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Abstract: With the aid of constructal theory and entransy theory, a Tau-shaped fin (TAUSF) is
investigated in this paper, and the widths of the bend end and elemental fins are assumed to be
different. The construct of the TAUSF is optimized by the minimum equivalent thermal resistance
(ETR) obtained by entransy dissipation rate. The constraints of total enveloping volume and fin
material volume are considered. The results show that in the specified range of width ratio, the twice
minimum ETR of the TAUSF can be yielded by an optimal width ratio and an optimal length ratio.
In addition, comparing the optimal performance of the TAUSF with the counterpart of a T-shaped fin,
the former sacrifices a small amount of heat transfer performance and its stiffness increases due to its
structure with the bend end. The optimal structure of the TAUSF yielded from ETR minimization is
conspicuously different with the counterpart yielded from maximum thermal resistance minimization.
Comparing the thermal performances of the two optimal constructs, the ETR of the former optimal
construct is declined by 10.58%, whereas the maximum thermal resistance is augmented by 5.22%.
The former optimal construct can lead to the uniformity of temperature gradient and the reduction in
thermal stress, and can guide the engineering designs of practical fins.

Keywords: constructal theory; entransy theory; Tau-shaped fin; equivalent thermal resistance;
generalized thermodynamic optimization

1. Introduction

Fins are one of the important devices to enhance heat transfer of thermal systems, which is
used in electronic device cooling, mechanical equipment cooling, heat exchangers, etc. Based on
classical methods, many scholars have implemented many performance analyses of fins by taking
entropy generation [1], device temperature [2], heat transfer rate (HTR) [3], and fin efficiency [4] as
optimization objectives.

Constructal theory [5–21] has shown its powerful effects in solving various engineering problems,
and the constructal optimizations of fins [22–34] are also one of the foci of this theory. Bejan and Dan [22]
first extended the “volume-point” constructal design method in the field of geometry optimization for
tree-shaped fins. Bejan and Almogbel [23] performed constructal optimizations of the Tau-shaped
fin (TAUSF) and T-shaped fin (TSF) according to the optimization index of maximum HTR. They
found that the performance of the TAUSF exhibited a slight decrease compared with that of the TSF,
and twice the maximum thermal conductance of the fin could be expressed as a power law of the fin’s
parameters. Almogbel [24] investigated the optimal performance of a multi-stage TSF with uniform
thicknesses of the stem and branches. Combelles et al. [25] and Chen et al. [26] conducted constructal
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design for a leaf-like body on the basis of HTR maximization, and improved the HTRs of the leaf-like
bodies by optimizing the vein cross-section and thickness of the blade.

Moreover, numerical heat transfer optimization is a tendency for the design of fins, and many
researchers have implemented various constructal optimizations of T- [27], Y- [28–32], T-Y- [33],
twice Y- [34], and complex-shaped [35] fins by using the finite element method. Almogbel and
Bejan [36] performed constructal optimization of pin fins in cylindrical trees. Bello-Ochende et al. [37]
investigated pin fins in two rows with specified total fin material volume, and optimized the distribution
of fin material. Yang et al. [38,39] and Chen et al. [40] conducted geometry optimizations of cylindrical
pin fins in terms of HTR maximization, operation cost minimization, and entropy generation rate
minimization, respectively, and obtained different structures of pin fins corresponding to different
requirements. Feng et al. [41] and Hajmohammadi [42] further built the helm-shaped and annular
fin models, respectively, and improved their performances by using extended surfaces growing from
the stem fin. Mustafa [43] carried out constructal design for a diamond-shaped pin fin and gained
the optimal spacing and height of the fin under maximum heat transfer density. Hazarika et al. [44]
optimized a fork-shaped fin with heat and mass transfer and found that the optimized fin exhibited
better HTR than the rectangular fin.

