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Abstract: In this article, we introduce the Skellam process of order k and its running average. We also
discuss the time-changed Skellam process of order k. In particular, we discuss the space-fractional
Skellam process and tempered space-fractional Skellam process via time changes in Skellam process
by independent stable subordinator and tempered stable subordinator, respectively. We derive the
marginal probabilities, Lévy measures, governing difference-differential equations of the introduced
processes. Our results generalize the Skellam process and running average of Poisson process in
several directions.
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1. Introduction

The Skellam distribution is obtained by taking the difference between two independent Poisson
distributed random variables, which was introduced for the case of different intensities λ1, λ2 by
(see [1]) and for equal means in [2]. For large values of λ1 + λ2, the distribution can be approximated
by the normal distribution and if λ2 is very close to 0, then the distribution tends to a Poisson
distribution with intensity λ1. Similarly, if λ1 tends to 0, the distribution tends to a Poisson distribution
with non-positive integer values. The Skellam random variable is infinitely divisible, since it is the
difference of two infinitely divisible random variables (see Proposition 2.1 in [3]). Therefore, one can
define a continuous time Lévy process for Skellam distribution, which is called Skellam process.

The Skellam process is an integer valued Lévy process and it can also be obtained by taking
the difference of two independent Poisson processes. Its marginal probability mass function (pmf)
involves the modified Bessel function of the first kind. The Skellam process has various applications in
different areas, such as to model the intensity difference of pixels in cameras (see [4]) and for modeling
the difference of the number of goals of two competing teams in a football game [5]. The model based
on the difference of two point processes is proposed in (see [6–9]).

Recently, the time-fractional Skellam process has been studied in [10], which is obtained by
time-changing the Skellam process with an inverse stable subordinator. Further, they provided the
application of time-fractional Skellam process in modeling of arrivals of jumps in high frequency
trading data. It is shown that the inter-arrival times between the positive and negative jumps follow a
Mittag–Leffler distribution rather then the exponential distribution. Similar observations are observed
in the case of Danish fire insurance data (see [11]). Buchak and Sakhno, in [12], have also proposed the
governing equations for time-fractional Skellam processes. Recently, [13] introduced time-changed
Poisson process of order k, which is obtained by time changing the Poisson process of order k (see [14])
by general subordinators.

In this paper, we introduce Skellam process of order k and its running average. We also discuss
the time-changed Skellam process of order k. In particular, we discuss space-fractional Skellam process
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and tempered space-fractional Skellam process via time changes in Skellam process by independent
stable subordinator and tempered stable subordinator, respectively. We obtain closed form expressions
for the marginal distributions of the considered processes and other important properties. Skellam
process is used to model the difference between the number of goals between two teams in a football
match. At the beginning, both teams have scores 0 each and at time t the team 1 score is N1(t),
which is the cumulative sum of arrivals (goals) of size 1 until time t with exponential inter-arrival
times. Similarly for team 2, the score is N2(t) at time t. The difference between the number of goals
can be modeled using N1(t)− N2(t) at time t. Similarly, the Skellam process of order k can be used to
model the difference between the number of points scored by two competing teams in a basketball
match where k = 3. Note that, in a basketball game, a free throw is count as one point, any basket
from a shot taken from inside the three-point line counts for two points and any basket from a shot
taken from outside the three-point line is considered as three points. Thus, a jump in the score of any
team may be of size one, two, or three. Hence, a Skellam process of order 3 can be used to model the
difference between the points scored.

In [10], it is shown that the fractional Skellam process is a better model then the Skellam process
for modeling the arrivals of the up and down jumps for the tick-by-tick financial data. Equivalently,
it is shown that the Mittag–Leffler distribution is a better model than the exponential distribution for
the inter-arrival times between the up and down jumps. However, it is evident from Figure 3 of [10]
that the fractional Skellam process is also not perfectly fitting the arrivals of positive and negative
jumps. We hope that a more flexible class of processes like time-changed Skellam process of order k
(see Section 6) and the introduced tempered space-fractional Skellam process (see Section 7) would
be better model for arrivals of jumps. Additionally, see [8] for applications of integer-valued Lévy
processes in financial econometrics. Moreover, distributions of order k are interesting for reliability
theory [15]. The Fisher dispersion index is a widely used measure for quantifying the departure of
any univariate count distribution from the equi-dispersed Poisson model [16–18]. The introduced
processes in this article can be useful in modeling of over-dispersed and under-dispersed data. Further,
in (49), we present probabilistic solutions of some fractional equations.

The remainder of this paper proceeds, as follows: in Section 2, we introduce all the relevant
definitions and results. We also derive the Lévy density for space- and tempered space-fractional
Poisson processes. In Section 3, we introduce and study running average of Poisson process of order k.
Section 4 is dedicated to Skellam process of order k. Section 5 deals with running average of Skellam
process of order k. In Section 6, we discuss the time-changed Skellam process of order k. In Section 7,
we determine the marginal pmf, governing equations for marginal pmf, Lévy densities, and moment
generating functions for space-fractional Skellam process and tempered space-fractional Skellam
process.

2. Preliminaries

In this section, we collect relevant definitions and some results on Skellam process, subordinators,
space-fractional Poisson process, and tempered space-fractional Poisson process. These results will be
used to define the space-fractional Skellam processes and tempered space-fractional Skellam processes.

2.1. Skellam Process

In this section, we revisit the Skellam process and also provide a characterization of it. Let S(t) be
a Skellam process, such that

S(t) = N1(t)− N2(t), t ≥ 0,

where N1(t) and N2(t) are two independent homogeneous Poisson processes with intensity λ1 > 0 and
λ2 > 0, respectively. The Skellam process is defined in [8] and the distribution has been introduced and
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studied in [1], see also [2]. This process is only symmetric when λ1 = λ2. The pmf sk(t) = P(S(t) = k)
of S(t) is given by (see e.g., [1,10])

sk(t) = e−t(λ1+λ2)

(
λ1

λ2

)k/2
I|k|(2t

√
λ1λ2), k ∈ Z, (1)

where Ik is modified Bessel function of first kind (see [19], p. 375),

Ik(z) =
∞

∑
n=0

(z/2)2n+k

n!(n + k)!
. (2)

