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Abstract: With the aid of constructal theory and entransy theory, a Tau-shaped fin (TAUSF) is 
investigated in this paper, and the widths of the bend end and elemental fins are assumed to be 
different. The construct of the TAUSF is optimized by the minimum equivalent thermal resistance 
(ETR) obtained by entransy dissipation rate. The constraints of total enveloping volume and fin 
material volume are considered. The results show that in the specified range of width ratio, the 
twice minimum ETR of the TAUSF can be yielded by an optimal width ratio and an optimal length 
ratio. In addition, comparing the optimal performance of the TAUSF with the counterpart of a T-
shaped fin, the former sacrifices a small amount of heat transfer performance and its stiffness 
increases due to its structure with the bend end. The optimal structure of the TAUSF yielded from 
ETR minimization is conspicuously different with the counterpart yielded from maximum thermal 
resistance minimization. Comparing the thermal performances of the two optimal constructs, the 
ETR of the former optimal construct is declined by 10.58%, whereas the maximum thermal 
resistance is augmented by 5.22%. The former optimal construct can lead to the uniformity of 
temperature gradient and the reduction in thermal stress, and can guide the engineering designs of 
practical fins. 

Keywords: constructal theory; entransy theory; Tau-shaped fin; equivalent thermal resistance; 
generalized thermodynamic optimization 

 

1. Introduction 

Fins are one of the important devices to enhance heat transfer of thermal systems, which is used 
in electronic device cooling, mechanical equipment cooling, heat exchangers, etc. Based on classical 
methods, many scholars have implemented many performance analyses of fins by taking entropy 
generation [1], device temperature [2], heat transfer rate (HTR) [3], and fin efficiency [4] as 
optimization objectives. 

Constructal theory [5–21] has shown its powerful effects in solving various engineering 
problems, and the constructal optimizations of fins [22–34] are also one of the foci of this theory. Bejan 
and Dan [22] first extended the “volume-point” constructal design method in the field of geometry 
optimization for tree-shaped fins. Bejan and Almogbel [23] performed constructal optimizations of 
the Tau-shaped fin (TAUSF) and T-shaped fin (TSF) according to the optimization index of maximum 
HTR. They found that the performance of the TAUSF exhibited a slight decrease compared with that 
of the TSF, and twice the maximum thermal conductance of the fin could be expressed as a power 
law of the fin’s parameters. Almogbel [24] investigated the optimal performance of a multi-stage TSF 
with uniform thicknesses of the stem and branches. Combelles et al. [25] and Chen et al. [26] 
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conducted constructal design for a leaf-like body on the basis of HTR maximization, and improved 
the HTRs of the leaf-like bodies by optimizing the vein cross-section and thickness of the blade. 

Moreover, numerical heat transfer optimization is a tendency for the design of fins, and many 
researchers have implemented various constructal optimizations of T- [27], Y- [28–32], T-Y- [33], twice 
Y- [34], and complex-shaped [35] fins by using the finite element method. Almogbel and Bejan [36] 
performed constructal optimization of pin fins in cylindrical trees. Bello-Ochende et al. [37] 
investigated pin fins in two rows with specified total fin material volume, and optimized the 
distribution of fin material. Yang et al. [38,39] and Chen et al. [40] conducted geometry optimizations 
of cylindrical pin fins in terms of HTR maximization, operation cost minimization, and entropy 
generation rate minimization, respectively, and obtained different structures of pin fins 
corresponding to different requirements. Feng et al. [41] and Hajmohammadi [42] further built the 
helm-shaped and annular fin models, respectively, and improved their performances by using 
extended surfaces growing from the stem fin. Mustafa [43] carried out constructal design for a 
diamond-shaped pin fin and gained the optimal spacing and height of the fin under maximum heat 
transfer density. Hazarika et al. [44] optimized a fork-shaped fin with heat and mass transfer and 
found that the optimized fin exhibited better HTR than the rectangular fin.  

