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Abstract: Deep Neural Networks (DNNs) usually work in an end-to-end manner. This makes
the trained DNNs easy to use, but they remain an ambiguous decision process for every test case.
Unfortunately, the interpretability of decisions is crucial in some scenarios, such as medical or
financial data mining and decision-making. In this paper, we propose a Tree-Network-Tree (TNT)
learning framework for explainable decision-making, where the knowledge is alternately transferred
between the tree model and DNNs. Specifically, the proposed TNT learning framework exerts the
advantages of different models at different stages: (1) a novel James–Stein Decision Tree (JSDT) is
proposed to generate better knowledge representations for DNNs, especially when the input data
are in low-frequency or low-quality; (2) the DNNs output high-performing prediction result from
the knowledge embedding inputs and behave as a teacher model for the following tree model; and
(3) a novel distillable Gradient Boosted Decision Tree (dGBDT) is proposed to learn interpretable
trees from the soft labels and make a comparable prediction as DNNs do. Extensive experiments on
various machine learning tasks demonstrated the effectiveness of the proposed method.

Keywords: deep neural networks; James–Stein Decision Trees; distillable gradient boosted decision
tree; interpretable machine learning; knowledge distillation

1. Introduction

Deep Neural Networks (DNNs) have achieved great success in many multimodal prediction tasks
such as cross-modal embedding [1], image caption [2], and visual question answering [3]. However,
as typical end-to-end models, DNNs usually work in a black-box paradigm [4,5] and the decision
process is unknown for the test case, which limits the application of DNNs for some scenarios requiring
explanation, such as medical or financial data mining and decision-making [6,7]. Besides, in some
medical and financial problems, since data acquisition is susceptible to uncontrollable factors, the input
data are sometimes low frequency and low quality. However, the learning process of DNNs usually
require high-frequency and high-quality input data, and they easily overfit the training dataset [8],
which also limits the application of DNNs.

As another kind of widely used model, the decision trees and tree-based ensemble models such as
random forest or GBDT usually achieve better performance than other transitional machine learning
algorithms. This observation is from counting the winning models of many big data competitions
(www.kaggle.com). Although the performance is relatively good, the tree model has a simple basic
structure and can be extended to a series of decision rules, thus it has intrinsic interpretability [5] for
the test cases, especially when the depth of trees is not deep. Besides, the tree-based models have
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sophisticated tree nodes splitting strategy, therefore they are quite robust for processing low-frequency
and low-quality data. Except for the traditional tree models, recently there are two new trends for
designing the differentiable decision models. The first approach [9,10] is not limited to the tree shape
and tries to construct a differentiable Directed Acyclic Graph (DAG), which has new loss function and
learning modules. The other approach [11,12] leverages the knowledge distillation technique and uses
differentiable soft decision trees as the base learner, thus it can be used for the student of a trained
deep model.

In this paper, we propose a Tree-Network-Tree (TNT) learning framework, which is the integrated
use of the tree models and deep learning techniques. As shown in Figure 1, our key is to introduce
two tree models to improve the input and explain the output of DNNs. At the input end, we train
the traditional tree models on the training data to obtain the decision rules to be the embedding
representation [13]. Besides, we further propose a novel James–Stein Decision Tree (JSDT) to learn a
preferable knowledge embedding. At the output end, we aim to introduce the interpretability for the
test cases, but still keep a comparable prediction as to the deep models. Thus, the knowledge distillation
technique is adopted to transfer the learned dark knowledge from the DNNs to the differentiable
tree model, such as a novel distillable Gradient Boosted Decision Tree (dGBDT). As a result, our
proposed TNT framework benefits from the advantages of different modules. Thus, it is robust for
data, interpretable for output, yet still has high performance compared to the original deep model. An
intuitive comparison is shown in Figure 2.

• y_E是有误差的硬label，替代y使用的话会导致后面的DNNs性能下降；

• Fs可选DNNs输入/中间/输出层的特征，替代了X以得到更多解释性；
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Figure 1. The workflow of our proposed Tree-Network-Tree (TNT) learning framework. Given the
input data X and prediction target y, TNT first trains a tree-based model (e.g., random forest, GBDT, or
our proposed JSDT) on the training dataset {X, y} and extracts the decision path of all trees to form
an embedding representation XE. Then, a deep model (e.g., DNN, CNN, or TCN) is trained on the
embedding dataset {XE, y} and generates the new soft labels yS. Finally, a distillable tree model (e.g.,
soft decision trees, sGBM, or our proposed dGBDT) is trained on the soft label dataset {X, yS} and
outputs the prediction value yD and the corresponding decision paths PD. In general, the advantages of
TNT come from three parts: the first tree model is robust for representing the dark knowledge in input
data; the DNN model ensures good prediction performance; and the decision paths can be explicitly
extracted from a distillable tree, therefore it is interpretable for decision-making.

Performance

Robustness

Interpretability

20
40

60
80

Tree Models
Deep Models
TNT Framework

Performance20
40

60
80

TNT
DAG
DNF
DNNs
sGBM
GBDTInterpretability

Robustness

Figure 2. Comparisons among the deep models, tree models, and the proposed TNT framework.



Entropy 2020, 22, 1203 3 of 18

Based on the proposed TNT framework, we further explored the different ways of implementation,
including the choices of data flow, and the potential end-to-end differentiable structures. We evaluated
all these possible models on various machine learning tasks and conducted extensive experiments to
show the interpretability of TNT for the medical diagnosis scenarios. In general, the main contributions
of this paper are threefold:

• We improve the traditional decision tree and propose a novel James–Stein Decision Tree (JSDT) to
provide better embedding representation of leaf nodes, which is more robust for the input data
and applicable for DNNs.