To consummate the existing heat transfer theory, a new physical quantity, termed as entransy,
was brought forward by Guo et al. [45,46]. According to reference [45], entransy was once illuminated
as a potential capacity in the heat transfer processes. As stated in entransy theory, an equivalent
thermal resistance (ETR) can be defined according to the entransy dissipation rate (EDR) Henceforth,
many scholars have applied entransy theory [47–50] to investigate and improve the heat transfer
performances (HTPs) of various thermal systems [51–56]. By combining entransy theory and constructal
theory, the heat conduction problems [51] as well as convective heat transfer problems of the fins [52,53],
heat exchangers [54,56], and vascular networks [55] were solved, and different optimization results
and guidelines for the designs of these problems were provided. Moreover, the debate about entransy
is a hot topic [57–62], whose subjects include the necessity of entransy, physical content of entransy,
comparison of entransy and entropy generation, etc. This shows that many constructal optimization
results gained by the minimizations of the two performance indexes are different. It is also proved that
entransy dissipation is an available optimization objective which provides different design guidelines
for the optimizations of various thermal systems.

Therefore, based on the model established in reference [23], constructal optimization of a TAUSF
will be reconducted by utilizing ETR minimization as a performance index in this paper. Furthermore,
the widths of the bend end and elemental fins will be assumed to be different, and the performance
comparisons of the TAUSF yielded from different performance indexes will be analyzed. The novelty
of this paper is introducing entransy theory into the structure optimization of the TAUSF, aimed to
increase the uniformity of its temperature gradient. The results obtained here will offer some new
references to the developments and HTP improvements of practical fins.

2. Model of the TAUSF

A model of a TAUSF is depicted in Figure 1 [23]. As shown in Figure 1, the fin consists of one first
order fin (width t1, length L1) and two elemental fins (width t0, length L0) with a bend end (width te,
length Le) at the tip of each elemental fin. The structure of the TAUSF is more complex than that of
the TSF; thus, its performance is expected to be better for the purpose of electronic device cooling.
When the thickness W of the TAUSF is greatly bigger than the lengths L1, L0, and Le, the model of
TAUSF can be simplified into a two-dimensional one. The heat current (HTR q1, temperature T1)
generated by the electronic device is imposed at the root of the TAUSF, and then, flows along the first
order, elemental, and bend end fins, respectively. The whole heat transfer process is assumed to be
steady state. The temperatures at the junctions of the first order and elemental fins and the bend end
and elemental fins are T0 and Te, respectively. The thermal conductivity of the isotropic fin material is
k. The tip at the bend end is considered as adiabatic. Natural convection occurs between the TAUSF
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and air, and the heat transfer coefficient h is uniformly distributed for simplification. The Biot number
Bii = (hti/k)1/2 (i = e, 0, 1) of the TAUSF is assumed to be much smaller than 1, and the heat transfer
directions in the first order, elemental, and bend end fins can be viewed as one-dimensional ones.
The HTR q1 and ambient temperature T∞ are specified, and the temperatures T1, T0, and Te are varied
with the shape of the TAUSF.
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Figure 1. Model of Tau-shaped fin [23].

For the specified thickness W of the TAUSF, the total enveloping volume and fin material volume
are simplified into those of the frontal area A and fin cross-sectional area A f , respectively.

A = 2L0L1 (1)

A f = 2Lete + 2L0t0 + L1t1 (2)

For the constructal optimization of the TAUSF, the unchanged A and A f are considered,
which means that the fin design is conducted under the conditions of limited space and material
consumption. Under these constraints, the optimal structure of the TAUSF is searched to enhance
the HTP, which is different from the other design methods aimed to reduce material consumption.
The length ratio and width ratio of the fin are defined as: b1 = Le/L1 and b2 = te/t0, respectively,
and Equation (2) can be rewritten as

A f = 2b1b2L1t0 + 2L0t0 + L1t1 (3)

Equations (1) and (3) can be further nondimensionalized as

2̃L0̃L1 = 1 (4)

2b1b2̃L1̃t0 + 2̃L0̃t0 + L̃1̃t1 = φ1 (5)
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where (̃t0, L̃0, t̃1, L̃1) = (t0, L0, t1, L1)/A1/2, and the volume faction of the TAUSF is defined as:
φ1 = A f /A. From Equations (4) and (5), the dimensionless widths and lengths of the TAUSF can be
given as

t̃0 =
(2L1/L0)