To consummate the existing heat transfer theory, a new physical quantity, termed as entransy, 
was brought forward by Guo et al. [45,46]. According to reference [45], entransy was once illuminated 
as a potential capacity in the heat transfer processes. As stated in entransy theory, an equivalent 
thermal resistance (ETR) can be defined according to the entransy dissipation rate (EDR) Henceforth, 
many scholars have applied entransy theory [47–50] to investigate and improve the heat transfer 
performances (HTPs) of various thermal systems [51–56]. By combining entransy theory and 
constructal theory, the heat conduction problems [51] as well as convective heat transfer problems of 
the fins [52,53], heat exchangers [54,56], and vascular networks [55] were solved, and different 
optimization results and guidelines for the designs of these problems were provided. Moreover, the 
debate about entransy is a hot topic [57–62], whose subjects include the necessity of entransy, physical 
content of entransy, comparison of entransy and entropy generation, etc. This shows that many 
constructal optimization results gained by the minimizations of the two performance indexes are 
different. It is also proved that entransy dissipation is an available optimization objective which 
provides different design guidelines for the optimizations of various thermal systems.  

Therefore, based on the model established in reference [23], constructal optimization of a TAUSF 
will be reconducted by utilizing ETR minimization as a performance index in this paper. 
Furthermore, the widths of the bend end and elemental fins will be assumed to be different, and the 
performance comparisons of the TAUSF yielded from different performance indexes will be 
analyzed. The novelty of this paper is introducing entransy theory into the structure optimization of 
the TAUSF, aimed to increase the uniformity of its temperature gradient. The results obtained here 
will offer some new references to the developments and HTP improvements of practical fins. 

2. Model of the TAUSF 

A model of a TAUSF is depicted in Figure 1 [23]. As shown in Figure 1, the fin consists of one 
first order fin (width 1t , length 1L ) and two elemental fins (width 0t , length 0L ) with a bend end 
(width et , length eL ) at the tip of each elemental fin. The structure of the TAUSF is more complex 
than that of the TSF; thus, its performance is expected to be better for the purpose of electronic device 
cooling. When the thickness W  of the TAUSF is greatly bigger than the lengths 1L , 0L , and eL , the 
model of TAUSF can be simplified into a two-dimensional one. The heat current (HTR 1q , 
temperature 1T ) generated by the electronic device is imposed at the root of the TAUSF, and then, 
flows along the first order, elemental, and bend end fins, respectively. The whole heat transfer process 
is assumed to be steady state. The temperatures at the junctions of the first order and elemental fins 
and the bend end and elemental fins are 0T  and eT , respectively. The thermal conductivity of the 
isotropic fin material is k . The tip at the bend end is considered as adiabatic. Natural convection 
occurs between the TAUSF and air, and the heat transfer coefficient h  is uniformly distributed for 
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simplification. The Biot number 1/ 2Bi =( / ) ( , 0,1)i iht k i e  of the TAUSF is assumed to be much 
smaller than 1, and the heat transfer directions in the first order, elemental, and bend end fins can be 
viewed as one-dimensional ones. The HTR 1q  and ambient temperature T  are specified, and the 
temperatures 1T , 0T , and eT  are varied with the shape of the TAUSF.  

 
Figure 1. Model of Tau-shaped fin [23]. 

For the specified thickness W  of the TAUSF, the total enveloping volume and fin material 
volume are simplified into those of the frontal area A  and fin cross-sectional area fA , respectively. 

0 12A L L  (1) 

0 0 1 12 2f e eA L t L t L t    (2) 

For the constructal optimization of the TAUSF, the unchanged A  and fA  are considered, 
which means that the fin design is conducted under the conditions of limited space and material 
consumption. Under these constraints, the optimal structure of the TAUSF is searched to enhance the 
HTP, which is different from the other design methods aimed to reduce material consumption. The 
length ratio and width ratio of the fin are defined as: 1 1/eb L L  and 2 0/eb t t , respectively, and 
Equation (2) can be rewritten as 

1 2 1 0 0 0 1 12 2fA b b L t L t L t    (3) 

Equations (1) and (3) can be further nondimensionalized as 

0 12 1L L    (4) 

