
entropy

Article

Welfare Cost of Model Uncertainty in a Small
Open Economy

Jocelyn Tapia Stefanoni

Department of Industrial Engineering, Universidad Diego Portales, 441 Ejercito Ave, Santiago 8370191, Chile;
jocelyn.tapia@udp.com

Received: 16 September 2020; Accepted: 21 October 2020; Published: 27 October 2020
����������
�������

Abstract: This paper extends the canonical small open-economy real-business-cycle model, when
considering model uncertainty. Domestic households have multiplier preferences, which leads them
to take robust decisions in response to possible model misspecification for the economy’s aggregate
productivity. Using perturbation methods, the paper extends the literature on real business cycle
models by deriving a closed-form solution for the combined welfare effect of the two sources of
uncertainty, namely risk and model uncertainty. While classical risk has an ambiguous effect on
welfare, the addition of model uncertainty is unambiguously welfare-deteriorating. Hence, the overall
effect of uncertainty on welfare is ambiguous, depending on consumers preferences and model
parameters. The paper provides numerical results for the welfare effects of uncertainty measured
by units of consumption equivalence. At moderate (high) levels of risk aversion, the effect of risk
on household welfare is positive (negative). The addition of model uncertainty—for all levels of
concern about model uncertainty and most risk aversion values—turns the overall effect of uncertainty
on household welfare negative. It is important to remark that the analytical decomposition and
combination of the effects of the two types of uncertainty considered here and the resulting ambiguous
effect on overall welfare have not been derived in the previous literature on small open economies.

Keywords: model uncertainty; small open economy; model misspecification; welfare cost of uncertainty

1. Introduction

There is a long tradition in assessing the welfare cost of consumption variability, due to different
sources of uncertainty. Lucas [1] started this research area, considering a representative agent who
obtains utility only from consumption, assuming expected utility, constant relative risk aversion, and a
trend-stationary stochastic process of the log of consumption. Lucas finds a small effect of uncertainty
on welfare: the percentage increase in the mean of consumption required to leave consumers indifferent
between consumption fluctuations and a perfectly smooth consumption path is 0.008%. Lucas [1] finds
that the cost of consumption variability is proportional to risk aversion and the variance of shocks. His
0.008% estimate corresponds to unitary risk aversion and a shock variance equal to 0.013.

This paper contributes to the literature on the welfare cost of business-cycle fluctuations in
a small open economy (SOE) by introducing model uncertainty. Households face two types of
uncertainty: classical uncertainty about the state of future aggregate productivity and model uncertainty
about the probability model that describes the movements of productivity. The characterization of
the small open economy follows [2], augmented by multiplier preferences [3]. These preferences
correspond to a non-expected utility approach that reflects a concern for model misspecification (model
uncertainty). Households are endowed with a reference probability model regarding the stochastic
variable (aggregate productivity), but they distrust its accuracy, considering the possibility that the
model is misspecified in a way that is difficult to detect statistically. Consequently, households want to
take decisions that are robust to model misspecification, by solving a max-min problem. Households
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maximize utility with respect to consumption, labor supply, and investment. Households face a
malevolent nature that minimizes the expected utility choosing an unfavorable probabilistic distribution,
called the worst case distribution. Nevertheless, the malevolent nature is penalized for the deviations
from the reference model by means of conditional relative entropy between the reference and distorted
models. The solution of the minimization leads to a recursive value function, similar to Epstein, Zin, Weil
(EZW) preferences [4,5] and the risk adjustment in the continuation value for risk sensitive preferences.
This paper decomposes the effects of doubts and volatility on total welfare, deriving a closed-form
solution for the cost due to stochastic consumption fluctuations and the cost derived from uncertainty
about the stochastic representation of productivity shocks. While consumption fluctuations (volatility)
have an ambiguous effect on welfare (as shown by [6]), the additional model uncertainty (doubts) is
unambiguously welfare-deteriorating. Hence, the overall effect of uncertainty on welfare is ambiguous,
depending on consumer preferences and model parameters. Subsequently, the paper provides numerical
results for the welfare effects of uncertainty. The simulations show that, when classical risk has a positive
effect on welfare (due to a low risk aversion), the addition of model uncertainty can reverse the sign of
the overall welfare effect. The total effect of uncertainty, including both sources, is shown to be negative
for a wide range of parameter values.

I discuss the literature related to my research next. Since Lucas’ seminal work, the small cost of
consumption fluctuations estimated by him has motivated many authors to extend his model in different
ways. One branch of these extensions assumes traditional household preferences characterized by
expected utility and time separability. Extensions of Lucas’ model, including uninsurable individual risk
and incomplete markets [7–9], find larger welfare costs of consumption variability. Subsequent research
shows that consumption volatility is not always welfare deteriorating when output is endogenous and
there are multiplicative productivity shocks, identifying two effects of productivity risk on welfare in
production economies: the fluctuation effect and the mean effect. Whereas the first effect is always
detrimental to welfare of risk averse agents, the second may increase welfare. When households
respond to larger productivity uncertainty by working harder and investing more, the mean values of
output and consumption could increase with higher uncertainty. Hence, the final effect of uncertainty
on welfare is ambiguous. In an open economy, where adjusting capital is easier than in the closed
economy, the positive mean effect is larger than in a closed economy (see [6,10]).

Closely related to this investigation, a branch of literature specifies recursive utility without
time-separable preferences. In this context, there are three main modeling approaches: EZW preferences,
risk sensitivity, and robust control. EZW preferences allow for separating between the effect of risk
aversion and the intertemporal elasticity of substitution to derive the welfare cost of business-cycle
fluctuations, the welfare cost of uncertainty increases with both risk aversion and the intertemporal
elasticity of substitution (see [11–13]). For a continuous-time extension of EZW preferences [14] examines
the effects of stochastic volatility on welfare and shows that volatility risk can improve welfare,
depending on the model parameters.

Tallarini [15] introducd risk sensitivity with the aim to match financial asset prices, while not
affecting his model’s ability to account for aggregate fluctuations. Assuming a unitary intertemporal
elasticity of substitution, Tallarini shows that the risk-free rate and market price of risk are better
matched with augmented risk aversion, and this does not make consumption smoother. Moreover,
the welfare cost of business-cycle fluctuations increases when preference parameters are chosen to
match financial data, and the welfare implications are larger for the production economy than the
endowment economy.