The pmf sk(t) satisfies the following differential difference equation (see [10])

d
dt

sk(t) = λ1(sk−1(t)− sk(t))− λ2(sk(t)− sk+1(t)), k ∈ Z, (3)

with initial conditions s0(0) = 1 and sk(0) = 0, k 6= 0. For a real-valued Lévy process Z(t) the
characteristic function admits the form

E(eiuZ(t)) = etψZ(u), (4)

where the function ψZ is called characteristic exponent and it admits the following Lévy-Khintchine
representation (see [20])

ψZ(u) = iau− bu2 +
∫
R\{0}

(eiux − 1− iux1{|x|≤1})πZ(dx). (5)

Here, a ∈ R, b ≥ 0 and πZ is a Lévy measure. If πZ(dx) = νZ(x)dx for some function νZ, then νZ is
called the Lévy density of the process Z. The Skellam process is a Lévy process, its Lévy density νS is a
linear combination of two Dirac delta functions, νS(y) = λ1δ1(y) + λ2δ−1(y) and the corresponding
characteristic exponent is given by

ψS(1)(u) =
∫ ∞

−∞
(1− e−uy)νS(y)dy.

The moment generating function (mgf) of Skellam process is

E[eθS(t)] = e−t(λ1+λ2−λ1eθ−λ2e−θ), θ ∈ R. (6)

With the help of mgf, one can easily find the moments of Skellam process. In the next result, we give a
characterization of Skellam process, which is not available in literature as per our knowledge. For a
function h, we write h(δ) = o(δ) if limδ→0 h(δ)/δ = 0.

Theorem 1. Suppose that an arrival process has the independent and stationary increments and it also satisfies
the following incremental condition, then the process is Skellam.

P(S(t + δ) = m|S(t) = n) =


λ1δ + o(δ), m > n, m = n + 1;

λ2δ + o(δ), m < n, m = n− 1;

1− λ1δ− λ2δ + o(δ), m = n;

o(δ) otherwise.
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Proof. Consider the interval [0,t], which is discretized with n sub-intervals of size δ each, such that
nδ = t. For k ≥ 0, we have

P(S(t) = k) =
[ n−k

2 ]

∑
m=0

n!
m!(m + k)!(n− 2m− k)!

(λ1δ)m+k(λ2δ)m(1− λ1δ− λ2δ)n−2m−k + o(δ)

=
[ n−k

2 ]

∑
m=0

n!
m!(m + k)!(n− 2m− k)!

(
λ1t
n

)m+k (λ2t
n

)m (
1− λ1t

n
− λ2t

n

)n−2m−k
+ o(δ)

=
[ n−k

2 ]

∑
m=0

(λ1t)m+k(λ2t)m

m!(m + k)!
n!

(n− 2m− k)!n2m+k

(
1− λ1t

n
− λ2t

n

)n−2m−k
+ o(δ)

= e−(λ1+λ2)t
∞

∑
m=0

(λ1t)m+k(λ2t)m

m!(m + k)!
,

by taking n→ ∞. The result follows now by using the definition of modified Bessel function of first
kind Ik. Similarly, it can be proved for k < 0.

2.2. Poisson Process of Order k

In this section, we recall the definition and some important properties of Poisson process of order
k (PPoK). Kostadinova and Minkova (see [14]) introduced and studied the PPoK. Let x1, x2, · · · , xk be
non-negative integers and ζk = x1 + x2 + · · ·+ xk, Πk! = x1!x2! . . . xk! and

Ω(k, n) = {X = (x1, x2, . . . , xk)|x1 + 2x2 + · · ·+ kxk = n}. (7)

Additionally, let {Nk(t)}t≥0, represent the PPoK with rate parameter λt, then probability mass function
(pmf) is given by

pNk

n (t) = P(Nk(t) = n) = ∑
X=Ω(k,n)

e−kλt (λt)ζk

Πk!
. (8)

The pmf of Nk(t) satisfies the following differential-difference equations (see [14])

d
dt

pNk

n (t) = −kλpNk

n (t) + λ
n∧k

∑
j=1

pNk

n−j(t), n = 1, 2, . . .

d
dt

pNk

0 (t) = −kλpNk

0 (t), (9)

with initial condition pNk

0 (0) = 1 and pNk
n (0) = 0 and n ∧ k = min{k, n}. The characteristic function of

PPoK Nk(t)

φNk(t)(u) = E[eiuNk(t)] = e−λt(k−∑k
j=1 eiuj), (10)

where i =
√
−1. The process PPoK is Lévy, so it is infinite divisible i.e. φNk(t)(u) = (φNk(1)(u))

t.
The Lévy density for PPoK is easy to derive and it is given by

νNk (x) = λ
k

∑
j=1

δj(x),
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where δj is the Dirac delta function concentrated at j. The transition probability of the PPoK {Nk(t)}t≥0

is also given by Kostadinova and Minkova [14],

P(Nk(t + δ) = m|Nk(t) = n) =


1− kλδ, m = n;

λδ m = n + i, i = 1, 2, . . . , k;

0 otherwise.

(11)

The probability generating function (pgf) GNk
(s, t) is given by (see [14])

GNk
(s, t) = e−λt(k−∑k

j=1 sj). (12)

The mean, variance and covariance function of the PPoK are given by

E[Nk(t)] =
k(k + 1)

2
λt;

Var[Nk(t)] =
k(k + 1)(2k + 1)

6
λt;

Cov[Nk(t), Nk(s)] =
k(k + 1)(2k + 1)

6
λ(t ∧ s). (13)

2.3. Subordinators

Let D f (t) be a real valued Lévy process with non-decreasing sample paths and its Laplace
transform has the form

E[e−sD f (t)] = e−t f (s),

where
f (s) = bs +

∫ ∞

0
(1− exs)π(dx), s > 0, b ≥ 0,

is the integral representation of Bernstein functions (see [21]). The Bernstein functions are C∞,
non-negative and such that (−1)m dm

dxm f (x) ≤ 0 for m ≥ 1 [21]. Here, π denote the non-negative
Lévy measure on the positive half line, such that∫ ∞

0
(x ∧ 1)π(dx) < ∞, π([0, ∞)) = ∞,

and b is the drift coefficient. The right continuous inverse E f (t) = inf{u ≥ 0 : D f (u) > t} is the
inverse and first exist time of D f (t), which is non-Markovian with non-stationary and non-independent
increments. Next, we analyze some special cases of Lévy subordinators with drift coefficient b = 0,

f (s) =


p log(1 + s

α ), p > 0, α > 0, (gamma subordinator);

(s + µ)α − µα, µ > 0, 0 < α < 1, (tempered α-stable subordinator);

δ(
√

2s + γ2 − γ), γ > 0, δ > 0, (inverse Gaussian subordinator);

sα, 0 < α < 1, (α-stable subordinator).

