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Abstract: We attempted to attain atomic-scale insights into the mechanism of the heat-induced phase
transition of two thermoresponsive polymers containing amide groups, poly(N-isopropylacrylamide)
(PNIPAM) and poly(2-isopropyl-2-oxazoline) (PIPOZ), and we succeeded in reproducing the existence
of lower critical solution temperature (LCST). The simulation data are in accord with experimental
findings. We found out that the entropy has an important contribution to the thermodynamics of the
phase separation transition. Moreover, after decomposing further the entropy change to contributions
from the solutes and from the solvent, it appeared out that the entropy of the solvent has the decisive
share for the lowering of the free energy of the system when increasing the temperature above the
LCST. Our conclusion is that the thermoresponsive behavior is driven by the entropy of the solvent.
The water molecules structured around the functional groups of the polymer that are exposed to
contact with the solvent in the extended conformation lower the enthalpy of the system, but at certain
temperature the extended conformation of the polymer collapses as a result of dominating entropy
gain from “released” water molecules. We stress also on the importance of using more than one
reference molecule in the simulation box at the setup of the simulation.

Keywords: molecular dynamics; entropy calculation; thermoresponsive polymers; lower critical
solution temperature; molecular dynamics; GROMACS—GPU calculations

1. Introduction

Most synthetic macromolecules become more soluble when heated. However, there are
water-soluble polymers that separate from solution upon heating (inverse temperature-dependent
solubility) above the phase transition temperature (lower critical solution temperature, LCST).
Such polymers are referred to as thermoresponsive polymers. This phenomenon is explained
to result from the balance between the enthalpy contribution from the energy stabilization due to
hydrogen bonding of the polymer with the water molecules and the entropy gain of the system at
higher temperature that outweighs the enthalpy preference at lower temperatures. Hydrogen bonding
between the polymer and the water molecules lowers the free energy of dissolution. This effect becomes
less important at higher temperature and, accordingly, entropy effects prevail [1].

The thermoresponsive polymers are characterized by the abrupt change in their properties in
response to temperature variations [2,3]. Their solubility behavior is still a fundamental and challenging
problem in polymer science, but remains elusive to describe theoretically and difficult to simulate via
computational methods. A major challenge is to relate structural characteristics of the polymers to
this phenomenon. Besides the fundamental theoretical issues, the thermoresponsive polymers are
of significant technological importance for the design of stimuli-responsive (smart) materials with
adaptive properties. Promising applications in the pharmaceutical industry present drug delivery,
biomedical applications, e.g., tissue engineering and smart devices [4–6]. An important prerequisite
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for such applications is to fine-tune the temperature of the phase transition (e.g., aiming at the
physiologically relevant human body temperature). Such control of the transition temperature point
can be acquired by exploring copolymerization with other appropriate monomers. The LCST is the
stringent formal thermodynamic characteristic of the thermoresponsive behavior. Below the LCST
the components of the solution become miscible whatever the composition of the polymer solution.
The effect at the molecular level is detected as a coil-to-globule transition of the conformation of
the polymer.

Polymers containing amide groups constitute the largest group among the thermoresponsive
polymers. The most examined thermoresponsive polymers are poly(N-isopropylacrylamide) (PNIPAM)
and poly(2-isopropyl-2-oxazoline) (PIPOZ) (Figure 1). Both have an amide group in the side chain and
the substantial difference between PNIPAM and PIPOZ is that the main chain of PNIPAM is nonpolar,
whereas PIPOZ is with polar backbone. The amide groups of PNIPAM can be proton donors as well
as proton acceptors, whereas the amide groups of PIPOZ can be only proton acceptors. We examine
in this study by molecular dynamics simulations (MD) model oligomers of N-isopropylacrylamide
(NIPAM) and 2-isopropyl-2-oxazoline (IPOZ).
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Figure 1. Schematic structures of (a) N-isopropylacrylamide (NIPAM) unit and (b) 2 isopropyl-2-oxazoline
(IPOZ) unit.

The PNIPAM polymer is the paradigmic thermoresponsive molecule. The experimental research
on the PNIPAM phase behavior in aqueous solution is abundant [1–3]. Still not so well examined is
PIPOZ [7–9]. The PIPOZ polymer shows thermoresponsive behavior at around the same temperature
range as PNIPAM. We focused our interest both on the thermodynamics and the mechanisms at the
molecular level leading to the heat induced phase transition. The interest in the PIPOZ properties
is additionally fueled by its advantages, relative to the PNIPAM polymer, in relation to practical
applications, especially its biocompatibility.