In general, the advantage of introducing recursive utility as EZW preferences and risk sensitivity is
that it allows match models with financial data. Expected utility models with high risk aversion deliver
a high market price of risk (addressing the equity premium puzzle), as observed in macro-financial
data, but also raise the risk-free interest rate (not addressing the risk-free rate puzzle). On the other
hand, recursive utility can reconcile the high market price of risk with reasonable values of the
risk-free rate, because it allows separating risk aversion and the intertemporal elasticity of substitution.
However, the value for the risk aversion parameter for explaining the behavior of consumption and
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asset prices observed in the data is very high. Lucas [16] discusses the latter findings, stating that
no one has found risk aversion parameters of the required size to match the data, and concludes: “It
would be good to have the equity premium puzzle resolved, but I think we need to look beyond high
estimates of risk aversion to do it”.

The investigation [17] determines the welfare benefits of removing model uncertainty for a closed
economy, reinterpreting part of the market price of risk as a market price of model uncertainty. Using
the model of error detection to calibrate the concern for model misspecification, they show that modest
amounts of model uncertainty can substitute for large amounts of risk aversion in terms of choices
and asset prices. Therefore, this approach allows for reconciling the high market price of risk with
reasonable values of the risk-free rate without resorting to high risk aversion, and the welfare cost of
business cycle calculation is as big as that presented by [15]. In the same vein, [18] asses the combined
effect of idiosyncratic risk and robustness. Authors find that individual risk has a larger impact on the
cost of business cycles if agents have preferences for robustness, and the combined effect exceeds the
sum of individual effects. As opposed to [17,18], who consider a closed economy and an exogenous
stochastic process for consumption, this paper focuses on a small open production economy with
optimal endogenous consumption.

Regarding solution of the model, this paper is related to the literature on the perturbation
methods for recursive utility. I perform a second-order approximation of the value function and
equilibrium conditions (which depend on the value function). Up to a first-order approximation, the
equilibrium conditions that are produced by recursive utility or expected utility are strictly equivalent, a
macroeconomic equivalence. However, the underlying microeconomic differences between first-order
equivalent models become important when optimal policy is derived, a microeconomic dissonance
(see [19]). Furthermore, according to [20], first-order techniques are not well suited to handle welfare
comparisons across alternative stochastic or policy environments, even without recursive preferences.
According to [21], comparing different solution methods for computing equilibrium of dynamic
stochastic general equilibrium models with recursive preferences second order (or higher) perturbation
methods are competitive with projection methods and value function iterations, in terms of accuracy,
while being several orders of magnitude faster to run.

The relevance of this paper’s results lies in the broad discussion about macroeconomic stabilization.
If the welfare cost of business cycles is negligible [1,16] or households prefer economic uncertainty [6,10],
there is no space for counter-cyclical policy. As highlighted by [6], welfare gains from business cycles
fluctuations in open economies are larger than in their autarchy counterparts. The positive mean effect
is larger for open economies, because they could import capital from abroad.

On the other hand, the welfare costs of business cycles increase if households in the economy care
about robustness to model uncertainty, as is shown by [17,18]. Households are willing to sacrifice a lot
to eliminate model uncertainty, and stabilizing the business cycle should be a priority.

In this paper, I combine these two branches of the literature to calculate the cost of business cycles
in a small open economy with households who fear model misspecification. The most important
finding from the research is that by introducing model uncertainty, even when the agents are only
mildly risk-averse, the overall welfare cost of uncertainty becomes welfare-deteriorating. Welfare costs
are increasing in concern for model uncertainty, because it causes the households’ worst-case stochastic
model to put more probability weight on bad consumption shocks, as highlighted by[18].

The results for numerical simulation show that, first, for slightly risk-averse households, productivity
shocks are in general welfare improving. However, if they are intensely risk-averse, the welfare cost
of productivity risk is estimated at 0.007% of long-term consumption, similar to the value of 0.008%
that was found by Lucas [1]. My second result shows that the total effect of uncertainty on welfare
depends on the interaction of risk and model uncertainty. When considering a moderately high degree
of risk aversion and a reasonable concern for model uncertainty, the overall effect of uncertainty on
welfare amounts to a loss of 0.4% of long-term consumption. If I consider the case of households with
very high concern for model misspecification, the welfare cost reaches a staggering 2.3% of long-term
consumption. Finally, I consider the existence of financial frictions, reflected in a high debt sensitivity of
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the sovereign risk premium, which has been proven to increase the welfare cost of productivity shocks
in a SOE, for the case of classical risk aversion [22]. In a risk aversion context, the largest simulated
welfare cost of business cycles is 0.013% (Table A1 in Appendix C presents welfare calculations for a
broad set of parameters), which is significantly smaller than the largest value that was obtained when
including preferences for robustness.

The paper is organized, as follows. Section 2 presents the theoretical RBC model for the small
open economy, describing in detail agent preferences and the characterization of the agent’s alternative
probabilistic models. Section 3 describes the solution method, derives the model solution, and presents
the analytical welfare analysis. Section 4 performs numerical calculations for the welfare cost of
classical and model uncertainty. Section 5 concludes.

2. The Model

The model extends on the canonical Small-Open-Economy Real-Business-Cycle (SOE-RBC), model
introduced by [2]. In the SOE-RBC model, productivity shocks drive business cycles ([23] identify
productivity as the main driving factor of business cycles in small open economies) in a single-good
and single-asset production economy. Here, the SOE-RBC model is extended by considering household
preferences for robustness to possible model misspecification.

Extending the distinction put forward by [24], in [25] authors distinguish between three sources
of uncertainty: “(i) Risk within a model, where uncertainty is about the outcomes that emerge in
accordance to a probability model that specifies fully the outcome probabilities. (ii) Ambiguity among
models, where uncertainty is about which alternative model should be used to assign the probabilities.
(iii) Model misspecification, where uncertainty is induced by the approximate nature of the models
under consideration used in assigning probabilities”.

This research is related to the third source of uncertainty, which is termed model uncertainty.
Households have multiplier preferences (see [3,26,27]) regarding productivity (represented by a Hicks
neutral technical process): they have a benchmark model for this stochastic variable, but they do
not fully trust it. Households acknowledge that the benchmark model is an approximation of the
true data-generating process and could be misspecified in some way. This leads them to take robust
decisions that perform well across a variety of probability models “near” the benchmark. Agents
locate their approximating model within a set of alternative models that are statistically nearby and
that are probabilistic models characterized in terms of the distortions from the benchmark model.
The distortions can be represented in terms of martingales that twist the benchmark measure in order
to obtain absolutely continuous measures that represent the alternative models.