• Inspired by recent advances on the differentiable models, we propose a distillable Gradient
Boosted Decision Tree (dGBDT), which could learn the dark knowledge from DNNs and has
interpretability for the test cases.

• To simultaneously improve the robustness and interpretability of the deep models, we explore
potential pipelines, data flows, and structures on leveraging the tree models. Based on the analysis,
we propose the TNT framework and verify it with extensive experiments.

2. Related Works

2.1. Deep Models in Black Box

Although the deep learning algorithms have achieved great success on various prediction tasks,
they still suffer from lacking the robustness on input data and the interpretability for testing cases. Since
most of the deep learning models learn weighting parameters with back-propagation and end-to-end
mechanism [14], they are usually easy to be influenced by the data quality. However, for real-life
applications, the collected data usually contain noise or even missing values.

In practice, collecting the dataset is usually subjective and the noise is easily induced, thus
leading to a degradation of model performance. At the phase of model training, the noise could be
in the feature representation or labels of the data. When the noise is randomly distributed in the
feature dimension, it requires a sparsity-aware algorithm to tackle the sparse data, outliers, or missing
values [15,16]. However, DNNs usually learn the weighting parameters for a fixed structure, thus
lacking the ability of sparsity-awareness. From another point of view, to tackle the noisy labels, current
DNNs usually require some noise adaption modules and a corresponding expectation-maximization
(EM) optimization [17]. Except for the training noise, recent trends pay more attention to the
deploying robustness, which requires no access to the gradient of the underlying DNNs to find
adversarial examples [18] and attack the deployed deep models [19,20]. To defend against this kind of
black-box attack and the adversarial examples, there could be a trade-off between the robustness and
performance [21]. From the above observations, the DNNs suffer from the noise and variety of data,
especially when the data are low frequency or low quality.

Besides, as the DNN model usually has a predetermined structure (e.g., the number of layers and
neurons), the main purpose is to learn the weighting parameters. However, we cannot understand the
model by just looking at those parameters, thus leaving a black-box system for making decisions [5].
Specifically, the parameters of CNNs are usually in two- or three-dimension filters and can be learned
layer-by-layer [22]. There could be some spatial and temporal semantic information from visualizing
the filters [14,23], but it is pretty hard to find out those effective filters, especially when the model is
deep and has too many filters. According to the structure of input data, recently there are also many
other deep convolutional models for various prediction tasks. The one-dimension CNNs [24] have
one-dimension filters to capture the relationship among the very adjacent data points. Besides, the
temporal convolutional networks (TCNs) are the state-of-the-art model for many financial sequence
modeling tasks [25], but it has the one-dimension convolution, dilated convolution, and residual
connection, making the prediction hard to understand.
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2.2. Tree Models

According to the differentiability, the decision tree models can be divided into hard decision trees
and soft decision trees. The traditional hard tree models are robust for data, while the novel soft tree
models can be used for improving the interpretability of the deep models.

Different from the deep models, the traditional hard decision trees do not couple the weighting
parameters and minimize a loss function to learn the model structure [5]. For the applications on
tabular or structured data, we can adopt an ensemble of decision trees, such as the random forest [26],
Gradient Boosted Decision Trees (GBDT), or Gradient Boosting Machine (GBM) [27], to learn the
knowledge patterns. These tree models are quite robust for many real-world problems in two aspects.
Firstly, it is quite common for the data to be noisy or ambiguous. A recent study [28] shows that
the robust node splitting strategy could be very important for defending the adversarial examples.
Secondly, limited by the collection process, the data pattern might be quite sparse or low frequency. For
this situation, recent studies also show the potentiality of improving the robustness with the theoretical
approach for both the decision trees or the tree ensemble [29–31].

Although these ensemble models consist of many subtrees, all of them can be extended to the
decision rules and form a knowledge embedding of the training dataset [13]. Compared with the
other deep embedding methods [32], tree-based embedding makes the feature representation directly
interpretable, thus is highly suitable for building an explainable machine learning system [13]. Besides,
while recent studies try to explore differential tree models [12,33,34], using the combination of neural
networks and differential tree models is also a big trend: neural decision forests [35] use randomized
multilayer perceptrons to learn the data-specific representations and find optimal predictions for
the emerging child nodes. Deep neural decision forests [9] learn the feature representation from
deep convolutional networks and have a differentiable decision forest to make the discrimination
tasks. Another study explores the continuum of hybrid model in-between the decision forest and the
convolutional neural networks and then proposes a directed acyclical fraphs [10] model. From the
reported experiment of these studies, the differential tree models can achieve comparable performance
than the state-of-the-art deep models.

2.3. Knowledge Distillation

In this paper, we adopt the knowledge distillation technique to make the deep models
interpretable. The original usage of knowledge distillation is for compressing a deep model or
ensemble model [36–38], which leverages a teacher–student paradigm to transfer the knowledge from
a big model to a smaller one. Specifically, it utilizes a temperature function to distillate the soft labels,
which are the softened logit values from the last fully connected layer of the teacher model, to replace
the original labels to be the predicting target of the student model.

Beyond the standard approach, recent studies [39–41] show that knowledge distillation with soft
labels can be beneficial for multiple ways and has been widely used. One of the new advances adopts
the knowledge distillation technique for interpretable deep learning. Because knowledge distillation
requires back-propagation operation on the student model, a study [11] creates an explainable
network-tree learning framework, by using the differential property of the Soft Decision Tree (SDT) [33].
Because the soft decision tree follows a complete binary tree structure, every test case has a probabilistic
decision path, thus implying a certain measure of interpretability. A shortcoming of distilling the
knowledge from DNNs to a soft decision tree is that the capacity of the student model may limit
the performance. To address this problem, another study [6] uses GBDT instead of SDT as the
student model. However, since the adopted GBDT is an ensemble of the hard decision trees, it is still
not differential and cannot leverage all the advantages of knowledge distillation in an end-to-end
network-tree learning paradigm. In this paper, we extend the original GBDT [27] to a differential
version and name it dGBDT, which can capture the distilled knowledge in a more coherent way, while
still having interpretability for the test cases.
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3. Proposed Tree Models

In this paper, we focus on improving the robustness and interpretability of the deep models for
tabular and structured data. To achieve this, we adopt both the hard decision trees (e.g., JSDT) to
process the input data and the soft decision trees (e.g., dGBDT) to explain the test cases.