(14)

It is worth noting that, among the subordinators given in (14), all of the integer order moments of
α-stable subordinators are infinite and others subordinators have all finite moments.
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2.4. The Space-Fractional Poisson Process

In this section, we discuss the main properties of a space-fractional Poisson process (SFPP). We
also provide the Lévy density for SFPP, which is not discussed in the literature. The SFPP Nα(t) was
introduced by (see [22]), as follows

Nα(t) =

{
N(Dα(t)), t ≥ 0, 0 < α < 1,

N(t), t ≥ 0, α = 1,
(15)

where Dα(t) is an α-stable subordinator, which is independent of the homogeneous Poisson process
N(t).
The probability generating function (pgf) of this process is

GNα(s, t) = E[sNα(t)] = e−λα(1−s)αt, |s| ≤ 1, α ∈ (0, 1). (16)

The pmf of SFPP is

Pα(k, t) = P{Nα(t) = k} = (−1)k

k!

∞

∑
r=0

(−λα)rtr

r!
Γ(rα + 1)

Γ(rα− k + 1)

=
(−1)k

k! 1ψ1

[
(1, α);

(1− k, α);
(−λαt)

]
, (17)

where hψi(z) is the Fox Wright function (see formula (1.11.14) in [23]). It was shown in [22] that the
pmf of the SFPP satisfies the following fractional differential-difference equations

d
dt

Pα(k, t) = −λα(1− B)αPα(k, t), α ∈ (0, 1], k = 1, 2, . . . (18)

d
dt

Pα(0, t) = −λαPα(0, t), (19)

with initial conditions
Pα(k, 0) = δk,0, (20)

where δk,0 is the Kronecker delta function, given by

δk,0 =

{
0, k ≥ 1,

1, k = 0.
(21)

The fractional difference operator

(1− B)α =
∞

∑
j=0

(
α

j

)
(−1)jBj (22)

is defined in [24], where B is the backward shift operator. The characteristic function of SFPP is

E[eiuNα(t)] = e−λα(1−eiu)αt. (23)

Proposition 1. The Lévy density νNα(x) of SFPP is given by

νNα(x) = λα
∞

∑
n=1

(−1)n+1
(

α

n

)
δn(x). (24)
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Proof. We use Lévy-Khintchine formula (see [20]),

∫
R\{0}

(eiux − 1)λα
∞

∑
n=1

(−1)n+1
(

α

n

)
δn(x)dx

= λα

[
∞

∑
n=1

(−1)n+1
(

α

n

)
eiun +

∞

∑
n=0

(−1)n
(

α

n

)
− 1

]

= λα
∞

∑
n=0

(−1)n+1
(

α

n

)
eiun = −λα(1− eiu)α,

which is the characteristic exponent of SFPP from Equation (23).

2.5. Tempered Space-Fractional Poisson Process

The tempered space-fractional Poisson process (TSFPP) can be obtained by subordinating the
homogeneous Poisson process N(t) with the independent tempered stable subordinator Dα,µ(t)
(see [25])

Nα,µ(t) = N(Dα,µ(t)), α ∈ (0, 1), µ > 0. (25)

This process has finite integer order moments due to the tempered α-stable subordinator. The pmf of
TSFPP is given by (see [25])

Pα,µ(k, t) = (−1)ketµα
∞

∑
m=0

µm
∞

∑
r=0

(−t)r

r!
λαr−m

(
αr
m

)(
αr−m

k

)

= etµα (−1)k

k!

∞

∑
m=0

µmλ−m

m! 1ψ1

[
(1, α);

(1− k−m, α);
(−λαt)

]
, k = 0, 1, . . . . (26)

The governing difference-differential equation is given by

d
dt

Pα,µ(k, t) = −((µ + λ(1− B))α − µα)Pα,µ(k, t), k > 0. (27)

The characteristic function of TSFPP,

E[eiuNα,µ(t)] = e−t((µ+λ(1−eiu))α−µα). (28)

While using a standard conditioning argument, the mean and variance of TSFPP are given by

E[Nα,µ(t)] = λαµα−1t, Var[Nα,µ(t))] = λαµα−1t + λ2α(1− α)µα−2t. (29)

Proposition 2. The Lévy density νNα,µ(x) of TSFPP is

νNα,µ(x) =
∞

∑
n=1

µα−n
(

α

n

)
λn

n

∑
l=1

(
n
l

)
(−1)l+1δl(x), µ > 0. (30)
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Proof. Using (28), the characteristic exponent of TSFPP is given by ψNα,µ(u) = −((µ + λ(1− eiu))α −
µα). We find the Lévy density with the help of Lévy-Khintchine formula (see [20]),

∫
R\{0}

(eiux − 1)
∞

∑
n=1

µα−n
(

α

n

)
λn

n

∑
l=1

(
n
l

)
(−1)l+1δl(x)dx

=
∞

∑
n=1

µα−n
(

α

n

)
λn

(
n

∑
l=1

(
n
l

)
(−1)l+1eiux −

n

∑
l=1

(
n
l

)
(−1)l+1

)

=
∞

∑
n=0

µα−n
(

α

n

)
λn

n

∑
l=0

(
n
l

)
(−1)l+1δl(x)− µα

= −((µ + λ(1− eiu))α − µα),

hence proved.

Definition 1. A stochastic process X(t) is over-dispersed, equi-dispersed or under-dispersed [18], if the Fisher
index of dispersion, given by (see e.g., [17])

FI[X(t)] =
Var[X(t)]
E[X(t)]

is more than 1, equal to 1, or smaller than 1, respectively, for all t > 0.

Remark 1. Using (29), we have FI[Nα,µ(t)] = 1 + λ(1−α)
µ > 1, i.e. TSFPP Nα,µ(t) is over-dispersed.

3. Running Average of PPoK

In this section, we first introduced the running average of PPoK and their main properties.
These results will be used further to discuss the running average of SPoK.