Let Ft be the information available at time t, π(εt+1) the benchmark density of shocks εt+1 and
π̂(εt+1 | Ft) an admissible alternative density conditioned on available information. The likelihood
ratio between the alternative density of shocks and the benchmark probabilistic model is mt+1 =
π̂(εt+1|Ft)

π(εt+1)
, is non-negative and E(mt+1 | Ft) =

∫ π̂(εt+1|Ft)
π(εt+1)

π(εt+1)dεt+1 = 1, integrated with respect to
the Lebesgue measure. The characterization of alternative models using the likelihood ratio allows to
calculate the distorted expectation of a stochastic variable Wt+1 in period t as Ê[Wt+1 | Ft] = Êt[Wt+1] =

Et[mt+1Wt+1], similar to the change of measure for the transformation to risk-neutral probabilities
used in asset pricing. The conditional relative entropy E[mt log mt | Ft], known in econometrics as the
Kullback–Leibler divergence, measures discrepancies between the alternative and reference models.

Multiplier preferences, as represented by the Bellman equation (1), are defined in terms of a
parameter θ that penalizes discrepancies between the distorted and reference models. These preferences
present a max-min problem, where the households maximize utility choosing consumption, labor
supply, and investment, while an evil nature minimizes utility by her choice of the worst probabilistic
scenario. The max-min optimization is subject to the agents’ flow budget constraint (2), technology (3),
the law of motion of capital (4), the stochastic process for aggregate productivity (6) , and a restriction
that imposes a unitary expected value of the likelihood ratio between the reference and distorted
probability measures (7).
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V(dt, kt, at) = max
ct ,ht ,kt+1,dt+1

min
mt+1

u(ct, ht) + βEt[mt+1V(dt+1, kt+1, at+1) + θmt+1 log mt+1] (1)

s.t. dt+1 = (1 + rt)dt − yt + ct + it +
φ

2
(kt+1 − kt)

2 (2)

yt = atkα
t h1−α

t (3)

kt+1 = (1− δ)kt + it (4)

rt = r∗ + ψ(ed̄t−d̄ − 1) (5)

at+1 = (1− ρ)ass + ρat + η̃εt+1 (6)

Et[mt+1] = 1 (7)

where ct represents consumption, ht denotes labor supply, β is the subjective discount factor, dt denotes
the households’ debt position, rt represents the interest rate at which domestic residents can borrow
abroad, yt denotes domestic output, it represents gross investment, kt is physical capital, and u(ct, ht)

is the concave period utility function, which is increasing in ct and decreasing in ht.
The term φ

2 (kt+1 − kt)2 in equation (2) captures the capital adjustment costs that avoid excessive
investment volatility in response to shocks in productivity or in the foreign interest rate. The production
function (3) is a Cobb–Douglas function, implying a unitary elasticity of substitution between labor
and capital. The stock of physical capital evolves according to (4), where δ represents the rate of
depreciation of capital.

The domestic interest rate rt define in equation (5) is imperfectly arbitraged to the world interest
rate r∗, with a country interest rate premium that is debt elastic and takes the form ψ(ed̄t−d̄ − 1). [2,28]
discuss several ways to close SOE models and enable their convergence to a meaningful steady-state
equilibrium. This equation is one of the different alternatives of model closure and is very popular in
international macroeconomics. Here, d̄t is the domestic cross-sectional average level of debt which is
considered to be exogenous by households, d̄ represents the steady-state level of average debt and ψ >

0 denotes the sensitivity of the risk premium to deviations of average debt from its steady-state value.
The law of motion of productivity is given by a first-order autoregressive process (Equation (6)),

where εt is the stochastic productivity shock, which is normally distributed with zero mean and unit
standard deviation. The parameter η̃ defines the standard deviation of the innovation, ass is the steady
state value of productivity, and coefficient ρ reflects the persistence of shocks. The exogenous process
for productivity is specified in levels and not in logs (in contrast to the original SOE-RBC model by [2]),
in order to exclusively focus on the implications of volatility for welfare (following [10,29]). It is also
possible to use logs, as [6], correcting the process mean in order to obtain a mean-preserving spread

(if x ∼ N(µ, σ2), then if X = ex the expected value of X is a function of the variance of x, E(X) = eµ+ σ2
2 ),

but this procedure introduces right skewness to the distribution of productivity, which tends to be
welfare increasing (see [10]).

The symbol Et represents the conditional expectations operator, associated to the reference
probability distribution for εt+1. The likelihood ratio mt+1 between a distorted density versus the
reference density allows for performing a change in the probability measure. The symbol Êt denotes the
distorted conditional expectations operator, then Et[mt+1V(dt+1, kt+1, at+1)] = Êt[V(dt+1, kt+1, at+1)].

The penalty parameter θ measures the decision makers’ concern about robustness to misspecification.
This parameter enters the value function multiplying the relative entropy of distortion. Hence, if an
alternative probability model is particularly unfavorable in terms of future expected utility, it may not
solve the minimization due to the countervailing effect of relative entropy. The penalty has a lower
bound θ, called neurotic breakdown point by [3]. Below this point, it is useless to seek more robustness;
the minimizing agent is sufficiently unconstrained that he can push the criterion function to minus
infinity. On the other hand, if θ goes to infinity, the concern for model misspecification vanishes, so
that the agent’s preferences are only characterized by classical risk aversion. In the inner minimization,
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the objective function is convex in mt+1 and the constraint is linear, which allows finding the solution
(as discussed by [3]).

The solution of the inner minimization characterizes the worst-case distortion:

m∗t+1 =
exp

(
−V(dt+1,kt+1,at+1)

θ

)
Et

[
exp

(
−V(dt+1,kt+1,at+1)

θ

)] (8)

The worst probabilistic scenario puts larger probability weights on bad productivity shocks. By
depending on the value function, the households’ worst-case beliefs are endogenous. The minimizing
Martingale increment is also determined by parameter theta, in particular, when the concern for model
misspecification vanishes (θ goes to infinity), m∗t+1 is identically one.

Substituting m∗t+1 into the original problem implies the following Bellman equation for the
household problem:

V(dt, kt, at) = max
ct ,ht ,kt+1,dt+1

u(ct, ht)− βθ log Et exp
(
−V(dt+1, kt+1, at+1)

θ

)
(9)

s.t. dt+1 = (1 + rt)dt − atkα
t h1−α

t + ct + kt+1 − (1− δ)kt +
φ

2
(kt+1 − kt)

2

at+1 = (1− ρ)ass + ρat + η̃εt+1

where the first restriction is the households’ budget constraint after replacing Equations (3) to (4) in
Equation (2).