3.1. James–Stein Decision Trees

CART [42] decision trees and its ensemble extension (e.g., random forests [26]) are widely
applicable for both the classification and regression tasks. The usage of CART includes two stages:
the tree construction and prediction. For the construction stage, most important is judging whether
the division of a node is optimal, thus we need to calculate the information gain of the node before
and after the division. Specifically, if a certain set of feature-values are used for splitting, and the
information gain of the two sub-nodes obtained is the biggest, the division of node data brought by
this set of feature-values is optimal.

Without loss of generality, we consider applying CART to a regression task. Assuming that the
current dataset that needs to be divided is D0, use the feature a and the corresponding value v to
divide the data into two subsets D1 and D2. Then, we can find the optimal splits by minimizing the
following loss function:

min
a,v

[
min

c1
∑

xi∈D1

(yi − c1)
2 + min

c2
∑

xi∈D2

(yi − c2)
2

]
(1)

where the values c1 and c2 are the optimal representation value of D1 and D2, respectively. When only
considering the mean square error of a single subset Dj, the estimated value of its optimal value ĉj
is the simple average of all samples xi in the subset and has a representation value yi, which can be
denoted as:

ĉj = avg(yi|xi∈Dj) (2)

To construct a CART tree, the data of the root node can be injected into two sub-nodes, and then
this process is repeated until the stop condition is met. Commonly used stopping conditions include
that the tree reaches a maximum depth, the feature set is empty, and the number of samples of the node
reaches the minimum value or is less than the minimum required number for the node to continue
splitting. For the prediction stage of CART (or the corresponding random forest) algorithms, once all
the trees are built and the predicted value of all leaf nodes are known, we take the simple average
method to make the prediction.

The node splitting strategy in Formula (1) is quite clear but has a shortcoming. This strategy
divides the feature space into multiple sub-spaces by learning training samples, which can get a high
accuracy rate on the training set, but a too fine division might lead to serious overfitting, thus cause a
reduced prediction result for new samples. In this paper, we propose the James–Stein Decision Tree
(JSDT) to solve this problem. Different from the existing regression trees, which only consider the
information of a single leaf node when predicting, the JSDT considers both the local data information
of a single leaf node and the global data information contained in all leaf nodes [43]. Here, we present
the generalization error of the JSDT and describe the concrete implementation in the following.

We first review the definition of James–Stein estimator. Assume Y is a m-dimension m ≥ 4 random
variable, which follows the multivariate Gaussian distribution and has an unknown mean µ and a
known co-variance matrix δ2 I, where Y∼N(µ, δ2 I). Now, we need to estimate a value µ̂ of the mean µ

from n observed samples y from Y. Assuming that ν is an arbitrary fixed m-dimensional vector, then
there is a James–Stein estimator [44] of the mean of Y that is a shrinkage estimator [45] of ν:

µ̂JS = (1− (m− 3)σ2

‖ȳ− ν‖2 )(ȳ− ν) + ν, m ≥ 4 (3)
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where ȳ is the average value of m-dimensional samples. Using µ̂MLE to represent the average value
obtained by maximum likelihood estimation, there is a proved comparison [46]:

L(µ, µ̂JS) = E‖µ− µ̂JS‖2 < L(µ, µ̂MLE) = E‖µ− µ̂MLE‖2, m ≥ 4 (4)

which means the mean square loss caused by the James–Stein estimator is smaller than the maximum
likelihood estimation, when the feature dimension of data is larger than 4. In this paper, we consider
the regression tree with a binary structure, thus the James–Stein estimator cannot be directly applied to
the node splitting process. To improve the hard tree on both the construction and prediction stages, we
propose a new feature selection method by leveraging both the James–Stein estimator and maximum
likelihood estimator, and list this process in Algorithm 1.

Before splitting the node N, we denote the temporary completed tree with gtemp, and denote the
number of leaf nodes with mtemp. Then, we split the node N into the sub-nodes N′ and N′′ by using
the feature a and its value v, and update the tree as g′temp. At this point, the sub-nodes N′ and N′′

are the new leaf nodes of tree g′temp. If the condition mtemp ≥ 4 is meet, we update the mean value
of all the leaf nodes with the James–Stein estimator. Otherwise, we adopt the maximum likelihood
estimator to update the mean value of the leaf nodes N′ and N′′, then finding the best split feature and
the corresponding value (a, v)best with Formula (1). Iterate this process until the tree is built.

Algorithm 1 Feature selection of James–Stein Decision Tree (JSDT).
Input: Current node N, the feature sets (A, V), the number of leaf nodes mtemp, and the stop condition.

Output: The best split feature (a, v)best.

1: if Node N meets the stop condition then

2: Label current node N as the leaf node; return
3: end if
4: Initialize current split loss with Lmin = ∞, and the split feature (a, v)best.
5: for Every feature (a, v) on the feature set (A, V) do

6: Split the node N into two sub-nodes N′ and N′′;
7: if mtemp ≤ 3 then

8: Calculate the information gain and the mean value of nodes N′ and N′′;
9: else

10: Calculate the mean value on nodes N′ and N′′ with the simple average.
11: end if
12: Calculate the sum of mean square loss Ltemp on nodes N′ and N′′.
13: if Ltemp < Lmin then

14: Ltemp = Lmin, (a, v)best = (a, v);
15: end if
16: end for
17: return The best split feature (a, v)best.