1 2 1 0 0 0 1 1 12 2bb L t L t L t         (5) 

where 1/2
0 0 1 1 0 0 1 1( , , , ) ( , , , ) /t L t L t L t L A   , and the volume faction of the TAUSF is defined as: 1 /fA A 

. From Equations (4) and (5), the dimensionless widths and lengths of the TAUSF can be given as 
1/2

1 0 1
0

1 2 1 0 1 0 1 0

(2 / )
2 2 ( / ) ( / )( / )

L L
t

b b L L L L t t



 

  (6) 
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The heat transfer equation and boundary conditions of the first order fin are [63] 
2

2
1

2 ( )d T h T T
ktdy    (10) 

10,y T T   (11) 

1 0,y L T T   (12) 

Solving Equations (10)–(12) yields the temperature distribution along the first order fin [23]. 

1 1 0 1 1 1 1 1( ) csch( )[( )sinh( ) ( )sinh( )]T y T m L T T m y T T m y m L         (13) 

where 
1/ 2

1
1

2hm
kt

 
  
 

. 

According to reference [38], one can obtain the EDR vhE 
  of the solid part fin as 

2( )vh
v

E k T dv    (14) 

where v  is the volume of the fin and T  denotes the temperature gradient. For a one-dimensional 
problem with a fixed heat flux boundary condition, the optimizations on the basis of the 
minimizations of EDR and maximum temperature difference are identical to each other [53]. If the 
optimization based on the latter objective has been conducted, it is meaningless to further conduct 
the optimization of the TAUSF based on the objective of the whole EDR. Actually, the EDR of the 
solid part of the TAUSF defined in Equation (14) reflects the uniformity of the temperature gradient, 
and it is meaningful to conduct the optimization of the TAUSF based on the EDR of the solid part. 
Based on this consideration, the EDR of the solid part is only considered in the following research 
unless there are special explanations given.  

From Equation (14), the ETR hR  under the specified heat flux boundary condition can be 
further calculated by [45] 

2

2 2

( )
vh v

h
h h

k T dv
E

R
Q Q




 


   (15) 

where hQ  denotes the heat current. From Equation (15), for the specified heat current, the EDR 
minimization is the same as that the ETR minimization in this regard.  

According to Equations (13) and (14), one can obtain the 1vhE 
  of the first order TAUSF  

1

2
1/2 2 1/2

1 1 1 1 1 0 1 1 10

1/2 1/2 2 2 1/2 1/ 2
1 1 1 0 1 0 1 1 1 1 1

csch( ) { 4 ( )( )cos h( )
4

4 sinh ( )( )( ) [( ) ( ) ][2 sinh (2 )]}

L

vh
dT akWE kWt dy aL t aL T T T T aL t
dy

t aL t T T T T T T T T aL t aL t


 

 

 
   

 
     

 
       

    

     

 

(16) 

where 
1/21/22hAa

k
 

  
 

. 
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The heat transfer boundary conditions of the elemental fin are similar to those of the first order 
fin. Following the steps as shown in Equations (10)–(16), the temperature distribution can be derived 
by 

0 0 0 0 0 0 0( ) csch( )[( )sinh( ) ( )sinh( )]eT x T m L T T m x T T m x m L         (17) 

In the meantime, the EDR of the elemental fin can be calculated as 

0
2

1/2 2 1/2
0 0 0 0 0 0 0 00

1/2 1/2 2 2 1/ 2 1/ 2
0 0 0 0 0 0 0 0 0

csc h( ) { 4 ( )( ) cos hh( )
4

4 sinh h( )( )( ) [( ) ( ) ][2 sinh h(2 )]}

L

vh e

e e

dT akWE kWt dx aL t aL T T T T aL t
dx

t aL t T T T T T T T T aL t aL t


 

 

 
   

      
 

       

    

     

 

(18) 

where 
1/2

0
0

2hm
kt

 
  
 

. 