The first-order conditions that are associated to the household’s maximization problem are:

λt = β(1 + rt+1)Et
{

m∗t+1λt+1
}
= β(1 + rt+1)Êt {λt+1} (10)

λt(1 + φ(kt+1 − kt)) =βEt

{
m∗t+1λt+1

[
αat+1kα−1

t+1 h1−α
t+1 + 1− δ + φ(kt+2 − kt+1)

]}
=βÊt

{
λt+1

[
αat+1kα−1

t+1 h1−α
t+1 + 1− δ + φ(kt+2 − kt+1)

]}
(11)

− uh(ct, ht) = λt(1− α)atkα
t h−α

t (12)

where λt is the marginal utility of consumption (λt = uc(ct, ht)), (10) is the Euler equation, (11) is the
first-order condition related to capital accumulation, and (12) is the first-order condition for labor
supply. In Equations (10) and (11), as opposed to expected utility models, the equilibrium conditions
under multiplier preferences include the value function itself. Households are assumed to be identical;
therefore, the average debt in equilibrium is equal to the households’ level of debt, dt = d̄t.

3. Model Solution

I start by referring to the perturbation approach to solve the model presented in the previous section.
Perturbation algorithms build a Taylor series expansion of the agents’ decision rules. I implement a
second-order approximation, because the standard linearization method is useless for this model, as
discussed above in Section 1. Perturbation methods were introduced by [30] and intuitively explained
by [20]. The perturbation methods are very fast and, despite their local nature, highly accurate for a
large range of values of the state variables (see [31]). In [32], the authors present an algorithm to use
perturbation methods, extending the work of [20] for recursive utility, in particular, EZW preferences.
I adopt this method to solve my model following [33] for a robust control perspective.

3.1. Second-Order Approximation of the Value Function

The first step to calculate the second-order approximation of the value function is to write the
process of aggregate productivity in terms of a perturbation parameter χ, in the following way:



Entropy 2020, 22, 1221 7 of 19

at+1 = (1− ρ)ass + ρat + χη̃εt+1 (13)

When the perturbation parameter value is set at χ = 1 (χ = 0), the model is stochastic
(deterministic). The parameter scaling the variance of the shocks is included in the set of state variables:
st = (dt, kt, at; χ).

The second step is specifying the model’s equilibrium conditions augmented by the definition of
the value function, when considering that all endogenous variables are functions of state variables:

V(st) = u(ct(st), ht(st))− βθ log Et exp
[
−V((st+1))

θ

]
(14)

λt(st) = β(1 + r∗t+1 + ψ(edt+1(st)−d̄ − 1))Et

{
exp(−Vt+1(st+1)

θ )

Et exp(−Vt+1(st+1)
θ )

λt+1(st+1)

}
(15)

λt(st)(1 + φ(kt+1(st)− kt)) = βEt

{
exp(−Vt+1(st+1)

θ )

Et exp(−Vt+1(st+1)
θ )

λt+1(st+1)

·
[
αat+1(st)kt+1(st)

α−1ht+1(st+1)
1−α + 1− δ + φ(kt+2(st+1)− kt+1(st))

]}
(16)

− uh(ct(st), ht(st)) = λt(st)(1− α)atkα
t ht(st)

−α (17)

λt(st) = uc(ct(st), ht(st)) (18)

dt+1(st) = (1 + r∗t + ψ(edt−d̄ − 1))dt − atkα
t ht(st)

1−α + ct(st) + kt+1(st)− (1− δ)kt

+
φ

2
(kt+1(st)− kt)

2 (19)

at+1(st) = (1− ρ)ass + ρat + χη̃εt+1 (20)

The third step is to take the first derivatives of (14) to (19) with respect to the states st = (dt, kt, at; χ)

and evaluate them at the non-stochastic steady state. This leads to 24 equations (six equilibrium
conditions times four state variables) and 24 unknowns (the first derivatives of the six endogenous ct,
dt+1, ht, kt+1, λt and Vt variables with respect to the states evaluated at the non-stochastic steady state).
After solving the system of equations, the next step is to take the derivatives of the first derivatives
of (14) to (19) again with respect to the states: This step arrives at a new system of 96 equations (six
first derivatives of the equilibrium conditions times four state variables) and 96 unknowns (the second
derivatives of the six endogenous variables).

Because the equilibrium conditions depend on the value function, it is necessary to derive its
approximation around the non-stochastic steady state, which allows for computing welfare calculations.
In order to simplify the exposition, I only report the approximation of the value function, but the rest
of the policy functions could be determined following the same procedure.

The second-order approximation of the value function is:

V(dt, kt, at; χ) ' Vss + Vd,ss(dt − dss) + Vk,ss(kt − kss) + Va,ss(at − ass) + Vχ,ssχ (21)

+Vdk,ss(dt − dss)(kt − kss) + Vda,ss(dt − dss)(at − ass) + Vdχ,ss(dt − dss)χ

+
1
2

Vkk,ss(kt − kss)
2 + Vka,ss(kt − kss)(at − ass) + Vkχ,ss(kt − kss)χ

+
1
2

Vaa,ss(at − ass)
2 + Vaχ,ss(at − ass)χ +

1
2

Vχχ,ssχ2

Each term Vi,ss and Vij,ss is a scalar equal to the corresponding first and second-order derivative
of the value function for i, j = {d, k, a; χ}, evaluated at the non-stochastic steady state. The value
function evaluated at the non-stochastic steady state, V(dss, kss, ass; 0) = Vss (see Appendix A). Hence,
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evaluating the approximation of the value function at the non-stochastic steady state while assuming
χ = 1, yields the following:

V(dss, kss, ass, 1) = Vss +
1
2

Vχχ,ss (22)

The only coefficient that is affected by uncertainty aversion at a second-order approximation is
Vχχ,ss (see [32]) and it reflects the change in the value function when the variance of productivity is η̃

instead of zero.
For the robust SOE-RBC model described by Equations (14) to (20), I derive the following equation

for the coefficient Vχχ,ss, the second derivative of the value function with respect to the coefficient
that scales the variance of productivity shocks (this coefficient is the only that depends on robustness
parameter θ):

Vχχ,ss =
βη̃2

1− β

[
Vaa,ss −

V2
a,ss

θ

]
(23)

3.2. Welfare Analysis

The value function perturbation reflects that, up to a first-order approximation, the policy functions
of the model with multiplier preferences are equivalent to the expected utility model considering the
same instantaneous utility. However, at a second-order approximation, the value function approximation
differs between the two models by a term that is a function of the parameter that governs robustness
and the variance of the productivity shock. If the parameter that governs robustness (θ) goes to infinity,
reflecting that the concern for model misspecification goes to zero, the second part of Equation (23) goes
to zero, which reflects the case when the household is only risk averse. Therefore, the expression (23) is
the sum of two components: Vrisk

χχ,ss is related to risk and Vrobust
χχ,ss is related to model uncertainty.