When the variance is unknown, to ensure the weights of global information and local information
are both positive, we usually adopt a variant of Formula (3) [47,48], which is:

µ̂JS+
i = GM + (1− λ · γ)+ · (ỹi − GM), m ≥ 4 (5)

where the GM = 1
m ∑m

i=1 ỹi is the global mean, ỹi is the simple average of the samples on the leaf node
Ni (also is the local mean), and γ = (m− 3)(∑m

i=1
n
δ2

i
(ỹi − GM)2)−1 is a shrinkage factor, with δ2

i the
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variance on leaf node Ni and (1− γ)+ = max(0, 1− γ). Due to the value of γ is determined by the
data distribution and might be too small to change the splitting, we also introduce a scale parameter λ.

In summary, the tree models (including JSDT) are robust for input data in the following aspects:
(1) they can directly process almost all feature types, no matter the data are numerical or categorical;
(2) they can process the samples with missing values for features and do not need to discard these data;
and (3) the features are not required to correlate with each other, and the unrelated features can also
be used to construct the decision tree. Besides, JSDT further considers the relationship among all the
samples on leaf nodes, which could shrinkage leaf values and relieve the overfitting.

3.2. Distillable Gradient Boosted Decision Trees

Before presenting details on the proposed dGBDT, we first give brief introduction on the
background information about GBM, GBDT [27], SDT [33], and soft Gradient Boosting Machine
(sGBM) [12] models.

Without loss of generality, we consider the regression scenario. Given a training dataset {xi, yi}N
i=1,

the goal of GBM is to train an ensemble of m sub-trees, in which the output Fm(x) of mth tree
approximates the accumulated error ∑N

i=1 [yi − Fm−1(xi)]. As a widely used implementation of GBM,
GBDT implies more concrete to the boosting strategy and also has the additive ensemble loss F(x) =
∑M

m=0 βmFm(x; θm), where the θm is the parameters of the mth tree and βm is the weighting coefficient.
Beyond GBDT, on the one hand, recent studies [15,49] leverage many strategies (e.g., the regularization
terms for the tree complexity and loss function, pruning, and shrinkage estimation) to further improve
the hard boosted trees. On the other hand, some studies [12,33,34] try to explore differential tree
models. SDT [33] uses a probability calculated sigmoid gating function gm(x) to learn the soft decision
nodes, and estimate the posterior probability of the left and right children: P(L|x) = gm(x) and
P(R|x) = 1 − gm(x). Since the prediction output for input sample is the weighted sum of class
distributions among all leaf nodes, where the weight is the product of the cumulative probability on
internal nodes along the decision paths, SDT is differentiable and can be trained via back-propagation.
Using SDT as the base learner, the corresponding sGBM [12] has significant advantages over GBDT.
First, sGBM is differentiable and has learnable parameters, so the model can be updated online by
the low-cost fine-tuned training. Then, benefitting from the mini-batch gradient descent, sGBM can
better train all the trees simultaneously and support the multi-output regression tasks, and hence is
more efficient.

The soft trees can achieve more efficient training and comparable performance on the regression
tasks than the hard trees [12,33]. However, while the deep models usually achieve a better performance,
recent proposed N-T method [11] uses the knowledge distillation [36] to transfer the power of DNNs
into soft trees. They train the SDT for classification by minimizing the cross-entropy between each
leaf and the target distribution with the loss function: L(x) = − log(∑l Pl(x)∑k TklogQl

k), where Ql

is the learned probability distribution at the leaf node l, Pl(x) is the probability of arriving the leaf
node l, and T is the soft target distribution from the pre-trained DNNs. In general, to implement
the knowledge distillation from DNNs to the tree models, it usually requires the twice labeling
technique. As for a typical regression task, the basic loss function of knowledge distillation could be
L(x) = αT2MSE(Os −Ot) + (1− α)MSE(Os − y), where y denotes the original label, while Os and
Ot are the output value of the student and teacher model, and α and T are the trade-off weighting and
distillation temperature, respectively.

Concretely, assume we have M different SDT [33] to be the base learners, which are denoted as
{hm}M

m=1, parameterized with θm and have output om. Then, the cumulative output of the learned
dGBDT is si

m−1 = ∑m−1
j=0 oi

j(xi, θj). For the training phase, a global loss for all the trees is defined as

L = ∑M
m−1 lm, where lm is the loss for each SDT, which is defined with a MSE loss lm = ‖rm − om‖2

2. rm

is the corresponding residual calculated by a distillation loss:

dl(si
m−1, α, yi, ti) = αT2‖si

m−1 − ti‖2 + (1− α)‖si
m−1 − yi‖2 (6)
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where the formulation is calculated on the sample (xi, yi), in which yi denotes the label value, while
ti denotes the soft label generated by the DNNs. Then, α and T are the weighting and temperature
parameters of the distillation, respectively. We show the training of dGBDT in Algorithm 2 and
illustrate the data flow of the proposed dGBDT model in Figure 3.

Algorithm 2 Training Distillable Gradient Boosted Decision Trees (dGBDT).

Input: Training batches B = B1, B2, . . . , B|B|, number of trees M, dGBDT parameters θ = {θm}M
m=1.

Output: The updated dGBDT parameters θ.