1/2φ1

2 + 2b1b2(L1/L0) + (L1/L0)(t1/t0)
(6)

t̃1 =
(2L1/L0)

1/2(t1/t0)φ1

2 + 2b1b2(L1/L0) + (L1/L0)(t1/t0)
(7)

L̃0 =
1

(2L1/L0)
1/2

(8)

L̃1 =
(L1/L0)

1/2

21/2
(9)

The heat transfer equation and boundary conditions of the first order fin are [63]

d2T
dy2 =

2h
kt1

(T − T∞) (10)

y = 0, T = T1 (11)

y = L1, T = T0 (12)

Solving Equations (10)–(12) yields the temperature distribution along the first order fin [23].

T(y) − T∞ = csc h(m1L1)[(T0 − T∞)sinh(m1y) − (T1 − T∞)sinh(m1y−m1L1)] (13)

where m1 =
(

2h
kt1

)1/2
.

According to reference [38], one can obtain the EDR
.
Evhφ of the solid part fin as

.
Evhφ =

∫
v

k(∇T)2dv (14)

where v is the volume of the fin and ∇T denotes the temperature gradient. For a one-dimensional
problem with a fixed heat flux boundary condition, the optimizations on the basis of the minimizations
of EDR and maximum temperature difference are identical to each other [53]. If the optimization based
on the latter objective has been conducted, it is meaningless to further conduct the optimization of the
TAUSF based on the objective of the whole EDR. Actually, the EDR of the solid part of the TAUSF defined
in Equation (14) reflects the uniformity of the temperature gradient, and it is meaningful to conduct the
optimization of the TAUSF based on the EDR of the solid part. Based on this consideration, the EDR of
the solid part is only considered in the following research unless there are special explanations given.

From Equation (14), the ETR Rh under the specified heat flux boundary condition can be further
calculated by [45]

Rh =

.
Evhφ

.
Q

2
h

=

∫
v

k(∇T)2dv

.
Q

2
h

(15)

where
.

Qh denotes the heat current. From Equation (15), for the specified heat current, the EDR
minimization is the same as that the ETR minimization in this regard.

According to Equations (13) and (14), one can obtain the
.
Evhφ1 of the first order TAUSF

.
Evhφ1 =

∫ L1
0 kWt1

(
dT
dy

)2
dy = akW

4 csc h(ãL1̃t1
−1/2)2

{−4ãL1(T0 − T∞)(T1 − T∞) cos h(ãL1̃t1
−1/2)

−4̃t1
1/2sinh(ãL1̃t1

−1/2)(T0 − T∞)(T1 − T∞) + [(T0 − T∞)
2 + (T1 − T∞)

2][2ãL1 + t̃1
1/2sinh(2ãL1̃t1

−1/2)]}
(16)



Entropy 2020, 22, 1206 5 of 15

where a =
(

2hA1/2

k

)1/2
.

The heat transfer boundary conditions of the elemental fin are similar to those of the first order fin.
Following the steps as shown in Equations (10)–(16), the temperature distribution can be derived by

T(x) − T∞ = csc h(m0L0)[(Te − T∞)sinh(m0x) − (T0 − T∞)sinh(m0x−m0L0)] (17)

In the meantime, the EDR of the elemental fin can be calculated as

.
Evhφ0 =

∫ L0

0 kWt0
(

dT
dx

)2
dx = akW

4 csc h(ãL0̃t0
−1/2)2

{−4ãL0(T0 − T∞)(Te − T∞) cos hh(ãL0̃t0
−1/2)

−4̃t0
1/2sinhh(ãL0̃t0

−1/2)(T0 − T∞)(Te − T∞) + [(T0 − T∞)
2 + (Te − T∞)

2][2ãL0 + t̃0
1/2sinhh(2 ãL0̃t0

−1/2)]}
(18)

where m0 =
(

2h
kt0

)1/2
.