The heat transfer equation and boundary conditions of the bend end fin are [63] 
2

2

2 ( )
e

d T h T T
ktdy    (19) 

1, ey L T T   (20) 

1 , 0e
dTy L L
dx

    (21) 

From Equations (14) and (19)–(21), the temperature distribution and EDR of the bend end can 
be, respectively, given by 

1 1( ) ( ){cosh[ ( )] tanh( )sinh[ ( )]}e e e e eT y T T T m L y m L m L y        (22) 

1

1

2
2 1/2 2 1/2 1/21 ( ) sech( ) [ 2 sinh(2 )]

4e

L

vh e e e e e e e e eL L

dTE kWt dy akW T T aL t aL t aL t
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(23) 

where 
1/2

2
e

e

hm
kt

 
  
 

. 

The heat current gathered at the extremity of the TAUSF and the heat current equations at the 
interfaces of the elemental, first order, and bend end fins are, respectively, given by 

1/2 1/2 1/2
1 1 1 1 1 0 1 1 1

0

csch( )[ ( ) ( )cosh( )]
y

dTq ktW akWt aL t T T T T aL t
dy

 
 



 
       

 
     (24) 

1

1 0
0

2
xy L

dT dTktW kt W
dy dx 

        
  

 (25) 

0 1

0 e
x L y L

dT dTkt W kt W
dx dy 

      
   

 (26) 

From Equations (25) and (26), the temperatures eT  and 0T  at the junctions of the fins can be 
given as 

1/2 1/2 1/2 1/2 1/ 2 2
0 1 1 0 0 1 1 0 0 0
1/2 1/2 1/2 1/2 1/ 2 2 1/2 1/2

0 1 0 0 1 1 0 0 0 0
1/2 1/

0 0

( ) cs ch( ) cs ch( ) / [2 coth( )
coth( ) coth( ) 2 cs ch( ) 2

coth( ) tanh(

e

e

e e

T T t t T T aL t aL t t aL t
t t aL t aL t t aL t t t

aL t aL t

  
 

  

 

  

  



       
         

   2 1/2 1/2 1/ 2 1/2
1 1 1) coth( ) tanh( )]e e et t aL t aL t      

 (27) 
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 (28) 

From Equations (15), (16), (18), and (23), the total EDR vhE 


 is calculated as 

1 02 2vh vh vh vh eE E E E          (29) 

In the meantime, the corresponding dimensionless ETR hR  of the TAUSF is 
nondimensionalized as 

2 1/2 2 1/2 1/ 2
1 1 0 0 0 0 0 02

1
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1 0 1 1 1 1 1 1
2 2 1/2 1/ 2 2

0 1 0 1 1 1 1 1
2 1/2 1/2 1/2

){ 4 ( )( ) cosh( ) 4 sinh( )
( )( ) [( ) ( ) ] [2 sinh(2 )]} 2( )

( )[ 2 ssec h inh(2 )]} /
e

e e e e e e

aL T T T T aL t t aL t
T T T T T T T T aL t aL t T T
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     1/ 2 2
1 0 1 1 1{4 [( ) ( )cosh( )] }at T T T T aL t      

 

(30) 

Substituting Equations (6)–(9), (27), and (28) into Equation (30) yields the hR  of the TAUSF, 
which is a function of the fin material fraction 1 , parameter a , length ratios 1b  and 1 0/L L  as well 

as width ratios 2b  and 1 0/t t . When hR  of the TAUSF is minimized, the temperature field and 
thermal stress of the solid fin in engineering are more uniform, and the global heat transfer 
performance of the TAUSF is improved. 

3. Constructal Optimization for the TAUSF 

For the specified 1 , a , 1b , and 2b , one can conduct constructal optimizations for the TAUSF 
by optimizing the two design variables ( 1 0/L L  and 1 0/t t ). Numerical calculations are employed to 
gain the minimum EDR and optimal geometry of the TAUSF. 