1: for b = 1 to |B| do

2: Initialize the output oi
0 ← 0 of the first tree for xi∈Bb;

3: for m = 1 to M do

4: Infer the output oi
m←hm(xi; θm) on current tree for xi∈Bb;

5: Calculate the sum of past outputs si
m−1 = ∑m−1

j=0 oi
j for xi∈Bb;

6: Find the residual term from distillation loss ri
m←− ∂[dl(si

m−1, α, yi, ti)]/∂[si
m−1] for xi∈Bb;

7: Record the loss of current tree lm←∑xi∈Bb
‖ri

m − oi
m‖2

2 for xi∈Bb;

8: end for

9: Update θ w.r.t. the global loss L ← ∑M
i=1 lm using gradient decent;

10: end for

11: return The trained model parameter θ of dGBDT.

dGBDT

x

t

O1

y x

DNNs Teacher
SDT1

Residual1dLoss1

t

y

Global Loss of dGBDT

O2

y x

SDT2

dLoss2

t

ResidualM

OM

y x

SDTM

dLossM

t

……

……

……

……

Loss of DNNs

Figure 3. Data flow of the proposed Distillable Gradient Boosted Decision Trees (dGBDT): (Left) obtain
the soft label t from the teacher DNNs model; and (Right) train the dGBDT.

From the view of model structure, the proposed dGBDT can be regarded as a specific
implementation of sGBM [12]. While sGBM [12] only assumes the basic learners to be differentiable,
our proposed dGBDT further specifies SDT [33] to be the basic tree learners and has two important
differences from sGBM. First, the parameters of dGBDT are optimized from an explicit distillation
loss, which is different from the ground truth loss in sGBM. In this way, each basic SDT of dGBDT
is trained with the implicated dark knowledge of the DNNs teacher, thus can be more powerful and
flexible. Second, The data flow in both dGBDT and SDT follows a loop-free DAG structure, thus the
parameters can be optimized via back-propagation and the deployed decision rules are soft. In this
way, for any test case, the feature of data can be used for the explanation of decision-making.
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4. Proposed TNT Framework

In this paper, we explore the potential pipelines and structures on leveraging the tree models to
improve the deep models. As a result, we propose the TNT framework to simultaneously improve the
input robustness and interpretability of the DNNs. Based on TNT, we also discuss the variants for
different kinds of data flows, which relies on the knowledge embedding and distillation techniques.

4.1. Tree-Network-Tree Learning Framework

While deep models achieve state-of-the-art performance on various applications, the tree models
are known to be robust at the training phase and can be expended to interpretable decision rules at
the deploy phase. A series of studies [9,10,32,35,50,51] claims to propose a better learning framework
by leveraging the advantages of these two models. In Table 1, we present a superiority analysis on
the possible workflows of algorithm pipelines and corresponding data flows. While the existing
methods work in the “T-N” and “N-T” patterns, our proposed “T-N-T” framework could leverage the
advantages of the tree and deep models to the maximum potential.

Table 1. The analysis of superiority for different pipelines on tree and deep models. “
√

” represents
good; “x” represents not good; “T” is tree model; and “N” is deep model.

T N T-N N-T T-N-T N-T-N T-N-T-N Others

Performance x
√ √ √ √ √

makes sense redundant
Robustness

√
x

√
x

√
x but is and not

Interpretability
√

x x
√ √

x redundant necessary

To improve the robustness of the deep models for the tabular and structured data, an effective
way is to learn the DNNs from a tree embedding [32,50,51] and work in a “T-N” learning pattern. In
general, we can repeat two steps to learn a decision tree: select the feature and split the nodes. In
a straight-forward way, we can optimize a cross-entropy loss on the one-hot embedding of all leaf
nodes for DNNs to learn the dark knowledge. However, if we adopt a tree ensemble (e.g., GBDT) to
capture the knowledge embedding, the number of leaf nodes will have a sharp increase, thus lowering
the efficiency. A recent approach [50] adopts the leaf embedding and tree grouping techniques to ease
this problem.

The leaf embedding strategy relies on a learnable mapping function XE = H(Lt(X); wt). For a
single tree t, it learns parameter wt to map the original one-hot leaf index Lt(x) of samples X to
the dense embedding XE. Then, DNNs take the embedding XE as input to learn the parameter wn

by minimizing EX [l1(wnXE, pt(X))], where pt(X) denotes the predict leaf value of sample. The leaf
embedding strategy avoids representing all the leaf values with a sparse one-hot vector. It is more
useful for the tree ensemble, because the number of leaf nodes increases linearly with the increase of
the number of trees. The tree grouping strategy takes equally randomly grouping on all the trees of a
tree ensemble. For a group of trees T, it concatenates all the leaf nodes into LT(X) and utilizes the leaf
embedding to learn DNNs by minimizing EX [l1(wnH(LT(X); wt), ∑t∈T pt(X))].

Except for the leaf embedding and tree grouping, the “T-N” part in our “T-N-T” pattern relies on
one additional leaf shrinking strategy. Specifically, we achieve this strategy with the proposed JSDT
model as described in Section 3.1. For a regression task, JSDT shrinks leaf value pJS

t (X) to a smooth
distribution and learn the DNN parameter wJS

n by minimizing EX [l1(w
JS
n XE, pJS

t (X))]. Considering
the implementation of the “T-N” part, we set the input of DNNs to be the output of GBDT by default.
However, due to any layers of DNNs that could be used for learning the embedding of GBDT, we also
adopt a joint training strategy for the last layer of DNNs [32]. While GBDT can efficiently memorize
the knowledge embedding of sparse feature interactions, DNNs can generalize to the unseen feature
based on the observed embeddings.
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Benefitting from the above-mentioned strategies, the “T-N” part of “T-N-T” can distill a tree
ensemble (e.g., GBDT) into compact DNNs, which improves the robustness and performance.