Vrisk
χχ,ss =

βη̃2

1− β
Vaa,ss (24)

Vrobust
χχ,ss = − βη̃2

1− β

V2
a,ss

θ
(25)

The term βη̃2

1−β that appears in both Equations (24) and (25) is unambiguously positive. Hence the

sign of Vrisk
χχ,ss only depends on Vaa,ss. As discussed by [32], the latter term has an ambiguous sign in

a real business cycle model with endogenous labor and capital. Considering production economies
under classical uncertainty generates two effects on welfare: the fluctuation effect and the mean effect.
The fluctuation effect is always negative for the welfare of risk-averse agents. However, the mean effect
may increase or reduce welfare, depending on the calibration of the model’s parameters. Therefore,
the total effect of risk on the value function is ambiguous a priori (see [6,10]).

On the other hand, the sign of the effect of the concern for model uncertainty Vrobust
χχ,ss is unambiguously

negative and its absolute value is decreasing in θ. A larger θ implies a smaller concern for model
misspecification. Accordingly, the overall effect of risk and model uncertainty on the value function is
ambiguous. The intertemporal discount factor β and the standard deviation of productivity shocks η̃

amplify the overall effect of risk and robustness on indirect utility in absolute value.
It is important to note that the analytical decomposition and combination of the effects of the

two types of uncertainty considered here—classical risk and model uncertainty—and the resulting
ambiguous effect on overall welfare have not been derived in the previous literature.

4. Welfare Cost Calculations

This section presents calculations of the welfare cost of classical and model uncertainty, reflected
in consumption equivalent units. This implies computing the percentage loss in long-term mean
consumption (compensating variation) τ that would make the household indifferent between consuming
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(1− τ)css per period under certainty and css under uncertainty, where css is the steady-state value of
consumption. The coefficient Vχχ,ss of the value function approximation could be used to measure the
welfare cost of uncertainty, as shown by [32]. The term 1

2 Vχχ,ss represents how much indirect utility
changes when the variance of the productivity shock is η̃2 instead zero.

For the robust SOE-RBC model that was developed in this paper, Equation (23) decomposes
the effects of volatility and doubts on total welfare effect, deriving a closed-form solution for the
cost to face well-understood stochastic consumption fluctuations and the cost to face uncertainty
about the stochastic representation of productivity shocks. For welfare comparison, this expression is
transformed into consumption equivalent units. In order to do this, I introduce an explicit form of
households’ instantaneous utility function Greenwood, Hercowitz, and Huffman (GHH):

u(ct, ht) =

(
ct − hω

t
ω

)1−σ
− 1

1− σ
(26)

With a wage elasticity of labor supply equal to 1
1−ω , GHH preferences have the advantage that

the labor supply is insensitive to wealth effects, because it is independent of the level of consumption.
This prevents persistent shocks affecting the level of employment also by eliminating the wealth
effect, these preferences raise the likelihood that welfare improves with uncertainty, as shown by [10].
The parameter σ measures risk aversion, and its reciprocal is the intertemporal elasticity of substitution.
I compute τ the welfare loss due to aggregate uncertainty from the following:(

css − hω
ss

ω

)1−σ
− 1

1− σ
+

1
2

Vχχ,ss =

(
css(1− τ)− hω

ss
ω

)1−σ
− 1

1− σ
(27)

Replacing Vχχ,ss from (23) into (27) an solving for τ:

τ =

(
css − hω

t
ω

)
css

− 1
css

(
βη2

2
(1− σ)

[
Vaa,ss −

V2
a,ss

θ

]
+

(
css −

hω
ss

ω

)1−σ
) 1

1−σ

(28)

It is not possible to continue advancing analytically as the coefficient Vaa,ss can only be numerically
determined; nevertheless, Va,ss as all first order coefficients of value function’s approximation are
determined analytically and presented in Appendix B.

Model Calibration and Numerical Calculations

This section presents numerical calculations for the welfare cost by means of consumption
equivalent units in order to perform welfare comparisons of the model’s two sources of uncertainty:
risk and model uncertainty. The calibration of the main parameters of the SOE-RBC model follows [2]
([34] original calibration for Canada), the time unit is one year, and it is summarized in Table 1.

Table 1. Calibration of model parameters.

δ r∗ α d̄ ω φ ψ ρ η̃ β ass

0.1 0.04 0.32 0.7442 1.455 0.028 0.000742 0.42 0.0129 0.9615 1

Where δ is the depreciation rate, r∗ is the international interest rate, α is the capital share, d̄ is
steady-state debt, ω is the wage elasticity of labor supply, φ is the capital adjustment cost coefficient,
ψ is the sensitivity of sovereign risk to debt, ρ reflects the persistence of productivity shocks, η̃ is the
volatility of productivity shocks, β is the subjective discount factor, and ass is the steady-state value of
productivity.
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For the key robustness parameter θ, for my extended model, I use three different values, which
span the range of possible values. The first value is infinity, which represents the classical uncertainty
case, where the concern for model misspecification is absent. The second is θ = 8, which comes from [33],
who estimated this value by using error-detection probabilities (see [3]) that express how difficult it is
for a decision-maker, with limited data, to distinguish between the worst-case probabilistic scenario
and the benchmark model. The third value is set at θ = 1.2, in order to consider a case of extremely
high concern for model misspecification. This is the smallest value for which model convergence is
still achieved.

For the risk-aversion coefficient σ, I also use three different values: σ = 1 corresponding to
logarithmic preferences; σ = 2, used by [2]; and σ = 5, which is a high value for risk aversion.
Appendix C presents the welfare calculations for a broader set of values for the risk aversion parameter
to check for consistency of the results.

The following Table 2 reports the percentage loss in long-term mean consumption, which makes
the household indifferent between consuming (1− τ)css per period under certainty and css under
uncertainty, for different values of risk aversion (σ). If the value of τ, determined by Equation (28), is
positive (negative), facing uncertainty implies a welfare cost (premium) for the households. The table
reports the compensating variation τ for nine combinations of values for the agents’ degree of risk
aversion σ and their concern for robustness θ.

Table 2. Welfare loss estimations due to aggregate uncertainty, for different parameter values of risk
aversion and concern for model uncertainty (Percentage loss in long-term mean consumption, τ).