Definition 2 (Running average of PPoK). We define the running average process Nk
A(t), t ≥ 0 by taking

time-scaled integral of the path of the PPoK (see [26]),

Nk
A(t) =

1
t

∫ t

0
Nk(s)ds. (31)

We can write the differential equation with initial condition Nk
A(0) = 0,

d
dt
(Nk

A(t)) =
1
t

Nk(t)− 1
t2

∫ t

0
Nk(s)ds.

Which shows that it has continuous sample paths of bounded total variation. We explored
the compound Poisson representation and distribution properties of running average of PPoK.
The characteristic of Nk

A(t) is obtained using the Lemma 1 of [26]. We recall Lemma 1 from [26]
for ease of reference.

Lemma 1. If Xt is a Lévy process and Yt its Riemann integral is defined by

Yt =
∫ t

0
Xsds,

then the characteristic functions of Y satisfies

φY(t)(u) = E[eiuY(t)] = et
(∫ 1

0 log φX(1)(tuz)dz
)

, u ∈ R. (32)
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Proposition 3. The characteristic function of Nk
A(t) is given by

φNk
A(t)

(u) = e
−tλ

(
k−∑k

j=1
(eiuj−1)

iuj

)
. (33)

Proof. Using the Equation (10), we have

∫ 1

0
log φNk(1)(tuz)dz = −λ

(
k−

k

∑
j=1

(eituzj − 1)
ituj

)
.

Using (32) and (31), we have

φNk
A(t)

(u) = et
(∫ 1

0 log φNk(1)(uz)dz
)
= e
−tλ

(
k−∑k

j=1
(eiuj−1)

iuj

)
.

Proposition 4. The running average process has a compound Poisson representation, such that

Y(t) =
N(t)

∑
i=1

Xi, (34)

where Xi = 1, 2, . . . are independent, identically distributed (iid) copies of X random variables, independent of
N(t) and N(t) is a Poisson process with intensity kλ. Subsequently,

Y(t) law
= Nk

A(t).

Further, the random variable X has the following pdf

fX(x) =
k

∑
i=1

pVi (x) fUi (x) =
1
k

k

∑
i=1

fUi (x), (35)

where Vi follows discrete uniform distribution over (0, k) and Ui follows continuous uniform distribution over
(0, i), i = 1, 2, . . . , k.

Proof. The pdf of Ui is fUi (x) = 1
i , 0 ≤ x ≤ i. Using (45), the characteristic function of X is given by

φX(u) =
1
k

k

∑
j=1

(eiuj − 1)
iuj

.

For fixed t, the characteristic function of Y(t) is

φY(t)(u) = e−kλt(1−φX(u)) = e
−tλ

(
k−∑k

j=1
(eiuj−1)

iuj

)
, (36)

which is equal to the characteristic function of PPoK that is given in (33). Hence, by the uniqueness of
characteristic function, the result follows.

Using the definition

mr = E[Xr] = (−i)r drφX(u)
dur , (37)
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the first two moments for random variable X given in Proposition (4) are m1 = (k+1)
4 and m2 =

1
18 [(k + 1)(2k + 1)]. Further, using the mean, variance, and covariance of compound Poisson process,
we have

E[Nk
A(t)] = E[N(t)]E[X] =

k(k + 1)
4

λt;

Var[Nk
A(t)] = E[N(t)]E[X2] =

1
18

[k(k + 1)(2k + 1)]λt;

Cov[Nk
A(t), Nk

A(s)] = E[Nk
A(t), Nk

A(s)]−E[Nk
A(t)]E[N

k
A(s)]

= E[Nk
A(s)]E[N

k
A(t− s)]−E[Nk

A(s)
2]−E[Nk

A(t)]E[N
k
A(s)]

=
1

18
[k(k + 1)(2k + 1)]λs− k2(k + 1)2

16
λ2s2, s < t.

Corollary 1. Putting k = 1, the running average of PPoK Nk
A(t) reduces to the running average of standard

Poisson process NA(t) (see Appendix in [26]).

Corollary 2. The mean and variance of PPoK and running average of PPoK satisfy, E[Nk
A(t)]/E[N

k(t)] = 1
2

and Var[Nk
A(t)]/Var[Nk(t)] = 1

3 .

Remark 2. The Fisher index of dispersion for running average of PPoK Nk
A(t) is given by FI[Nk

A(t)] =
2
9 (2k + 1). If k = 1 the process is under-dispersed and for k > 1 it is over-dispersed.

Next we discuss the long-range dependence (LRD) property of running average of PPoK. We
recall the definition of LRD for a non-stationary process.

Definition 3 (Long range dependence (LRD)). Let X(t) be a stochastic process that has a correlation function
for s ≥ t for fixed s, that satisfies,

c1(s)t−d ≤ Cor(X(t), X(s)) ≤ c2(s)t−d,

for large t, d > 0, c1(s) > 0 and c2(s) > 0. For the particular case when c1(s) = c2(s) = c(s), the above
equation reduced to

lim
t→∞

Cor(X(t), X(s))
t−d = c(s).

We say that, if d ∈ (0, 1), then X(t) has the LRD property and if d ∈ (1, 2) it has short-range dependence
(SRD) property [27].

Proposition 5. The running average of PPoK has LRD property.

Proof. Let 0 ≤ s < t < ∞, then the correlation function for running average of PPoK Nk
A(t) is

Cor[Nk
A(t), Nk

A(s)] =
(8(2k + 1)− 9(k + 1)kλs) s1/2t−1/2

8(2k + 1)
.

Subsequently, for d = 1/2, it follows

lim
t→∞

Cor[Nk
A(t), Nk

A(s)]
t−d =

(8(2k + 1)− 9(k + 1)kλs) s1/2

8(2k + 1)
= c(s).
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4. Skellam Process of Order k (SPoK)

In this section, we introduce and study the Skellam process of order k (SPoK).

Definition 4 (SPoK). Let Nk
1 (t) and Nk

2 (t) be two independent PPoK with intensities λ1 > 0 and λ2 > 0.
The stochastic process

Sk(t) = Nk
1 (t)− Nk

2 (t)

is called a Skellam process of order k (SPoK).