To provide the interpretability for test cases, there are some implementations [9–12,52] following
the “N-T” learning pattern. Specifically, the first kind of approaches [9,10] has a fully differentiable
Directed Acyclic Graph (DAG) and learns all the model parameters at the same time. The default
“N-T” part in our “T-N-T” pattern follows the second kind of approaches [11,12], which leverages the
knowledge distillation technique and uses the dGBDT model as a student model.

4.2. Further Exploration

Without loss of generality, assume that we fit a TNT model on the dataset {X, y} to obtain the
output yD and decision path PD for the test cases. Beyond the default TNT setting, in this paper, we
also explore various data flow strategies and model candidates to cover the possible implementations
of the proposed TNT framework.

To find a preferable TNT structure, we consider the different data flow strategies and illustrate
them with TNT-Explore in Figure 4. At first, we need to train the DNNs from the embedding XE, so
we fix the feature input and try different predicted target yT , which is the tree prediction. However,
limited by the model capacity, the predicted label of hard tree models usually captures more noise
than the original label y, thus cannot be an alternative option. Therefore, we consider no changeable
for the data flow in the “T-N” part. As for the “N-T” part, except for using the soft label t for the
distillable tree, according to the distillation loss in Formula (6), we can also use a mixed label yS, which
is a combination of the ground truth y and the soft label t. Then, keeping up with the joint learning
strategy [32], the feature input X could be replaced by the selected feature FS from different layers of
DNNs. In such a situation, we transfer the distilled knowledge on the selected feature layers [39] and
call the new structure as TNT-Fs.
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Figure 4. Based on the TNT learning framework, we further explore the different data flow strategies.

Following the previous approaches [9,10], we also consider a fully differential TNT, in which all
the three parts could be optimized by the SGD algorithm. Specifically, we change the hard tree part of
TNT to a distillable tree and call the new structure as dTNT. To normalize the data flow, we insert a
fully connected layer between the adjacent models. The structure is illustrated in Figure 5.
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Figure 5. Based on the TNT framework,we further propose the fully differentiable TNT structure.



Entropy 2020, 22, 1203 11 of 18

5. Experiments

We conducted experiments on the proposed TNT, TNT-Fs, and dTNT structures to explore three
questions: (1) Does the proposed TNT learning framework achieve comparable performance to the
state-of-the-art methods? (2) Do the TNT approaches perform more robustly than other methods on
tabular data? (3) Do the TNT approaches help decision-making and how can the prediction results
be explained? To answer these questions, we conducted extensive experiments on various datasets,
including both tabular data and image modals. A brief summary on the tabular datasets is given in
Table 2.

Table 2. The task description for four tabular datasets. We also list the size number as Sample ×
Feature.

Size Task Description Size Task Description

Cancer 569 × 30 Risk Probability Prediction NASDAQ 1026 × 1245 Relational Stock Ranking

Criteo 51.8 M × 39 Click Rate Prediction MIMIC-III 38,425 × 22 ICU Mortality Prediction

5.1. Datasets and Setup

The Cancer refers to the UCI Wisconsin breast cancer dataset (https://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic)). The task is to diagnosis a breast tumor as benign or
malignant from the extracted 30 different nuclear features. In our experiments, we changed the binary
classification task to a regression task and predicted the risk probability (0 refers to benign, 1 refers
to malignant). This dataset is small, thus is suitable for evaluating a low capacity implementation of
TNT, which is formed by single tree model and shallow DNNs. All the feature values in these data are
numeric and contain no missing entry. For each setup, we randomly split 80% instances as training set
and used five-fold cross-validation for evaluating the models.

The Criteo refers to a kaggle challenge dataset (http://labs.criteo.com/2014/02/download-
kaggle-display-advertising-challenge-dataset) and the task is to predict the click rate. Because the
dataset is quite large and contains 51.8 million instances and 39 features, we used this dataset to
evaluate the high capacity implementation of TNT, which is formed with the ensemble trees and
the following “N-T” modules. As some features in the data have missing values, we trained the
first “T” module for generating the leaf embedding, and then used the embedding for training
the “N-T” modules. To generate stable leaf embedding, we followed the preprocess strategy in a
previous study [15] and adopted the statistics of average CTR and count of ID features to replace the
original values.

The NASDAQ dataset [53] collects the sequential data from the transaction records of 1026
stocks in the NASDAQ market between 2 January 2013 and 8 December 2017. We used the original
train–valid–test split in the experiment and applied the TNT framework to make the relational stock
ranking task. Because the dataset also includes topology relationship between the companies such
as Wiki company-based relations, we also show how to find the clues of decision-making from
distillable trees.

The MIMIC-III dataset (https://physionet.org/content/mimiciii/1.4) contains 38,425 hospital
admissions of adult patients (aged 15 years or above) first admitted to an ICU. Limited by the data
collection of medical monitoring, this dataset contains missing values. Thus, we followed the previous
setting [54] to preprocess the data and extracted 22 different features to better measure the status
of patient stay. We compare different methods on the mortality prediction task and show how the
proposed TNT achieves interpretable decision-making.

To intuitively display the interpretable knowledge discovery, we also conducted experiments
on a CVOID-19 CT image dataset (https://github.com/UCSD-AI4H/COVID-CT) for the task of
medical diagnosis. This dataset consists of 349 CT scans that are positive for COVID-19 infection and
397 CT scans for patients not infected by COVID-19. We followed a previous setting [55] to split the

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset
http://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset
https://physionet.org/content/mimiciii/1.4
https://github.com/UCSD-AI4H/COVID-CT
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dataset into training, validation, and test sets with the ratio 0.6:0.15:0.25. We fine-tuned a pre-trained
DenseNet-169 to be the basic deep model.