3.1. Optimization Based on Two Design Variables 

Figure 2 depicts the characteristic of the dimensionless ETR ( hR ) versus the design variables (

1 0/L L  and 1 0/t t ) with 1 0.1  , =0.2a , 1=0.2b , and 2 =0.2b . From Figure 2, in the ranges of 

1 00.1 / 1.3L L   and 1 01 / 13t t  , there exists an optimal 1 0/L L  ( 1 0( ) 7/ 0.76 5optL L  ) and an 

optimal 1 0/t t  ( 1 0( ) 6. 30/ 4optt t  ), leading to the double minimum hR  ( , 6.275h mmR  ) of the TAUSF.  
To validate the optimal analytical result of the TAUSF above, the fin model with 1 0 0./ 7675L L   

and 1 0 4/ 6. 30t t   is numerically resolved by computational fluid dynamics (CFD) software 

(COMSOL Multiphysics 5.0 [64]). It shows that the relative error ( h, analytical h, numerical h, numerical/R R R   ) of 

the dimensionless ETRs gained by the analytical and numerical solutions is 2.63%, which verifies the 
correctness of the analytical result in this paper. Furthermore, the dimensionless temperature (

1( ) ( ) /T T T kW q   ) distribution of the TAUSF gained by CFD software is shown in Figure 3. 
However, in the ranges of 1 0/ 0L L   and 1 0/ 0t t  , the characteristics in Figure 2 may be invalid, 

and this case is shown in Figure 4. The minimum ,h mR  is gained by optimizing 1 0/L L , and the 

characteristic of ,h mR  versus 1 0/t t  is shown in Figure 4. From Figure 4, as 1 0/t t  increases, ,h mR  
shows a variation that decreases first, then increases, and at last, decreases. Finally, one can see that 
the higher the value of 1 0/t t  is, the lower the minimum dimensionless ETR becomes. However, in 
engineering applications, the width ratio of the fins cannot be infinite, and it is insignificant when 
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1 0/t t  is large enough. Therefore, the changing range of 1 0/t t  is chosen at 1 01 / 50t t   in this 

paper, and the double minimum ,h mmR  can be gained under this condition. 

 

Figure 2. Characteristic of hR  versus 1 0/L L  and 1 0/t t . 

 
Figure 3. Dimensionless temperature distribution of the Tau-shaped fin (TAUSF) gained by CFD 
software. 
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Figure 4. Characteristics of ,h mR  and 1 0( / )optL L  versus 1 0/t t . 

Within the changing range of 1 01 / 50t t  , some values of the parameters 1  and a  cannot 

satisfy this range. Figure 5 shows the contour plot of the double minimum ( ,h mmR ) in the parameter 
space of 1  and a  with 1=0.2b , 2 =0.2b  and 1 01 ( / ) 50optt t  . From Figure 5, the line lima  is the 

critical line which determines whether 1 0( / )optt t  is lower than 50  or not, and the hR  of the TAUSF 

reaches its double minimum ,h mmR  with 1 01 ( / ) 50optt t   in the lower part of the critical line lima . 
The fitting equation of the critical line lima  can be given as follows: 

3 2
lim 1 1 123.821 10.637 2.427 0.0433a        (31) 

when 1 0.1  , the critical value of lima  is 0.2035 , and this is why there exists 1 0 )/( optL L  and 

1 0 )/( optt t  ( 1 0( ) 5/ 0optt t  ), leading to ,h mmR  in Figure 2. 

 

Figure 5. Contour plot of ,h mmR  in the parameter space of 1  and a . 
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3.2. Parameter Influences on the Optimal Results 

Figure 6 depicts the effects of the parameter a  on the ,h mmR  of the TAUSF and its 
corresponding optimal constructs ( 1 0 )/( optL L  and 1 0 )/( optt t ) with 1=0.2b , 2 =0.2b , and lima a . 

From Figure 6, with the increase in a , ,h mmR  decreases, and as a result, the HTP of the TAUSF 
becomes better. For a small value of a , 1 0 )/( optL L  tends to be 0.8190 , and 1 0 )/( optt t  tends to be 
3.835 ; with the increase in a , 1 0 )/( optL L  decreases, 1 0 )/( optt t  increases, the first order fin turns 

shorter and broader, and the elemental fin becomes smaller. Moreover, the ,h mmR  can be correlated 
as a function of the parameters a  and 1  within an error of 17.07% 

0.22 0.90
, 10.58h mmR a    (32) 

Equation (32) is valid in the ranges of 10.01 0.2   and lim0.04 a a  . 