Proposition 6. The marginal distribution Rm(t) = P(Sk(t) = m) of SPoK Sk(t) is given by

Rm(t) = e−kt(λ1+λ2)

(
λ1

λ2

)m/2
I|m|(2tk

√
λ1λ2), m ∈ Z. (38)

Proof. For m ≥ 0, using the pmf of PPoK that is given in (8), it follows

Rm(t) =
∞

∑
n=0

P(Nk
1 (t) = n + m)P(Nk

2 (t) = n)Im≥0

=
∞

∑
n=0

 ∑
X=Ω(k,n+m)

e−kλ1t (λ1t)ζk

Πk!

 ∑
X=Ω(k,n)

e−kλ2t (λ2t)ζk

Πk!

 .

Setting xi = ni and n = x + ∑k
i=1(i− 1)ni, we have

Rm(t) = e−kt(λ1+λ2)
∞

∑
x=0

(λ2t)x

x!
(λ1t)m+x

(m + x)!

(
∑

n1+n2+...+nk=m+x

(
m + x

n1!n2! . . . nk !

))(
∑

n1+n2+...+nk=x

(
x

n1!n2! . . . nk !

))

= e−kt(λ1+λ2)
∞

∑
x=0

(λ2t)x

x!
(λ1t)m+x

(m + x)!
km+xkx ,

using the multinomial theorem and modified Bessel function given in (2). Similarly, it follows for
m < 0.

Proposition 7. The Lévy density for SPoK is

νSk (x) = λ1

k

∑
j=1

δj(x) + λ2

k

∑
j=1

δ−j(x).

Proof. The proof follows by using the independence of two PPoK used in the definition of SPoK.

Remark 3. Using (12), the pgf of SPoK is given by

GSk
(s, t) =

∞

∑
m=−∞

smRm(t) = e−t
(

k(λ1+λ2)−λ1 ∑k
j=1 sj−λ2 ∑k

j=1 s−j
)

. (39)

Further, the characteristic function of SPoK is given by

φSk(t)(u) = e−t[k(λ1+λ2)−λ1 ∑k
j=1 eiju−λ2 ∑k

j=1 e−iju ]. (40)

SPoK as a Pure Birth and Death Process

In this section, we provide the transition probabilities of SPoK at time t + δ, given that we started
at time t. Over such a short interval of length δ → 0, it is nearly impossible to observe more than k
event; in fact, the probability to see more than k event is o(δ).
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Proposition 8. The transition probabilities of SPoK are given by

P(Sk(t + δ) = m|Sk(t) = n) =


λ1δ + o(δ), m > n, m = n + i, i = 1, 2, . . . , k;

λ2δ + o(δ), m < n, m = n− i, i = 1, 2, . . . , k;

1− kλ1δ− kλ2δ + o(δ), m = n;

o(δ) otherwise.

(41)

Basically, at most k events can occur in a very small interval of time δ. Additionally, even though the probability
for more than k event is non-zero, it is negligible.

Proof. Note that Sk(t) = Nk
1 (t)− Nk

2 (t). We call Nk
1 (t) as the first process and Nk

2 (t) as the second
process. For i = 1, 2, · · · , k, we have

P(Sk(t + δ) = n + i|Sk(t) = n) =
k−i

∑
j=1

P(the first process has i+j arrivals and the second process has j arrivals)

+ P(the first process has i arrivals and the second process has 0 arrivals) + o(δ)

=
k−i

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (λ1δ + o(δ))× (1− kλ2δ + o(δ)) + o(δ)

= λ1δ + o(δ).

Similarly, for i = 1, 2, · · · , k, we have

P(Sk(t + δ) = n− i|Sk(t) = n) =
k−i

∑
j=1

P(the first process has j arrivals and the second process has i+j arrivals)

+ P(the first process has 0 arrivals and the second process has i arrivals) + o(δ)

=
k−i

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (1− kλ1δ + o(δ))× (λ2δ + o(δ)) + o(δ)

= λ2δ + o(δ).

Further,

P(Sk(t + δ) = n|Sk(t) = n) =
k

∑
j=1

P(the first process has j arrivals and the second process has j arrivals)

+ P(the first process has 0 arrivals and the second process has 0 arrivals) + o(δ)

=
k

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (1− kλ1δ + o(δ))× (1− kλ2δ + o(δ)) + o(δ)

= 1− kλ1δ− kλ2δ + o(δ).

Remark 4. The pmf Rm(t) of SPoK satisfies the following difference differential equation

d
dt

Rm(t) = −k(λ1 + λ2)Rm(t) + λ1

k

∑
j=1

Rm−j(t) + λ2

k

∑
j=1

Rm+j(t)

= −λ1

k

∑
j=1

(1− Bj)Rm − λ2

k

∑
j=1

(1− Fj)Rm(t), m ∈ Z,

with initial condition R0(0) = 1 and Rm(0) = 0 for m 6= 0. Let B be the backward shift operator defined
in (22) and F be the forward shift operator defined by FjX(t) = X(t + j), such that (1− F)α = ∑∞

j=0 (
α
j)Fj.

Multiplying by sm and summing for all m in (42), we obtain the following differential equation for the pgf
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d
dt

GSk
(s, t) =

(
−k(λ1 + λ2) + λ1

k

∑
j=1

sj + λ2

k

∑
j=1

s−j

)
GSk

(s, t).

The mean, variance and covariance of SPoK can be easily calculated by using the pgf,

E[Sk(t)] =
k(k + 1)

2
(λ1 − λ2)t;

Var[Sk(t)] =
1
6
[k(k + 1)(2k + 1)] (λ1 + λ2)t;

Cov[Sk(t), Sk(s)] =
1
6
[k(k + 1)(2k + 1)] (λ1 + λ2)s, s < t.

Remark 5. For the SPoK, when λ1 > λ2, Var[Sk(t)]−E[Sk(t)] = k(k+1)
3 [(k− 1)λ1 + (k+ 2)λ2 > 0, which

implies that FI[Sk(t)] > 1 and hence Sk(t) exhibits over-dispersion. For λ1 < λ2, the process is under-dispersed.

Next, we show the LRD property for SPoK.

Proposition 9. The SPoK has LRD property defined in Definition 3.

Proof. The correlation function of SPoK satisfies

lim
t→∞

Cor(Sk(t), Sk(s))
t−d =

s1/2t−1/2

t−1/2 = c(s).

Hence, SPoK exhibits the LRD property.