5.2. Robustness and Performance

To evaluate and analyze the performance and robustness of the proposed TNT framework, we
conducted extensive ablution studies for various tree models, deep models, the fusion of tree and
DNNs, and the proposed TNT on four tabular datasets. The area under receiver operating characteristic
curve (AUROC) and the area under the precision-recall curve (AUPRC) were the two adopted metrics.

As a baseline, we first tested trees, DNNs, the fusion of trees and networks, and the proposed TNT
methods on the original Cancer dataset, which is not sparse. Then, we evaluated the model robustness
on the sparse version of the Cancer dataset. The sparsity is caused by artificially and randomly wiping
out certain percent (20% and 40% in the experiments) of the values and leaving the entries empty.
As for the model parameters: (1) we searched and fixed the best shrinkage parameter λ = 25 for the
six-layer JSDT; (2) a isx-layer MLP (with 32-16-16-8-8 neurons in the hidden layers) was used as the
DNNs; (3) the W & D model has 16 nodes for the wide part and a six-layer MLP (with 16-16-16-8-8
neurons in the hidden layers) for the deep part; and (4) the adopted SDT [33] has six layers and trained
via standard SGD, while the distillation followed a previous study [11]. Note that the first T & N fusion
was configured as a Wide and Deep model [32] and trained in a typical DAG [10] manner.

We show the average AUROC and AUPRC values of five independent trials in Table 3. In general,
to fit the Cancer dataset, all the adopted models are designed with low capacity, thus sensitive to the
sparsity. However, from the result, the proposed TNT is quite robust among all the approaches, and
the T-N fusion also achieves relatively good robustness. The ablation study about JSDT and CART
also shows that leaf embedding is more robust than one-hot embedding.

Table 3. The robustness analysis on the Cancer dataset with different level of missing values. Bold
indicates the minimal and the second minimal performance degradation.

Methods Cancer (No Sparse) Cancer (20% Sparse) Cancer (40% Sparse)

AUROC AUPRC AUROC AUPRC AUROC AUPRC

Tree Models
CART (single tree) 0.9367 0.9529 0.9273 0.9449 0.9114 0.9424

JSDT (single tree) 0.9449 0.9561 0.9341 0.9496 0.9185 0.9480

Deep Models DNNs (6-layer MLP) 0.9665 0.9522 0.9394 0.9428 0.9288 0.9227

T & N Fusion

W & D (DAG pattern) 0.9779 0.9496 0.9565 0.9423 0.9468 0.9312

CART-DNNs (T-N) 0.9742 0.9463 0.9610 0.9428 0.9474 0.9357

JSDT-DNNs (T-N) 0.9784 0.9531 0.9629 0.9487 0.9523 0.9398

DNNs-SDT (N-T) 0.9620 0.9440 0.9381 0.9331 0.9223 0.9207

Proposed TNT
CART-DNNs-SDT 0.9674 0.9460 0.9602 0.9387 0.9436 0.9340

JSDT-DNNs-SDT 0.9723 0.9471 0.9626 0.9406 0.9488 0.9389

Except for the basic TNT framework, we further explored the model parameters based on the
TNT-Fs and dTNT structures. The experiments were conducted on the Cancer dataset and the results
are shown in Figure 6. While the DNNs in TNT are fixed to the six-layer MLP, we tried to extract the
dark knowledge from different layers and formed the TNT-Fs structure, which could achieve better
performance. We also explored the distillation parameters of the fully distillable dTNT structure.
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(a)Explore the TNT with its variants. (b)Layer selection on TNT-Fs. (c)Distillation parameters of dTNT.

Figure 6. Further exploration of the TNT framework. The experiments on TNT-Fs and dTNT structures.

We also conducted experiments on three larger datasets to evaluate model performance. To better
capture the knowledge embedding from the original dataset, we extended the proposed JSDT into
an ensemble version, which follows the random forest algorithm and named as the James–Stein’s
Decision Forest (JSDF). The tree ensemble has 80 sub-trees and the tree depth was limited to less than
10. We implemented the dGBDT with SDT, while the sGBM was with CART. We used different deep
models for different datasets: (1) in the Criteo experiment, we followed a previous study [56] to set
the hyper-parameters and reproduced the DeepFM (denoted as DFM) and FM and DNN variant of
W & D model; (2) for NASDAQ, we preprocessed the dataset to obtain a graph of the stock relations
and trained a Rank_LSTM model (shortened to rLSTM) as described in a previous study [53]; and
(3) for MIMIC-III, we followed a previous study [54] and fine-tuned the multi-scale ConvNet model
(shortened to Conv) to be the baseline. Besides, we used the same distillation strategy [11] but searched
for different trade-off weights for different N-T structures. To better evaluate the performance, we also
adopted the Log Cross Entropy Loss (LogLoss), Mean Square Error (MSE), and Mean Reciprocal Rank
(MRR) metrics for the Criteo and NASDAQ tasks, where smaller LogLoss (≥0), smaller MSE (≥0), and
larger MRR ([0,1]) indicate better performance.

We repeated the experiments for five independent trails and show the averaged results in Table 4.
From the observation of different tasks, all the deep learning models achieve better performance than
the tree models. The best performance is achieved by the T & N fusions and especially the T-N patterns,
which adopts the tree ensemble to handle various input types. The proposed TNT framework achieves
comparable performance as the T-N models. From the ablation studies between different tree models
(e.g., GBDT-[DNNs] vs. JSDF-[DNNs] and GBDT-[DNNs]-dGBDT vs. JSDF-[DNNs]-dGBDT), we
found that the JSDF yields better knowledge embedding than the GBDT. Besides, the ablation studies
on the GBDT-[DNNs]-sGBM and GBDT-[DNNs]-dGBDT show that soft tree ensemble could be a better
student model for the distillation of deep models.