Model Risk Aversion
σ =1 σ = 2 σ = 5

Risk (θ = ∞) −0.0083 −0.0042 0.008
Risk + Model Uncertainty (θ = 8) 0.0048 0.0282 0.4082

Risk + Model Uncertainty (θ = 1.2) 0.0786 0.2021 2.3322

Let us consider first the case when households are only risk averse (first line in Table 2).
At relatively low levels of risk aversion (σ = 1 and 2), the agent reaps a welfare premium. However,
when risk aversion is larger (in the table, at a value of σ = 5), the presence of risk is welfare deteriorating.
This reflects the well-established result that risk has an ambiguous effect on welfare.

Now, consider adding the households’ concern about model misspecification, which represents
an unambiguous welfare loss (second and third lines in Table 2). The presence of this welfare loss
turns the welfare gain, obtained at relatively low levels of risk aversion (σ = 1 and 2), into an overall
welfare loss. Additionally, at a high level of risk aversion (σ = 5), the overall welfare loss is significantly
increased by the concern regarding model specification.

The latter is observed even at a moderate degree of concern for model uncertainty (θ = 8, line 2).
At a very high level of concern for model uncertainty (θ = 1.2, line 3), the overall welfare costs of
uncertainty are one order of magnitude larger than at a moderate level. When a high level of concern
for model uncertainty (θ = 1.2) is combined with high risk aversion (σ = 5), then the overall welfare
loss due to uncertainty reaches a very high level, equivalent to 2.3% of long-term consumption.

In Figure 1, I expand the calculations for the compensating variation of consumption reported in
Table 2 for a wider range of risk aversion values, extending from σ = 0 to σ = 5. The three lines are
drawn for the corresponding three values of θ that I set above. The figure reflects how the overall
welfare loss due to uncertainty grows exponentially with risk aversion and, in particular, with the
concern regarding model uncertainty.
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Figure 1. Welfare loss estimations due to aggregate uncertainty, for different parameter values of risk
aversion and concern for model uncertainty; no financial frictions case (Percentage loss in long-term
mean consumption, τ).

Up to here, I have considered a low sensitivity of the debt risk premium to the level of sovereign
debt, reflected in ψ = 0.000742, following [2]. Now I consider a high value for the debt sensitivity
parameter, consistent with the existence of financial frictions, [22] examine the welfare cost of business
cycles introducing financial frictions in a SOE with a risk-averse agent, without any other concern
for uncertainty. They find that productivity shocks are welfare improving in the absence of financial
frictions, but they become welfare deteriorating under financial frictions.

For the financial frictions case, I set ψ at a value of 5, which is the median value that is estimated
by [23]. Figure 2 presents the welfare cost estimations for the financial frictions case, analogous to
Figure 1, where financial frictions were absent.

Figure 2. Welfare loss estimations due to aggregate uncertainty, for different parameter values of risk
aversion and concern for model uncertainty; financial frictions case (Percentage loss in long-term mean
consumption, τ).
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A comparison of Figures 1 and 2 shows that in the absence of concern for model uncertainty
(θ = ∞), the introduction of financial frictions reduces the positive effect of uncertainty at low levels of
risk aversion and raises the negative effect diminished at high levels of risk aversion. This replicates the
results reported by [22], in the context of their SOE-RBC model, limited to classical risk. My model adds
model uncertainty to classical risk about productivity. Analyzing my model without financial frictions,
uncertainty becomes costly and the cost is increasing in the level of concern for model misspecification.
However, when adding financial frictions the effect of uncertainty on the highest welfare cost by about
20%. The explanation for this result is due to the link between consumption, foreign debt, and the
sovereign risk premium. Model uncertainty generates an increase in precautionary savings, then
sovereign risk declines, and the domestic interest rate falls. The opportunity cost of consumption
decreases, which softens the fall in consumption in response to the increase in precautionary savings.

5. Conclusions

This paper determines the welfare costs of business cycles in a SOE when considering model
uncertainty. The characterization of the small open economy follows the canonical SOE-RBC model
of [2], augmented by multiplier preferences [3]. These preferences correspond to a non-expected utility
approach that reflects a concern for model misspecification. Households are endowed with a reference
probability model about the aggregate productivity, but they distrust its accuracy, when considering
the possibility that the model is misspecified in a way that is difficult to statistically detect.

The relevance of this paper’s results lies in the broad discussion about macroeconomic stabilization,
as highlighted by Lucas [1,16], the welfare cost of business cycles is negligible or, if households prefer
economic uncertainty [6], there is no space for counter-cyclical policy. In particular, in open economies
where welfare gains from business cycles fluctuations are larger than in their autarchy counterparts.
On the other hand, if agents care about robustness to model misspecification, business cycles are more
costly in terms of agents’ welfare than if only risk aversion is considered [17,18], then stabilizing the
business cycle should be a priority.

I find that business cycles have an ambiguous effect on welfare (as shown by [6,10]), the additional
model uncertainty is unambiguously welfare-deteriorating. Hence, the overall effect of uncertainty on
welfare is ambiguous, depending on consumer preferences and model parameters. Subsequently, the
paper provides numerical results for the welfare effects of uncertainty. My first result shows that for
slightly risk-averse households, productivity shocks are in general welfare improving. However, if
they are intensely risk averse, the welfare cost of productivity risk is estimated at 0.007% of long-term
consumption, similar to the value of 0.008% that was found by Lucas [1]. The second finding is that by
introducing model uncertainty, even when the agent is only mildly risk averse, the overall welfare cost
of uncertainty becomes welfare-deteriorating. The third result, shows that the total effect of uncertainty
on welfare depends on the interaction of risk and model uncertainty. Welfare costs are increasing
in both risk aversion and the concern for model uncertainty. When considering a moderately high
degree of risk aversion and a reasonable concern for model uncertainty, the overall effect of uncertainty
on welfare amounts to a loss of 0.4% of long-term consumption, which is two orders of magnitude
higher than the finding by Lucas. If I consider the case of an agent with very high concern for model
misspecification, the welfare cost reaches a staggering 2.3% of long-term consumption. Finally, I
consider the existence of financial frictions, reflected in a high debt sensitivity of the sovereign risk
premium, which has been proven to increase the welfare cost of productivity shocks in a SOE, for the
case of classical risk aversion [22]. In a risk aversion context, the largest simulated welfare cost of
business cycles is 0.013, which is significantly smaller than the largest value obtained when including
preferences for robustness. Therefore, with or without financial frictions, households with a preference
for robustness are willing to sacrifice a lot to live in an economy without fear of misspecification.