The heat transfer equation and boundary conditions of the bend end fin are [63]

d2T
dy2 =

2h
kte

(T − T∞) (19)

y = L1, T = Te (20)

y = L1 − Le,
dT
dx

= 0 (21)

From Equations (14) and (19)–(21), the temperature distribution and EDR of the bend end can be,
respectively, given by

T(y) − T∞ = (Te − T∞)
{
cos h[me(L1 − y)] − tanh(meLe)sinh[me(L1 − y)]

}
(22)

.
Evhφe =

∫ L1
L1−Le

kWte

(
dT
dy

)2
dy = 1

4 akW(Te − T∞)
2sech(ãLẽte

−1/2)
2
[−2ãLe + t̃e

1/2sinh(2ãLẽte
−1/2)] (23)

where me =
(

2h
kte

)1/2
.

The heat current gathered at the extremity of the TAUSF and the heat current equations at the
interfaces of the elemental, first order, and bend end fins are, respectively, given by

q1 = −kt1W
(

dT
dy

)
y=0

= akWt̃1
1/2csch(ãL1̃t1

−1/2)[−(T0 − T∞) + (T1 − T∞) cosh(ãL1̃t1
−1/2)] (24)

− kt1W
(

dT
dy

)
y=L1

= −2kt0W
(

dT
dx

)
x=0

(25)

− kt0W
(

dT
dx

)
x=L0

= kteW
(

dT
dy

)
y=L1

(26)

From Equations (25) and (26), the temperatures Te and T0 at the junctions of the fins can be given as

Te − T∞ = t̃0
1/2̃t1

1/2(T1 − T∞)csch(ãL0̃t0
−1/2)csch(ãL1̃t1

−1/2)/[2̃t0coth(ãL0̃t0
−1/2)

2

+t̃0
1/2̃t1

1/2coth(ãL0̃t0
−1/2)coth(ãL1̃t1

−1/2) − 2̃t0csch(ãL0̃t0
−1/2)

2
+ 2̃t0

1/2̃te
1/2

×coth(ãL0̃t0
−1/2)tanh(ãLẽte

−1/2) + t̃1
1/2̃te

1/2coth(ãL1̃t1
−1/2)tanh(ãLẽte

−1/2)]

(27)

T0 − T∞ = t̃1
1/2(T1 − T∞)csch(ãL1̃t1

−1/2)[̃t0
1/2coth(ãL0̃t0

−1/2) + t̃e
1/2tanh(ãLẽte

−1/2)]

×[2̃t0coth2(ãL0̃t0
−1/2) + t̃0

1/2̃t1
1/2coth(ãL0̃t0

−1/2)coth(ãL1̃t1
−1/2) − 2̃t0csch2(ãL0̃t0

−1/2)

+2̃t0
1/2̃te

1/2(ãL0̃t0
−1/2)tanh(ãLẽte

−1/2) + t̃1
1/2̃te

1/2coth(ãL1̃t1
−1/2)tanh(ãLẽte

−1/2)]−1
(28)

From Equations (15), (16), (18), and (23), the total EDR
.
Evhφ is calculated as

.
Evhφ =

.
Evhφ1 + 2

.
Evhφ0 + 2

.
Evhφe (29)
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In the meantime, the corresponding dimensionless ETR R̃h of the TAUSF is nondimensionalized as

R̃h =

.
Evhφ·(kW)

q1
2 = sinh2(ãL1̃t1

−1/2){2csch2(ãL0̃t0
−1/2){−4ãL0(T0 − T∞)(Te − T∞) cosh(ãL0̃t0

−1/2)

−4̃t0
1/2(T0 − T∞) (Te − T∞)sinh(ãL0̃t0

−1/2) + [(T0 − T∞)
2 + (Te − T∞)

2][̃t0
1/2sinh(2ãL0̃t0

−1/2)

+2ãL0]}+ csch2(ãL1̃t1
−1/2){−4ãL1(T0 − T∞)(T1 − T∞) cosh(ãL1̃t1

−1/2) − 4̃t1
1/2sinh(ãL1̃t1

−1/2)

×(T0 − T∞)(T1 − T∞) + [(T0 − T∞)
2 + (T1 − T∞)