5.3. Interpretability

As shown in Table 4, the T-N fusion and the proposed TNT methods achieve comparable
performance and outperform the original deep methods. However, because the final input of the
T-N pattern is the tree embedding XE, it is still hard to interpret the T-N fusion for decision-making.
The TNT approaches, by contrast, have the tree model to be the final learner and take the original
data feature X as input. Therefore, it is worth investigating TNT and figuring out how it helps
decision-making. In the following, we first interpret the proposed TNT framework by presenting the
partial dependence plots (PDPs) [5] between data features on the ICU mortality prediction task. Then,
we visualize the Class Activation Mapping (CAM) [23] for the T-N fusion and TNT models on a CT
image diagnosis task. Both tools provide a visualization for the interpretability of the decision-making
of medical diagnosis.
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Table 4. Evaluation of the performance on Criteo, NASDAQ, and MIMIC-III datasets. The [DNNs]
refer to DeepFM (DFM), Rank_LSTM (rLSTM), and ConvNet (Conv), respectively.

Methods Criteo NASDAQ MIMIC-III

AUROC LogLoss MSE MRR AUROC AUPRC

Tree Models
GBDT (tree ensemble) 0.7853 0.46425 6.04 × 10−4 2.95 × 10−2 0.7836 0.4371

sGBM (tree ensemble) 0.7889 0.46267 5.72 × 10−4 3.27 × 10−2 0.7883 0.4420

Deep Models DFM/rLSTM/Conv 0.8004 0.45039 3.88 × 10−4 4.13 × 10−2 0.8728 0.5327

T&N Fusion

W&D (DAG pattern) 0.7970 0.45942 4.60 × 10−4 3.92 × 10−2 0.8783 0.5351

GBDT-[DNNs] (T-N) 0.8136 0.44695 3.43 × 10−4 4.25 × 10−2 0.8949 0.5482

JSDF-[DNNs] (T-N) 0.8168 0.44237 3.27 × 10−4 4.43 × 10−2 0.9015 0.5503

[DNNs]-sGBM (N-T) 0.7958 0.46041 4.24 × 10−4 3.53 × 10−2 0.8689 0.5217

Proposed TNT

GBDT-[DNNs]-sGBM 0.8044 0.45733 3.78 × 10−4 4.18 × 10−2 0.8694 0.5410

GBDT-[DNNs]-dGBDT 0.8079 0.44980 3.64 × 10−4 4.23 × 10−2 0.8916 0.5425

JSDF-[DNNs]-dGBDT 0.8095 0.44887 3.51 × 10−4 4.29 × 10−2 0.8988 0.5433

5.3.1. Partial Dependence Plots

The visualizations of partial dependence plots (PDPs) [5] intuitively show the relationships
between the prediction output and features. Specifically, the PDPs are calculated by marginalizing
the prediction value over the selected features. When the calculation is between the prediction and
one single feature, the visualization is one-way PDPs; when the calculation is on the prediction and an
interaction of two features, the visualization is two-way PDPs.

To draw the PDPs for the mortality prediction task, we fine-tuned the final dGBDT module of
the TNT (JSDF-Conv-dGBDT) on a subset of the MIMIC-III dataset, which only contains 3-h of data
for each patient. We analyzed the results and selected some of the one-way PDPs and corresponding
two-way PDPs, as shown in Figure 7. The features such as the Fraction of inspired oxygen (FIO2) and
Oxygen pressure in blood (PO) have negative correlations to the mortality rate, while Age and Urine
output have positive relationship. These findings are clinically significant, which provide more insights
into the results of the deep models and helpful for decision-making.
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Figure 7. Partial dependence plots of the selected features from dGBDT for ICU mortality prediction
tasks. Yellow denotes positive dependence and blue denotes negative dependence.



Entropy 2020, 22, 1203 15 of 18

5.3.2. Classification Activation Mapping

One way to evaluate the tree model is to compare its performance and interpret the fine-grained
decision rules. However, because the tree model in the output end of the TNT framework is
differentiable, we can also provide more intuitive visualization to interpret the prediction, such
as drawing the Class Activation Mapping (CAM) [23] on a CT image. To obtain the final CAM of
dGBDT, we regard each SDT as a following differentiable layer after the CNNs and aggregate all their
heatmap responses.

Because CT images do not require a hard tree model for the pre-processing, we degraded the TNT
model to the N-T pattern and just distilled the knowledge from a pre-trained DenseNet-169 to obtain
the following dGBDT. The CAM visualizations are shown in Figure 8. Comparing the responses of the
DenseNet-169 and dGBDT, we notice that dGBDT pays more attention to some of the disease-related
visual localization, thus improving the reliability of the prediction and diagnosis.

CT Images Pretrained DenseNet Finetuned DenseNet Distilled dGBDT Attention

High

Low

Lesion Region

Figure 8. CAM visualizations for the ImageNet pre-trained DenseNet, the COVID-19 CT fine-tuned
DenseNet, and the distilled dGBDT. The first row is an instance for a COVID-19 CT (in which the lesion
region is labeled by a human doctor), while the second is for a Non-COVID-19 CT.

6. Conclusions

In this paper, we propose a Tree-Network-Tree (TNT) learning framework for explainable
decision-making, where the knowledge is alternately transferred between the tree model and DNNs.
In the input end, a novel James–Stein Decision Tree (JSDT) is proposed to generate better knowledge
representations for DNNs. In the output end, a novel distillable Gradient Boosted Decision Tree
(dGBDT) is proposed to learn interpretable trees from the soft labels and make a comparable prediction
as DNNs do. Beyond the default setting, we also explore various data flow strategies and model
candidates to cover the possible implementations of the proposed TNT framework. Extensive
experiments on various machine learning tasks demonstrated the effectiveness of the proposed method.
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