 
Figure 6. Effect of a  on the optimal constructs of the Tau-shaped fin. 

Figures 7 and 8 show the effects of the length ratio 1b  and width ratio 2b  on the ,h mmR  of the 

TAUSF and its corresponding optimal constructs ( 1 0 )/( optL L  and 1 0 )/( optt t ) with 1 0.1   and 

lima a . From Figure 7, when 1 1b  , the length of the bend end is equal to that of the first order fin, 

and the HTP of the TAUSF becomes weak; ,h mmR  decreases as 1b  decreases; the TAUSF with the 
bend end is simplified into the TSF when 1 0b  . In this case, the HTP of the TAUSF decreases a little 
compared with that of the TSF, but the stiffness of the TAUSF increases due to its structure with the 
bend end [23]. From Figure 8, ,h mmR  increases when 2b  increases; when 2 1b  , the width of the 
bend end fin is identical to that of the elemental fin. As a result, the HTP of the TAUSF can be 
improved when different widths ( 2 1b  ) of the bend end fin and elemental fin are adopted. Moreover, 
the effect of 2b  on the optimal geometry of the TAUSF is not obvious than that of 1b . 
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Figure 7. Effect of 1b  on the optimal constructs of the Tau-shaped fin. 

 
Figure 8. Effect of 2b  on the optimal constructs of the Tau-shaped fin. 

3.3. Optimal Result Comparison for Different Optimization Objectives 

Furthermore, the optimal geometry of the TAUSF obtained by ETR minimization in this paper 
is compared with that obtained by maximum thermal resistance (MTR) minimization (its 
dimensionless form can be defined as: 1 1( ) /tR kW T T q  , i.e., HTR maximization) in reference [23]. 
Figure 9 shows the two optimal geometries of the TAUSF with 1 0.1  , =0.2a , 1=0.2b , and 2 =0.2b
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. The Biot numbers 1/2
11Bi = ( /2)a t  in Figure 9a,b are 0.0477  and 0.0459 , respectively, and the 

assumption that 1Bi 1  is validated. From Figure 9, comparing the optimal geometry of the TAUSF 
yielded from ETR minimization with the counterpart yielded from MTR minimization, the first order 
fin grows thicker and longer, the elemental fin becomes thinner and shorter, and the bend end fin 
becomes shorter and broader. Therefore, the two optimal geometries of the TAUSF are obviously 
different from each other. For the same A  and fA  of the TAUSF, the ETR of the TAUSF obtained 
by ETR minimization decreases by 10.58%, while its MTR increases by 5.22% compared with those 
obtained by MTR minimization. The optimal geometry of the TAUSF obtained by ETR minimization 
pursues the minimum average temperature difference of the TAUSF. In this case, the global HTP of 
the TAUSF is improved, the temperature gradient is more homogenous, and the corresponding 
thermal stress performance becomes better. The optimal geometry of the TAUSF obtained by MTR 
minimization pursues the lowest limiting temperature of the TAUSF, which helps to ensure its 
thermal safety. In practical designs of TAUSFs, the optimal geometry of the TAUSF obtained by ETR 
minimization can be chosen on the condition that a lower average temperature difference and a 
homogenous temperature gradient are chased for; that obtained by MTR minimization could be 
chosen on the conditions that a lower limiting temperature and a higher thermal safety are chased 
for. Therefore, different optimal geometries of the TAUSFs need to be chosen when different 
demands of the practical fins should be satisfied.  

 
Figure 9. Optimal constructs of the TAUSFs: (a) ETR minimization, (b) MTR minimization [23]. 