2] [2ãL1 + t̃1
1/2sinh(2ãL1̃t1

−1/2)]}+ 2(Te − T∞)
2

× sec h2(ãLẽte
−1/2)[−2ãLe + t̃e

1/2sinh(2ãLẽte
−1/2)]}/{4ãt1[(T0 − T∞) − (T1 − T∞) cosh(ãL1̃t1

−1/2)]
2
}

(30)

Substituting Equations (6)–(9), (27), and (28) into Equation (30) yields the R̃h of the TAUSF, which is
a function of the fin material fraction φ1, parameter a, length ratios b1 and L1/L0 as well as width
ratios b2 and t1/t0. When R̃h of the TAUSF is minimized, the temperature field and thermal stress of
the solid fin in engineering are more uniform, and the global heat transfer performance of the TAUSF
is improved.

3. Constructal Optimization for the TAUSF

For the specified φ1, a, b1, and b2, one can conduct constructal optimizations for the TAUSF by
optimizing the two design variables (L1/L0 and t1/t0). Numerical calculations are employed to gain
the minimum EDR and optimal geometry of the TAUSF.

3.1. Optimization Based on Two Design Variables

Figure 2 depicts the characteristic of the dimensionless ETR (R̃h) versus the design variables
(L1/L0 and t1/t0) with φ1 = 0.1, a= 0.2, b1= 0.2, and b2= 0.2. From Figure 2, in the ranges of
0.1 < L1/L0 < 1.3 and 1 < t1/t0 < 13, there exists an optimal L1/L0 ((L1/L0)opt = 0.7675) and an

optimal t1/t0 ((t1/t0)opt = 6.430), leading to the double minimum R̃h· (R̃h,mm = 6.275) of the TAUSF.
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To validate the optimal analytical result of the TAUSF above, the fin model with L1/L0 = 0.7675
and t1/t0 = 6.430 is numerically resolved by computational fluid dynamics (CFD) software (COMSOL
Multiphysics 5.0 [64]). It shows that the relative error (

∣∣∣R̃h, analytical − R̃h, numerical
∣∣∣/R̃h, numerical) of

the dimensionless ETRs gained by the analytical and numerical solutions is 2.63%, which verifies
the correctness of the analytical result in this paper. Furthermore, the dimensionless temperature
(T̃ = (T − T∞) · (kW)/q1) distribution of the TAUSF gained by CFD software is shown in Figure 3.
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However, in the ranges of L1/L0 > 0 and t1/t0 > 0, the characteristics in Figure 2 may be invalid,
and this case is shown in Figure 4. The minimum R̃h,m is gained by optimizing L1/L0, and the
characteristic of R̃h,m versus t1/t0 is shown in Figure 4. From Figure 4, as t1/t0 increases, R̃h,m shows a
variation that decreases first, then increases, and at last, decreases. Finally, one can see that the higher
the value of t1/t0 is, the lower the minimum dimensionless ETR becomes. However, in engineering
applications, the width ratio of the fins cannot be infinite, and it is insignificant when t1/t0 is large
enough. Therefore, the changing range of t1/t0 is chosen at 1 ≤ t1/t0 ≤ 50 in this paper, and the double
minimum R̃h,mm can be gained under this condition.
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Figure 4. Characteristics of R̃h,m and (L1/L0)opt versus t1/t0.

Within the changing range of 1 ≤ t1/t0 ≤ 50, some values of the parameters φ1 and a cannot satisfy
this range. Figure 5 shows the contour plot of the double minimum (R̃h,mm) in the parameter space
of φ1 and a with b1= 0.2, b2= 0.2 and 1 ≤ (t1/t0)opt ≤ 50. From Figure 5, the line alim is the critical

line which determines whether (t1/t0)opt is lower than 50 or not, and the R̃h of the TAUSF reaches its

double minimum R̃h,mm with 1 ≤ (t1/t0)opt ≤ 50 in the lower part of the critical line alim. The fitting
equation of the critical line alim can be given as follows:

alim = 23.821φ1
3
− 10.637φ1

2 + 2.427φ1 + 0.0433 (31)

when φ1 = 0.1, the critical value of alim is 0.2035, and this is why there exists (L1/L0)opt and