Funding: This research received no external funding.
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Appendix A. Deterministic Steady State

The following equations characterize the deterministic steady state comprising the definition of
the value function (A1), the first-order conditions (A2)–(A4) and the budget constraint (A5):

Vss =

(
css − hω

ss
ω

)1−σ
− 1

(1− σ)(1− β)
(A1)

1 = β(1 + r∗) (A2)

1 = β(αeakα−1
ss h1−α

ss + (1− δ)) (A3)

hω−1
ss = (1− α)ea

(
k
h

)α

(A4)

css = yss − r∗d̄− iss (A5)

Considering (A3):

kss

hss
=

[ 1
β − (1− δ)

αea

] 1
α−1

= κ (A6)

Then

hss = [(1− α)eaκα]
1

ω−1 (A7)

kss = κhss (A8)

(A9)

Appendix B. Model Solution

Value function first-order derivatives with respect to the state variables.

Vd,t = −λt[(1 + r∗t + ψ(edt−d̄ − 1)) + ψdtedt−d̄] (A10)

Vk,t = λt[(1− δ) + αatkα−1
t h1−α

t + φ(kt+1 − kt)] (A11)

Va,t = β
Et

{
exp(−Vt+1

θ )ρVa,t+1

}
Et exp(−Vt+1

θ )
+ λtkα

t h1−α
t (A12)

Vχ,t = β
Et

{
exp(−Vt+1

θ )(Va,t+1(η̃εt+1) + Vχ,t+1)
}

Et exp(−Vt+1
θ )

(A13)
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Evaluating at the deterministic steady state:

Vd,ss = −λss[(1 + r∗t ) + ψdss] (A14)

Vk,ss = λss[(1− δ) + αeass kα−1
ss h1−α

ss ] (A15)

Va,ss =
λsskα

ssh1−α
ss

1− βρ
(A16)

Vχ,ss = 0 (A17)

Value function second-order derivatives with respect to the state variables.

Vχχ,t = β
Et

{
exp(

−Vt+1
θ )·− 1

θ (Vd,t+1dχ,t+1+Vk,t+1kχ,t+1+Va,t+1 η̃εt+1+Vχ,t+1)(Va,t+1 η̃εt+1+Vχ,t+1)
}

Et exp(
−Vt+1

θ )

+β
Et

{
exp(

−Vt+1
θ )(Va,t+1 η̃εt+1+Vχ,t+1)

}
Et

{
exp(

−Vt+1
θ )· 1θ (Vd,t+1dχ,t+1+Vk,t+1kχ,t+1+Va,t+1 η̃εt+1+Vχ,t+1)

}
[Et exp(

−Vt+1
θ )]2

+β
Et

{
exp(

−Vt+1
θ )((Vad,t+1dχ,t+1+Vak,t+1kχ,t+1+Vaa,t+1 η̃εt+1+Vaχ,t+1)η̃εt+1+Vχd,t+1dχ,t+1+Vχk,t+1kχ,t+1+Vχa,t+1cεt+1+Vχχ,t+1)

}
Et exp(

−Vt+1
θ )

(A18)

Evaluating at the deterministic steady state:

Vχχ,ss = −
β

θ
V2

a,ssη̃2 + βVaa,ssη̃2 + βVχχ,ss (A19)

⇒ Vχχ,ss =
βη̃2

1− β

[
Vaa,ss −

V2
a,ss

θ

]
(A20)

The value function second-order derivatives and equilibrium conditions first-order derivatives.

dd,t = 1 + r f + dte
dt−d f ψ +

(
−1 + edt−d f

)
ψ + cd,t − ath−α

t kα
t (1− α)hd,t + kd,t+1 + (−kt + kt+1)φkd,t+1 (A21)

dk,t+1 = −1 + δ + ct,k − at

(
h1−α

t k−1+α
t α + h−α

t kα
t (1− α)ht,k

)
+ (−kt + kt+1)φ (−1 + kk,t+1) + kk,t+1 (A22)

da,t+1 = −h1−α
t kα

t + ct,a − ath−α
t kα

t (1− α)ht,a + ka,t+1 + (−kt + kt+1)φka,t+1 (A23)
dχ,t+1 = cχ,t − ath−α

t kα
t (1− α)hχ,t + kχ,t+1 + (−kt + kt+1)φkχ,t+1 (A24)

−σ

(
ct −

hω
t

ω

)−1−σ (
cd,t − h−1+ω

t hd,t
)
= edt−d f βψE


e−

Vt+1
θ

(
ct+1 −

hω
t+1
ω

)−σ

E
[

e−
Vt+1

θ

]


+β
(

1 + r f +
(
−1 + edt−d f

)
ψ
)
E

e−
Vt+1

θ



(
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (Va,t+1 ad,t+1+Vk,t+1kd,t+1+dd,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

−
σ

(
ct+1 −

hω
t+1
ω

)−1−σ (
cd,t+1 − h−1+ω

t+1 hd,t+1
)

E
[

e−
Vt+1

θ

]



−E


e−

Vt+1
θ

(
ct+1 −

hω
t+1
ω

)−σ

(Va,t+1ad,t+1 + Vk,t+1kd,t+1 + dd,t+1Vd,t+1)

θE
[

e−
Vt+1

θ

]

 (A25)



Entropy 2020, 22, 1221 15 of 19

−σ

(
c− hω

t
ω

)−1−σ (
ck,t − h−1+ω hk,t

)
= β

(
1 + r f +

(
−1 + edt−d f

)
ψ
)

E

e−
Vt+1

θ



(
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (Va,t+1 ak,t+1+kt+1Vk,t+1+dk,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

−
σ

(
ct+1 −

hω
t+1
ω

)−1−σ (
ck,t+1 − h−1+ω

t+1 hk,t+1
)

E
[

e−
Vt+1

θ

]



−E


e−

Vt+1
θ

(
ct+1 −

hω
t+1
ω

)−σ

(Va,t+1ak,t+1 + kk,t+1Vk,t+1 + dk,t+1Vd,t+1)

θE
[

e−
Vt+1

θ

]

 (A26)

−σ

(
ct −

hω
t

ω

)−1−σ (
ca,t − h−1+ω

t ha,t
)
= β

(
1 + r f +

(
−1 + edt−d f

)
ψ
)

E

e−
Vt+1

θ



(
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (aa,t+1Va,t+1+ka,t+1Vk,t+1+da,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

−
σ

(
ct+1 −

hω
t+1
ω

)−1−σ (
ca,t+1 − h−1+ω

t+1 ha,t+1
)

E
[

e−
Vt+1

θ

]