4. Conclusions 

In this paper, the constructal optimization of a TAUSF is re-conducted by utilizing ETR 
minimization as a performance index according to the model established in reference [23]. The 
optimal geometry of the TAUSF is obtained. The results show that:  

(1) In the ranges of 1 00.1 / 1.3L L   and 1 01 / 13t t  , there exists an optimal 1 0/L L  (

1 0( ) 7/ 0.76 5optL L  ) and an optimal 1 0/t t  ( 1 0( ) 6. 30/ 4optt t  ), leading to the double minimum ETR of 
the TAUSF. Substituting the optimal 1 0/L L  and 1 0/t t  into Equations (6)–(9) yields the optimal 0t , 
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0L , 1t , and 1L , and the detailed shape of the TAUSF can be determined for a precise design in 
engineering. Moreover, the length ratio 1 0/t t  tends to be infinite, and the corresponding ETR can be 
further decreased. 

(2) The HTP of the TAUSF decreases a little in contrast with that of the TSF, but the stiffness of 
the TAUSF increases due to its structure with the bend end. The corresponding service life and 
reliability of the TAUSF may be improved from an engineering point of view. In the meantime, the 
HTP of the TAUSF can be further elevated on the condition that different widths ( 2 1b  ) of the bend 
end fin and elemental fin are adopted.  

(3) The optimal geometry of the TAUSF yielded from ETR minimization is different from that 
yielded from MTR minimization. For the same A  and fA  of the TAUSF, the ETR of the TAUSF 
obtained by ETR minimization decreases by 10.58%, and in the meantime, its MTR increases by 5.22%. 

Actually, different structures of TAUSFs can satisfy different application demands of the fins. 
The optimal geometry of the TAUSF obtained by MTR minimization provides a lower limiting 
temperature and a higher thermal safety for the TAUSF; that based on minimum ETR provides a 
lower average temperature difference for the TAUSF, and its global HTP is improved. As a result, the 
optimal geometry of the TAUSF by ETR minimization can offer some new references for the 
developments and HTP improvements for practical fin designs. The entransy dissipation 
optimization of the heat conduction problem was experimentally studied in reference [65], but that 
of the convective problem is only theoretically studied in this paper. Transfer equations about the 
mechanics are not investigated in this paper, and the stiffness of the fin is only qualitatively described. 
Therefore, the experimental study of entransy dissipation performance as well as quantitative studies 
of the stiffness and thermal stress performances will be considered in our future works.  
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Abbreviations 

CFD  Computational fluid dynamics  
EDR  Entransy dissipation rate 
ETR equivalent thermal resistance 
HTR heat transfer rate 
HTP heat transfer performance 
MTR maximum thermal resistance 
TAUSF Tau-shaped fin 
TSF  T-shaped fin 

Nomenclature 

A  Frontal area, 2m  
fA  Fin cross-sectional area, 2m   

a  Parameter related to heat transfer and 
structure 

Bi  Biot number 
1b  Length ratio 
2b  Width ratio 

vhE 
  Entransy dissipation rate, W K  
h  Heat transfer coefficient, 2/ /W m K  
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k  Thermal conductivity, / /W m K  
0L  Length of the two elemental fins, m  

1L  Length of the first order fin, m  

eL  Length of the bend end, m  

em , 1m  Parameters related to heat transfer and 
structure 

hQ  Total heat current, W  

1q  Heat transfer rate of the heat current, W  

0t  Width of the two elemental fins, m  

1t  Width of the first order fin, m  

et  Width of the bend end, m  

0T  Temperature at the junction of the first order 
and elemental fin, K  

1T  Inlet temperature of the heat current, K  

eT  Temperature at the junction of the bend end 
and elemental fin, K  

T  Ambient temperature, K  

hR  Equivalent thermal resistance, /K W  

tR  Maximum thermal resistance, /K W  
v  Volume of the fin, 3m  
W  Thickness, m  
x  X axis 
y  Y axis 

Greek symbols 
  Volume faction of the fin 
T  Temperature gradient, /K m   

Subscripts  
e Bend end fin 
lim Limited value 
m Minimum 
mm Double minimum 
opt Optimal 
0  Elemental fin 
1 First order fin 
Superscripts 
~ Dimensionless 
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