
h=1 Al·C·hηh

V(µl)g′(µl)

)
−

N

∑
l=1

(∑N
h=1 Al·C·hηh

V(µl)g′(µl)

) d
dρ

(Yl − µl
alφ

)
,

where
dµl
dρ

=
dµl

dg(µl)

dg(µl)

dρ
=

1
g′(µl)

N

∑
h=1

Al·C·hηh.
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Thus,

I(ρ) = −
N

∑
l=1

(Yl − µl
alφ

) d
dρ

(∑N
h=1 Al·C·hηh

V(µl)g′(µl)

)
+

N

∑
l=1

(∑N
h=1 Al·C·hηh)

2

alφV(µl)(g′(µl))2 .

The Fisher information matrix is

I(ρ) = E(I(ρ)) =
N

∑
l=1

(∑N
h=1 Al·C·hηh)

2

alφV(µl)(g′(µl))2

=
1
φ

N

∑
l=1

Tl

( N

∑
h=1

Al·C·hηh

)2
=

1
φ
(ACη)′T(ACη).

Appendix A.4. Algorithms of Coefficient Estimation

We provide four algorithms to estimate the unknown coefficients of PR, GWPR, GWPAR and
GTWPAR models in Section 4.

Algorithm I: Estimate the unknown parameters in the PR model. Take the initial values g(µ(0)
ik ) =

η
(0)
ik = ln µ

(0)
ik , yik = µ

(0)
ik , Z(0)

ik = η
(0)
ik + g′(µ(0)

ik )(yik − µ
(0)
ik ), and

w(0)
ik =

1

aikV(µ
(0)
ik )(g′(µ(0)

ik ))2
, i = 1, 2, . . . , 10, k = 1, 2, . . . , 6.

The iterative formula of β̂(m+1) is

β̂(m+1) =
(

X′W(m)X
)−1

X′W(m)Z(m).

Repeat the above step until convergence yields. The estimated value β̂ = β̂(m) can be obtained.

Algorithm II: Estimate the unknown coefficients in the GWPR model. (Note that k is a fixed
constant taken from {1, 2, . . . , 6} and the following steps should be repeated six times independently).
Take the initial values η

(0)
ik = g(µ(0)

ik ), yik = µ
(0)
ik , Z(0)

ik = η
(0)
ik + g′(µ(0)

ik )(yik − µ
(0)
ik ), and

t(0)ik =
1

aikV(µ
(0)
ik )(g′(µ(0)

ik ))2
, i = 1, 2, . . . , 10.

Let Z(0) = (Z(0)
1k , Z(0)

2k , · · · , Z(0)
10k)

′ and T(0) = diag(T(0)
1k , T(0)

2k , · · · , T(0)
10k). The iterative formula of β̂(m+1)

at the location (u0k, v0k) is

β̂(m+1)(u0k, v0k) = (A′(u0k, v0k)T(m)W(u0k, v0k)A(u0k, v0k))
−1 A′(u0k, v0k)T(m)W(u0k, v0k)Z(m),

where W(u0k, v0k) = diag(w1(u0k, v0k), w2(u0k, v0k), · · · , w10(u0k, v0k)) and

wi(u0k, v0k) =
1√
2π

exp
(
− 1

2

(d(0)ik
h

)2)
.

Repeat the above step until convergence. When (u0k, v0k) takes all the locations (uik, vik), we will get
the estimated value β̂ = β̂(m) in a fixed the kth year.

Algorithm III: Estimate unknown coefficients in the GWPAR model. (Note that k is a fixed
constant and the following steps should be repeated six times as in Algorithm II). Take the initial value
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β
(0)
1 , β

(0)
2 from Algorithm II, and ρ(0) is the absolute value of spatial Moran’s I = 0.4480. The initial

values η(0) = (I − ρ(0)C)−1Xβ(0), µ
(0)
ik = g−1(η

(0)
ik ), and

Z(0)
ik = g(µ(0)

ik ) + g′(µ(0)
ik )(yik − µ

(0)
ik ), t(0)ik =

1

aikV(µ
(0)
ik )(g′(µ(0)

ik ))2
, i = 1, 2, · · · , 10.

The (m + 1)th iterative estimation β̂(m+1)(u0k, v0k) and ρ̂(m+1) is

β̂(m+1)(u0k, v0k) = ((A(m)X)′T(m)W(A(m)X))−1(A(m)X)′T(m)WZ(m),

ρ̂(m+1) = ρ(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1(A(m)Cη(m))′T(m)(Z(m) − η(m)).

If (u0k, v0k) takes all the locations (uik, vik), the estimate β̂(m+1) can be given. When all estimated values
arrive to converge, we will get β̂ = β̂(m)(uik, vik) and ρ̂ = ρ̂(m) in a fixed the kth year.

Algorithm IV: Estimate the unknown coefficients in the GTWPAR model. Take the initial
values β

(0)
1k (uik, vik, tk), β

(0)
2k (uik, vik, tk), i = 1, 2, . . . , 10, k = 1, 2, . . . , 6 from Algorithm III, and ρ(0) is the

absolute value of spatiotemporal Moran’s I= 0.2143. The initial value vector η(0) = (I− ρ(0)C)−1Xβ(0),
µ
(0)
ik = g−1(η

(0)
ik ), Z(0) = (Z(0)

1 , Z(0)
2 , · · · , Z(0)

60 )′, T(0) = diag(T(0)
1 , T(0)

2 , . . . , T(0)
60 ) and

Z(0)
ik = g(µ(0)

ik ) + g′(µ(0)
ik )(yik − µ

(0)
ik ), T(0)

ik =
1

aikV(µ
(0)
ik )(g′(µ(0)

ik ))2
.

The (m + 1)th iterative estimations β̂(u00, v00, t0) and ρ̂ are

β̂(m+1)(u00, v00, t0) = ((A(m)X)′T(0)W(A(m)X))−1

×(A(m)X)′T(m)WZ(m),

ρ̂(m+1) = ρ(m) + ((A(m)Cη(m))′T(m)(A(m)Cη(m)))−1

×(A(m)Cη(m))′T(m)(Z(m) − η(m)).

where W = {wik(u00, v00, t0)} and

wik(u00, v00, t0) =
1√
2π

exp
{
− 1

2

( (u00 − uik)
2 + (v00 − vik)

2

h2
S

+
(t0 − tk)

2

τh2
S

)}
.

A detailed definition is given in Section 3.1. If (u00, v00, t0) takes all the locations (uik, vik, tk) and all
estimations converge, we will get β̂ = β̂(m)(uik, vik, tk) and ρ̂ = ρ̂(m).

It is worth noting that we use the parameter estimates of the previous model as the initial values of
the next model to reduce the number of iterations and improve the operational efficiency. For example,
the estimations of the GWPR model are selected as the initial values of the GWPAR model.

Appendix A.5. The Model Comparison Indicators (See Table 3)

(1) The coefficient of determination is defined by

R2 = 1− ∑(η − η̂)2

∑(η − η̄)2 ,

where η is a set of vectors {ηik}, η̂ and η̄ are the parameter estimate and the mean value of η, respectively.
(2) Deviation can be defined as

D = ∑(yln(
µ̂

y
) + (y− µ̂)),
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where y is a set of response variables, and µ̂ is the estimation of µ=E(y).
(3) The corrected Akaike information criterion is

AICc = D + 2P + 2
P(P + 1)

N − P− 1
,

where D, P and N are the deviation, the number of parameters and the number of samples, respectively.
(4) Mean-square error is given by

MSE =
1

N − P ∑(η̂ − η)2,

where the parameter settings are the same as above.
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