5. Running Average of SPoK

In this section, we introduce and study the new stochastic Lévy process, which is the running
average of SPoK.

Definition 5. The following stochastic process defined by taking the time-scaled integral of the path of the SPoK,

Sk
A(t) =

1
t

∫ t

0
Sk(s)ds, (42)

is called the running average of SPoK.

Next, we provide the compound Poisson representation of running average of SPoK.

Proposition 10. The characteristic function φSk
A(t)

(u) = E[eiuSk
A(t)] of Sk

A(t) is given by

φSk
A(t)

(u) = e
−kt

{
λ1

(
1− 1

k ∑k
j=1

(eiuj−1)
iuj

)
+λ2

(
1− 1

k ∑k
j=1

(1−e−iuj)
iuj

)}
, u ∈ R. (43)

Proof. By using the Lemma 3.1 to Equation (40) after scaling by 1/t.

Remark 6. It is easily observable that Equation (43) has removable singularity at u = 0. To remove that
singularity, we can define φSk

A(t)
(0) = 1.
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Proposition 11. Let Y(t) be a compound Poisson process

Y(t) =
N(t)

∑
n=1

Jn, (44)

where N(t) is a Poisson process with rate parameter k(λ1 + λ2) > 0 and {Jn}n≥1 are iid random variables
with mixed double uniform distribution function pj, which are independent of N(t). Subsequently,

Y(t) law
= Sk

A(t).

Proof. Rearranging the φSk
A(t)

(u),

φSk
A(t)

(u) = e
(λ1+λ2)kt

(
λ1

λ1+λ2
1
k ∑k

j=1
(eiuj−1)

iuj +
λ2

λ1+λ2
1
k ∑k

j=1
(1−e−iuj)

iuj −1
)

The random variable J1 being a mixed double uniformly distributed has density

pJ1(x) =
k

∑
i=1

pVi (x) fUi (x) =
1
k

k

∑
i=1

fUi (x), (45)

where Vj follows discrete uniform distribution over (0, k) with pmf pVj(x) = P(Vj = x) = 1
k , j =

1, 2, . . . k, and Ui be doubly uniform distributed random variables with density

fUi (x) = (1− w)1[−i,0](x) + w1[0,i](x), −i ≤ x ≤ i.

Further, 0 < w < 1 is a weight parameter and 1(·) is the indicator function. Here, we obtained
the characteristic of J1 using the Fourier transform of (45),

φJ1(u) =
λ1

λ1 + λ2

1
k

k

∑
j=1

(eiuj − 1)
iuj

+
λ2

λ1 + λ2

1
k

k

∑
j=1

(1− e−iuj)

iuj
.

The characteristic function of Y(t) is

φY(t)(u) = e−kt(λ1+λ2)t(1−φJ1 (u)), (46)

putting the characteristic function φJ1(u) in the above expression yields the characteristic function of
Sk

A(t), which completes the proof.

Remark 7. The q-th order moments of J1 can be calculated using (37) and also using Taylor series expansion of
the characteristic φJ1(u), around 0, such that

(eiuj − 1)
iuj

= 1 +
∞

∑
r=1

(iuj)r

(r + 1)!
&

(1− e−iuj)

iuj
= 1 +

∞

∑
r=1

(−iuj)r

(r + 1)!
.
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We have m1 = (k+1)(λ1−λ2)
4(λ1+λ2)

and m2 = 1
18 [(k + 1)(2k + 1)]. Further, the mean, variance, and covariance

of running average of SPoK are

E[Sk
A(t)] = E[N(t)]E[J1] =

k(k + 1)
4

(λ1 − λ2)t

Var[Sk
A(t)] = E[N(t)]E[J2

1 ] =
1

18
[k(k + 1)(2k + 1)](λ1 + λ2)t

Cov[Sk
A(t), Sk

A(s)] =
1
18

[k(k + 1)(2k + 1)](λ1 − λ2)s−
k2(k + 1)2

16
(λ1 − λ2)

2s2.

Corollary 3. For λ2 = 0 the running average of SPoK is same as the running average of PPoK, i.e.,

φSk
A(t)

(u) = φNk
A(t)

(u).

Corollary 4. For k = 1 this process behave like the running average of Skellam process.

Corollary 5. The ratio of mean and variance of SPoK and running average of SPoK are 1/2 and 1/3,
respectively.

Remark 8. For running average of SPoK, when λ1 > λ2 and k > 1, the process is over-dispersed. Otherwise,
it exhibits under-dispersion.

6. Time-Changed Skellam Process of Order k

We consider time-changed SPoK, which can be obtained by subordinating SPoK Sk(t) with the
independent Lévy subordinator D f (t) satisfying E[D f (t)]c < ∞ for all c > 0. The time-changed SPoK
is defined by

Z f (t) = Sk(D f (t)), t ≥ 0.

Note that the stable subordinator does not satisfy the condition E[D f (t)]c < ∞. The mgf of
time-changed SPoK Z f (t) is given by

E[eθZ f (t)] = e−t f (k(λ1+λ2)−λ1 ∑k
j=1 eθ j−λ2 ∑k

j=1 e−θ j).

Theorem 2. The pmf H f (t) = P(Z f (t) = m) of time-changed SPoK is given by

H f (t) =
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!
E[e−k(λ1+λ2)D f (t)D2m+x

f (t)], m ∈ Z. (47)

Proof. Let h f (x, t) be the probability density function of Lévy subordinator. Using conditional argument

H f (t) =
∫ ∞

0
Rm(y)h f (y, t)dy

=
∫ ∞

0
e−ky(λ1+λ2)

(
λ1

λ2

)m/2
I|m|(2yk

√
λ1λ2)h f (y, t)dy

=
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!

∫ ∞

0
e−k(λ1+λ2)yy2m+xh f (y, t)dy

=
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!
E[e−k(λ1+λ2)D f (t)D2m+x

f (t)].
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The mean and covariance of time changed SPoK are given by,

E[Z f (t)] =
k(k + 1)

2
(λ1 − λ2)E[D f (t)].

Cov[Z f (t), Z f (s)] =
1
6
[k(k + 1)(2k + 1)](λ1 + λ2))E[D f (s)] +

k2(k + 1)2

4
(λ1 − λ2)

2Var[D f (s)].