−E


e−

Vt+1
θ

(
ct+1 −

hω
t+1
ω

)−σ

(aa,t+1Va,t+1 + ka,t+1Vk,t+1 + da,t+1Vd,t)

θE
[

e−
Vt+1

θ

]

 (A27)

−σ

(
ct −

hω
t

ω

)−1−σ (
ct,χ − h−1+ω

t hχ,t
)
= β

(
1 + r f +

(
−1 + edt−d f

)
ψ
)


E


e−

Vt+1
θ



(
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ

(
Vχ,t+1+aχ,t+1Va,t+1+kχt+1Vk,t+1+dχ,t+1Vd,t+1

)
θ


E
[

e−
Vt+1

θ

]2

−
σ

(
ct+1 −

hω
t+1
ω

)−1−σ (
cχ,t+1 − h−1+ω

t+1 hχ,t+1
)

E
[

e−
Vt+1

θ

]



−E


e−

Vt+1
θ

(
ct+1 −

hω
t+1
ω

)−σ

(Vχ,t+1 + aχ,t+1Va,t+1 + kχ,t+1Vk,t+1 + dχ,t+1Vd,t+1)

θE
[

e−
Vt+1

θ

]

 (A28)
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−σ(1 + (−kt + kt+1)φ)

(
ct −

hω
t

ω

)−1−σ (
cd,t − h−1+ω

t hd,t
)
+ φ

(
ct −

hω
t

ω

)−σ

kd,t+1 = β

(
E
[

e−
Vt+1

θ


(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (Va,t+1 ad,t+1+Vk,t+1kd,t+1+dd,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

+
1

E
[

e−
Vt+1

θ

] (−σ
(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1

ω

)−1−σ (
cd,t+1 − h−1+ω

t+1 hd,t+1
)

+

(
ct+1 −

hω
t+1

ω

)−σ (
α
(
h1−α

t+1 k−1+α
t+1 ad,t+1 + at+1

(
h−α

t+1k−1+α
t+1 (1− α)hd,t+1 + h1−α

t+1 k−2+α
t+1 (−1 + α)kd,t+1

))
+φ (ka,t+2ad,t+1 − kd,t+1 + kk,t+2kd,t+1 + dd,t+1kd,t+2))))]

−E


e−

Vt+1
θ
(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1
ω

)−σ

(Va,t+1ad,t+1 + Vk,t+1kd,t+1 + dd,t+1Vd,t+1)

θE
[

e−
Vt+1

θ

]

 (A29)

−σ(1 + (−kt + kt+1)φ)

(
ct −

hω
t

ω

)−1−σ (
ck,t − h−1+ω

t hk,t
)
+ φ

(
ct −

hω
t

ω

)−σ

(−1 + kk,t+1) = β

(
E
[

e−
Vt+1

θ


(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (Va,t+1 ak,t+1+kk,t+1Vk,t+1+dk,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

+
1

E
[

e−
V
θ

] (−σ
(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1

ω

)−1−σ (
ck,t+1 − h−1+ω

t+1 hk,t+1
)

+

(
ct+1 −

hω
t+1

ω

)−σ (
α
(
h1−α

t+1 k−1+α
t+1 ak,t+1 + at+1

(
h−α

t+1k−1+α
t+1 (1− α)hk,t+1 + h1−α

t+1 k−2+α
t+1 (−1 + α)kk,t+1

))
+φ (ka,t+2ak,t+1 − kk,t+1 + kk,t+1kk,t+2 + dk,t+1kd,t+2))))]

−E


e−

Vt+1
θ
(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1
ω

)−σ

(Va,t+1ak,t+1 + kk,t+1Vk,t+1 + dk,t+1Vd,t+1)

θE
[

e−
Vt+1

θ

]

 (A30)

−σ(1 + (−kt + kt+1)φ)

(
ct −

hω
t

ω

)−1−σ (
ca,t − h−1+ω ha,t

)
+ φ

(
ct −

hω
t

ω

)−σ

ka,t+1 = β

(
E
[

e−
Vt+1

θ


(
1 + at+1h1−α

t+1 k−1+α
t+1 α− δ + (−kt+1 + kt+2)φ

) (
ct+1 −

hω
t+1
ω

)−σ

E

 e
−

Vt+1
θ (aa,t+1Va,t+1+kd,t+1Vk,t+1+da,t+1Vd,t+1)

θ


E
[

e−
Vt+1

θ

]2

+
1

E
[

e−
Vt+1
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 (A32)

Appendix C. Welfare Loss Estimations due to Aggregate Uncertainty

The results in the following table show the compensating variation in consumption τ for different
values of risk aversion σ and the concern for robustness θ. Calculations for the benchmark scenario are
performed with the original calibration. The second scenario, assumes financial frictions understood
as a high sensitivity of domestic interest rate to debt. Parameter characterizing the sensitivity of the
sovereign risk to domestic debt stock (ψ) is approximately 1000 times greater than the original scenario.

Table A1. Welfare loss estimations due to aggregate uncertainty, for different combinations of risk
aversion and concern for model uncertainty; no financial frictions case (consumption equivalent
variation, τ).

Risk Aversion Model
Risk (θ = ∞) Risk + MU (θ = 8) Risk + MU (θ = 1.2)

σ = 0.1 −0.01242487494 −0.0047773802 0.02940232963
σ = 0.5 −0.0104147361 −0.00031245048 0.04775196528
σ = 1 −0.00827278276 −0.00476982253 0.07859008227

σ = 1.5 −0.0062126702 0.01546052899 0.1288140583
σ = 2 −0.0041754876 0.0282842252 0.2021151683
σ = 3 −0.0001189552 0.07435342758 0.4793921136
σ = 4 0.003933465942 0.1769271301 1.092818428
σ = 5 0.007985148696 0.4081522957 2.332218983

Table A2. Welfare loss estimations due to aggregate uncertainty, for different combination of risk aversion
and concern for model uncertainty; with financial frictions (consumption equivalent variation, τ).

Risk Aversion Model
Risk (θ = ∞) Risk + MU (θ = 8) Risk + MU (θ = 1.2)

σ = 0.1 −0.01136340832 −0.00387704322 0.02937390047
σ = 0.5 −0.0078994127 0.001558175204 0.04598087782
σ = 1 −0.00479431469 0.006784700022 0.0723374851

σ = 1.5 −0.00213717794 0.01675790425 0.1144456391
σ = 2 0.000296700405 0.0278397621 0.1740893674
σ = 3 0.00480046866624 0.06535471154 0.3941810435
σ = 4 0.009047364944 0.1453796449 0.8741916885
σ = 5 0.01313991887 0.3218276507 1.856003205
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