(t1/t0)opt· ((t1/t0)opt ≤ 50), leading to R̃h,mm in Figure 2.
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3.2. Parameter Influences on the Optimal Results

Figure 6 depicts the effects of the parameter a on the R̃h,mm of the TAUSF and its corresponding
optimal constructs ((L1/L0)opt and (t1/t0)opt) with b1= 0.2, b2= 0.2, and a ≤ alim. From Figure 6,

with the increase in a, R̃h,mm decreases, and as a result, the HTP of the TAUSF becomes better. For a
small value of a, (L1/L0)opt tends to be 0.8190, and (t1/t0)opt tends to be 3.835; with the increase in a,
(L1/L0)opt decreases, (t1/t0)opt increases, the first order fin turns shorter and broader, and the elemental

fin becomes smaller. Moreover, the R̃h,mm can be correlated as a function of the parameters a and φ1

within an error of 17.07%
R̃h,mm = 0.58a−0.22φ1

−0.90 (32)

Equation (32) is valid in the ranges of 0.01 ≤ φ1 ≤ 0.2 and 0.04 ≤ a ≤ alim.
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Figures 7 and 8 show the effects of the length ratio and width ratio b2 on the R̃h,mm of the
TAUSF and its corresponding optimal constructs ((L1/L0)opt and (t1/t0)opt) with φ1 = 0.1 and a ≤ alim.
From Figure 7, when b1 = 1, the length of the bend end is equal to that of the first order fin, and the
HTP of the TAUSF becomes weak; R̃h,mm decreases as b1 decreases; the TAUSF with the bend end is
simplified into the TSF when b1 = 0. In this case, the HTP of the TAUSF decreases a little compared
with that of the TSF, but the stiffness of the TAUSF increases due to its structure with the bend end [23].
From Figure 8, R̃h,mm increases when b2 increases; when b2 = 1, the width of the bend end fin is
identical to that of the elemental fin. As a result, the HTP of the TAUSF can be improved when different
widths (b2 < 1) of the bend end fin and elemental fin are adopted. Moreover, the effect of b2 on the
optimal geometry of the TAUSF is not obvious than that of b1.Entropy 2020, 22, x FOR PEER REVIEW 10 of 16 
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3.3. Optimal Result Comparison for Different Optimization Objectives

Furthermore, the optimal geometry of the TAUSF obtained by ETR minimization in this paper is
compared with that obtained by maximum thermal resistance (MTR) minimization (its dimensionless
form can be defined as: R̃t = kW(T1 − T∞)/q1, i.e., HTR maximization) in reference [23]. Figure 9
shows the two optimal geometries of the TAUSF with φ1= 0.1, a= 0.2, b1= 0.2, and b2= 0.2. The Biot

numbers Bi1 = a(̃t1 /2)
1/2

in Figure 9a,b are 0.0477 and 0.0459, respectively, and the assumption that
Bi1 << 1 is validated. From Figure 9, comparing the optimal geometry of the TAUSF yielded from
ETR minimization with the counterpart yielded from MTR minimization, the first order fin grows
thicker and longer, the elemental fin becomes thinner and shorter, and the bend end fin becomes
shorter and broader. Therefore, the two optimal geometries of the TAUSF are obviously different
from each other. For the same A and A f of the TAUSF, the ETR of the TAUSF obtained by ETR
minimization decreases by 10.58%, while its MTR increases by 5.22% compared with those obtained by
MTR minimization. The optimal geometry of the TAUSF obtained by ETR minimization pursues the
minimum average temperature difference of the TAUSF. In this case, the global HTP of the TAUSF
is improved, the temperature gradient is more homogenous, and the corresponding thermal stress
performance becomes better. The optimal geometry of the TAUSF obtained by MTR minimization
pursues the lowest limiting temperature of the TAUSF, which helps to ensure its thermal safety.
In practical designs of TAUSFs, the optimal geometry of the TAUSF obtained by ETR minimization can
be chosen on the condition that a lower average temperature difference and a homogenous temperature
gradient are chased for; that obtained by MTR minimization could be chosen on the conditions that a
lower limiting temperature and a higher thermal safety are chased for. Therefore, different optimal
geometries of the TAUSFs need to be chosen when different demands of the practical fins should
be satisfied.
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4. Conclusions