7. Space Fractional Skellam Process and Tempered Space Fractional Skellam Process

In this section, we introduce time-changed Skellam processes where time-change are stable
subordinator and tempered stable subordinator. These processes give the space-fractional version of
the Skellam process similar to the time-fractional version of the Skellam process introduced in [10].

7.1. The Space-Fractional Skellam Process

In this section, we introduce space-fractional Skellam processes (SFSP). Further, for introduced
processes, we study main results, such as state probabilities and governing difference-differential
equations of marginal pmf.

Definition 6 (SFSP). Let N1(t) and N2(t) be two independent homogeneous Poison processes with intensities
λ1 > 0 and λ2 > 0,, respectively. Let Dα1(t) and Dα2(t) be two independent stable subordinators with indices
α1 ∈ (0, 1) and α2 ∈ (0, 1), respectively. These subordinators are independent of the Poisson processes N1(t)
and N2(t). The subordinated stochastic process

Sα1,α2(t) = N1(Dα1(t))− N2(Dα2(t))

is called a SFSP.

Next, we derive the mgf of SFSP. We use the expression for marginal (pmf) of SFPP that is given
in (17) to obtain the marginal pmf of SFSP.

Mθ(t) = E[eθSα1,α2 (t)] = E[eθ(N1(Dα1 (t))−N2(Dα2 (t)))] = e−t[λ
α1
1 (1−eθ)α1+λ

α2
2 (1−e−θ)α2 ], θ ∈ R.

In the next result, we obtain the state probabilities of the SFSP.

Theorem 3. The pmf Hk(t) = P(Sα1,α2(t) = k) of SFSP is given by

Hk(t) =
∞

∑
n=0

(−1)k

n!(n + k)!

(
1ψ1

[
(1, α1);

(1− n− k, α1);
(−λ1

α1 t)

])(
1ψ1

[
(1, α2);

(1− n, α2);
(−λ2

α2 t)

])
Ik≥0

+
∞

∑
n=0

(−1)|k|

n!(n + |k|)!

(
1ψ1

[
(1, α1);

(1− n, α1);
(−λ1

α1 t)

])(
1ψ1

[
(1, α2);

(1− n− |k|, α2);
(−λ2

α2 t)

])
Ik<0 (48)

for k ∈ Z.

Proof. Note that N1(Dα1(t)) and N2(Dα2(t)) are independent, hence

P(Sα1,α2(t) = k) =
∞

∑
n=0

P(N1(Dα1(t)) = n + k)P(N2(Dα2(t)) = n)Ik≥0

+
∞

∑
n=0

P(N1(Dα1(t)) = n)P(N2(Dα2(t)) = n + |k|)Ik<0.

Using (17), the result follows.
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In the next theorem, we discuss the governing differential-difference equation of the marginal
pmf of SFSP.

Theorem 4. The marginal distribution Hk(t) = P(Sα1,α2(t) = k) of SFSP satisfies the following differential
difference equations

d
dt

Hk(t) = −λα1
1 (1− B)α1 Hk(t)− λα2

2 (1− F)α2 Hk(t), k ∈ Z (49)

d
dt

H0(t) = −λα1
1 H0(t)− λα2

2 H1(t), (50)

with initial conditions H0(0) = 1 and Hk(0) = 0 for k 6= 0.

Proof. The proof follows by using pgf.

Remark 9. The mgf of the SFSP solves the differential equation

dMθ(t)
dt

= −Mθ(t)(λ
α1
1 (1− eθ)α1 + λα2

2 (1− e−θ)α2). (51)

Proposition 12. The Lévy density νSα1,α2
(x) of SFSP is given by

νSα1,α2
(x) = λ1

α1
∞

∑
n1=1

(−1)n1+1
(

α1

n1

)
δn1(x) + λα2

2

∞

∑
n2=1

(−1)n2+1
(

α2

n2

)
δ−n2(x).

Proof. Substituting the Lévy density νNα1
(x) and νNα2

(x) of N1(Dα1(t)) and N2(Dα2(t)), respectively,
from the Equation (24), we obtain

νSα1,α2
(x) = νNα1

(x) + νNα2
(x),

which gives the desired result.

7.2. Tempered Space-Fractional Skellam Process (TSFSP)

In this section, we present the tempered space-fractional Skellam process (TSFSP). We discuss the
corresponding fractional difference-differential equations, marginal pmfs, and moments of this process.

Definition 7 (TSFSP). The TSFSP is obtained by taking the difference of two independent tempered space
fractional Poisson processes. Let Dα1,µ1(t), Dα2,µ2(t) be two independent TSS (see [28]) and N1(t), N2(t) be
two independent Poisson processes that are independent of TSS. Subsequently, the stochastic process

Sµ1,µ2
α1,α2 (t) = N1(Dα1,µ1(t)− N2(Dα2,µ2(t))

is called the TSFSP.

Theorem 5. The PMF Hµ1,µ2
k (t) = P(Sµ1,µ2

α1,α2 (t) = k) is given by

Hµ1,µ2
k (t) =

∞

∑
n=0

(−1)k

n!(n + k)!
et(µ

α1
1 +µ1α1 )

(
∞

∑
m=0

µm
1 λ−m

1
m! 1ψ1

[
(1, α1);

(1− n− k−m, α1);
(−λ1

α1 t)

])
×(

∞

∑
l=0

µ2
lλ2
−l

l! 1ψ1

[
(1, α2);

(1− l − k, α2);
(−λ2

α2 t)

])
(52)
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when k ≥ 0 and similarly for k < 0,

Hµ1,µ2
k (t) =

∞

∑
n=0

(−1)|k|

n!(n + |k|)! et(µ
α1
1 +µ1α1 )

(
∞

∑
m=0

µm
1 λ−m

1
m! 1ψ1

[
(1, α1);

(1− n−m, α1);
(−λ1

α1 t)

])
×(

∞

∑
l=0

µ2
lλ2
−l

l! 1ψ1

[
(1, α2);

(1− l − n− |k|, α2);
(−λ2

α2 t)

])
. (53)

Proof. Because N1(Dα1,µ1(t)) and N2(Dα2,µ2(t)) are independent,

P
(

Sµ1,µ2
α1,α2 (t) = k

)
=

∞

∑
n=0

P(N1(Dα1,µ1(t)) = n + k)P(N2(Dα2,µ2(t)) = n)Ik≥0

+
∞

∑
n=0

P(N1(Dα1,µ1(t)) = n)P(N2(Dα2,µ2(t)) = n + |k|)Ik<0,

which gives the marginal pmf of TSFPP using (26).

Remark 10. We use this expression to calculate the marginal distribution of TSFSP. The mgf is obtained using
the conditioning argument. Let fα,µ(x, t) be the density function of Dα,µ(t). Subsequently,

E[eθN(Dα,µ(t))] =
∫ ∞

0
E[eθN(u)] fα,µ(u, t)du = e−t{(λ(1−eθ)+µ)α−µα}. (54)

Using (54), the mgf of TSFSP is

E[eθS
µ1,µ2
α1,α2 (t)] = E

[
eθN1(Dα1,µ1 (t))

]
E
[
e−θN2(Dα2,µ2 (t))

]
= e−t[{(λ1(1−eθ)+µ1)

α1−µ
α1
1 }+{(λ2(1−e−θ)+µ2)

α2−µ
α2
2 }].

Remark 11. We have E[Sµ1,µ2
α1,α2 (t)] = t(λ1α1µα1−1

1 − λ2α2µα2−1
2 ). Further, the covariance of TSFSP can be

obtained by using (29) and

Cov
[
Sµ1,µ2

α1,α2 (t), Sµ1,µ2
α1,α2 (s)

]
= Cov[N1(Dα1,µ1(t)), N1(Dα1,µ1(s))] + Cov[N2(Dα2,µ2(t)), N2(Dα2,µ2(s))]

= Var(N1(Dα1,µ1(min(t, s))) + Var(N2(Dα2,µ2(min(t, s))).

Proposition 13. The Lévy density νS
µ1,µ2
α1,α2

(x) of TSFSP is given by

ν
Sµ1,µ2

α1,α2
(x) =

∞

∑
n1=1

µα1−n1
1

(
α1

n1

)
λ1

n1
n1

∑
l=1

(
n1

l1

)
(−1)l1+1δl1(x)

+
∞

∑
n2=1

µ2
α2−n2

(
α2

n2

)
λ2

n2
n2

∑
l2=1

(
n2

l2

)
(−1)l2+1δl2(x), µ1, µ2 > 0.

Proof. By adding Lévy density νNα1,µ1
(x) and νNα2,µ2

(x) of N1(Dα1,µ1(t)) and N2(Dα2,µ2(t)),
respectively, from Equation (30), which leads to

ν
Sµ1,µ2

α1,α2
(x) = νNα1,µ1

(x) + νNα2,µ2
(x).

7.3. Simulation of SFSP and TSFSP

We present the algorithm to simulate the sample trajectories for SFSP and TSFSP. We use Python 3.7
and its libraries Numpy and Matplotlib for the simulation purpose. It is worth mentioning that Python
is an open source and freely available software.
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Simulation of SFSP: fix the values of the parameters α1, α2, λ1 and λ2;

Step-1: generate independent and uniformly distributed random vectors U, V of size 1000 each
in the interval [0, 1];
Step-2: generate the increments of the α1-stable subordinator Dα1(t) (see [29]) with pdf fα1(x, t),

while using the relationship Dα1(t + dt)− Dα1(t)
d
= Dα1(dt) d

= (dt)
1

α1 Dα1(1), where

Dα1(1) =
sin(α1πU)[sin((1− α1)πU)]1/α1−1

[sin(πU)]1/α1 | log V|1/α1−1 ;

Step-3: generate the increments of Poisson distributed rvs N1(Dα1(dt)) with parameter
λ1(dt)1/α1 Dα1(1);
Step-4: cumulative sum of increments gives the space fractional Poisson process N1(Dα1(t))
sample trajectories; and,
Step-5: similarly generate N2(Dα2(t)) and subtract these to obtain the SFSP Sα1,α2(t).

We next present the algorithm for generating the sample trajectories of TSFSP.
Simulation of TSFSP: fix the values of the parameters α1, α2, λ1, λ2, µ1 and µ2.

Use the first two steps of previous algorithm for generating the increments of α-stable subordinator
Dα1(t).

Step-3: for generating the increments of TSS Dα1,µ1(t) with pdf fα1,µ1(x, t), we use the following
steps, called “acceptance-rejection method”;

(a) generate the stable random variable Dα1(dt);
(b) generate uniform (0, 1) rv W (independent from Dα1 );
(c) if W ≤ e−µ1Dα1 (dt), then Dα1,µ1(dt) = Dα1(dt) (“accept"); otherwise, go back to (a) (“reject").

Note that, here we used that fα1,µ1(x, t) = e−µ1x+µ
α1
1 t fα1(x, t), which implies

fα1,µ1 (x,t)(x,dt)
c fα1 (x,dt) =

e−µ1x for c = eµ1
α1 dt and the ratio is bounded between 0 and 1;

Step-4: generate Poisson distributed rv N(Dα1,µ1(dt)) with parameter λ1Dα1,µ1(dt)

Step-5: cumulative sum of increments gives the tempered space fractional Poisson process
N1(Dα1,µ1(t)) sample trajectories; and,
Step-6: similarly generate N2(Dα2,µ2(t)), then take difference of these to get the sample paths of
the TSFSPSµ1,µ2

α1,α2 (t).

The tail probability of α-stable subordinator behaves asymptotically as (see e.g., [30])

P(Dα(t) > x) ∼ t
Γ(1− α)

x−α, as x → ∞.

For α1 = 0.6 and α2 = 0.9 and fixed t, it is more probable that the value of the rv Dα1(t) is higher
than the rv Dα2(t). Thus, for same intensity parameter λ for Poisson process the process N(Dα1(t))
will have generally more arrivals than the process N(Dα2(t)) until time t. This is evident from the
trajectories of the SFSP in Figure 1, because the trajectories are biased towards positive side. The TSFPP
is a finite mean process, however SFPP is an infinite mean process and hence SFSP paths are expected
to have large jumps, since there could be a large number of arrivals in any interval.
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Figure 1. The left hand figure shows the sample trajectories of SFSP with parameters α1 = 0.6, α2 = 0.9,
λ1 = 6 and λ2 = 10. The sample trajectories of TSFSP are shown in the right figure with parameters
α1 = 0.6, α2 = 0.9, λ1 = 6, λ2 = 10, µ1 = 0.2 and µ2 = 0.5.
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