In this paper, the constructal optimization of a TAUSF is re-conducted by utilizing ETR
minimization as a performance index according to the model established in reference [23]. The optimal
geometry of the TAUSF is obtained. The results show that:

(1) In the ranges of 0.1 < L1/L0 < 1.3 and 1 < t1/t0 < 13, there exists an optimal
L1/L0·

(
(L1/L0)opt = 0.7675

)
and an optimal t1/t0· ((t1/t0)opt = 6.430), leading to the double minimum

ETR of the TAUSF. Substituting the optimal L1/L0 and t1/t0 into Equations (6)–(9) yields the optimal
t̃0, L̃0, t̃1, and L̃1, and the detailed shape of the TAUSF can be determined for a precise design in
engineering. Moreover, the length ratio t1/t0 tends to be infinite, and the corresponding ETR can be
further decreased.

(2) The HTP of the TAUSF decreases a little in contrast with that of the TSF, but the stiffness of the
TAUSF increases due to its structure with the bend end. The corresponding service life and reliability
of the TAUSF may be improved from an engineering point of view. In the meantime, the HTP of the
TAUSF can be further elevated on the condition that different widths (b2 < 1) of the bend end fin and
elemental fin are adopted.

(3) The optimal geometry of the TAUSF yielded from ETR minimization is different from that
yielded from MTR minimization. For the same A and A f of the TAUSF, the ETR of the TAUSF obtained
by ETR minimization decreases by 10.58%, and in the meantime, its MTR increases by 5.22%.

Actually, different structures of TAUSFs can satisfy different application demands of the fins.
The optimal geometry of the TAUSF obtained by MTR minimization provides a lower limiting
temperature and a higher thermal safety for the TAUSF; that based on minimum ETR provides a lower
average temperature difference for the TAUSF, and its global HTP is improved. As a result, the optimal
geometry of the TAUSF by ETR minimization can offer some new references for the developments
and HTP improvements for practical fin designs. The entransy dissipation optimization of the heat
conduction problem was experimentally studied in reference [65], but that of the convective problem
is only theoretically studied in this paper. Transfer equations about the mechanics are not investigated
in this paper, and the stiffness of the fin is only qualitatively described. Therefore, the experimental
study of entransy dissipation performance as well as quantitative studies of the stiffness and thermal
stress performances will be considered in our future works.
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Abbreviations

CFD Computational fluid dynamics
EDR Entransy dissipation rate
ETR equivalent thermal resistance
HTR heat transfer rate
HTP heat transfer performance
MTR maximum thermal resistance
TAUSF Tau-shaped fin
TSF T-shaped fin

Nomenclature

A Frontal area, m2

A f Fin cross-sectional area, m2
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a Parameter related to heat transfer and structure
Bi Biot number
b1 Length ratio
b2 Width ratio
.
Evhφ Entransy dissipation rate, W·K
h Heat transfer coefficient, W/m2/K
k Thermal conductivity, W/m/K
L0 Length of the two elemental fins, m
L1 Length of the first order fin, m
Le Length of the bend end, m
me, m1 Parameters related to heat transfer and structure
.

Qh Total heat current, W
q1 Heat transfer rate of the heat current, W
t0 Width of the two elemental fins, m
t1 Width of the first order fin, m
te Width of the bend end, m
T0 Temperature at the junction of the first order and

elemental fin, K
T1 Inlet temperature of the heat current, K
Te Temperature at the junction of the bend end and

elemental fin, K
T∞ Ambient temperature, K
Rh Equivalent thermal resistance, K/W
Rt Maximum thermal resistance, K/W
v Volume of the fin, m3

W Thickness, m
x X axis
y Y axis
Greek symbols
φ Volume faction of the fin
∇T Temperature gradient, K/m
Subscripts
e Bend end fin
lim Limited value
m Minimum
mm Double minimum
opt Optimal
0 Elemental fin
1 First order fin
Superscripts
~ Dimensionless
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