Molecular dynamics simulations were also used to study the thermoresponsibility effect [10–22],
but mostly in the case of PNIPAM and its copolymers. To the best of our knowledge only two published
works report molecular dynamics simulations in the case of PIPOZ molecules [23,24]. The first one
applied short atomistic MD runs of systems comprised of a single 8-mer PIPOZ molecule solvated by
500 water molecules and the focus is on the differences of the hydrogen bonding below and above the
point of phase transition [23]. The other investigation applied MD simulation in vacuum in order to
investigate the possible conformations of PIPOZ chains both in amorphous and crystalline states [24].

We apply in this study all-atom molecular dynamics simulations in an attempt to reproduce the
phenomenology of the effect (i.e., temperature-induced collapse of the chain) for NIPAM and IPOZ
oligomers in water solution aiming at getting structural and thermodynamic evidences for the cause of
their heat induced phase transition behavior.
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2. Methods

2.1. Molecular Mechanics Models of the Polymer Structures

The graphic antechamber [25,26] was used to build the molecular models for the PNIPAM and
PIPOZ monomers. The generated structures were saved in the standard mol2 format and the files were
transferred to Gaussian input files [27] for geometry optimization and subsequent derivation of RESP
(Restrained Electrostatic Potential) charges [28]. The Gaussian log file, containing the electrostatic
potential distribution results, was used as an input file to the antechamber RESP functionality which
performed the fit of the data and generated “ac” format file (short for antechamber) containing
information about the derived atomic charges. In order to obtain monomer units with charge
distribution corresponding to the monomer block within the polymer, we stripped out the charges of
the linking methyl groups. A special file was generated manually that contains information about the
linkage definitions, i.e., rules for removing those atoms of the monomer units which got stripped out
upon polymerization. Special attention was devoted to the terminal residues of the polymer chain.
The head and the tail residues cap the oligomer chain at the two ends. The same procedure as with the
internal residues was followed to derive charges for the terminal residues. Two manually built files
were used to define the rules for connectivity of head and tail residues. The AMBER tleap procedure
was used to construct the oligomer systems. From this point on the GROMACS package [29–32] was
used for the simulations. The AMBER topology was converted to the GROMACS formats by using the
AnteChamber PYthon Parser interfacE [33]. The AMBER-03 [25] (a third generation force field, derived
from AMBER99) all atom force field port for the GROMACS molecular dynamics program was used in
the simulations.

2.2. Molecular Dynamics Setup Description

We conducted molecular dynamics simulations of fully atomistic models of NIPAM and IPOZ
oligomers with chain lengths of 12 (12-mer), 24 (24-mer), and 30 (30-mer) monomer units in cubic
simulation cells. The oligomers were solvated by filling the simulation box with water molecules
using the genbox routine of the GROMACS suite. An explicit water model (TIP3P) was applied [34,35].
The systems were parameterized, assembled and equilibrated in several stages.

The total energies of the isolated oligomer chains were firstly minimized, followed by minimization
of the energies of the whole systems, oligomers plus model water molecules. The energy of the system as
a whole was minimized by means of the L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno)
algorithm. The optimized structure was used as the initial configuration for the simulations at two
extreme temperature regimes—at 263.0 K and 333.0 K. The simulations were executed in the NPT
(constant pressure and constant temperature) ensemble. Temperature was controlled by applying
the Nose–Hoover thermostat with a coupling time 1.0 ps [36,37]. Periodic boundary conditions and
minimum image convention were applied. The particle–particle particle–mesh method (P3M) [38]
with a real space cutoff 12.0 Å was used for evaluating the electrostatic interactions. The choice of
the P3M solver was motivated for its favorable NlogN computational complexity (where N is the
number of all interaction sites in the system). The integrator used to propagate the molecular dynamics
trajectories was the velocity Verlet algorithm. This choice was dictated by the availability of the
efficiently parallelized version for GPU systems [39]. The integration time step was 2.0 fs. The lengths
of the bonds involving hydrogen atoms were constrained by the LINCS procedure [40]. Two extreme
cases for the simulation cell were explored for the 30-mer structures—a box with side length 100.0 Å
and a larger box with a side of 300.0 Å.

Two initial geometries (an extended conformation and conformation optimized by conformational
search [41]) of the NIPAM and IPOZ oligomers were used as startup conformations for the simulations
of the 12-mers. For each of them five chains were randomly distributed in a cubic box (with 100.0 Å side).
The multiple chain setup was deliberately designed in order to test computationally the agglomeration
process concomitant with (or following) the thermoresponsive chain collapse. The specific molecular
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dynamics engine driving the simulation was the mdrun program of the GROMACS package version
4.6 [32]. The visualization engine throughout this work was the VMD program [42].

2.3. Data Extraction from Molecular Dynamics Trajectories

GROMACS routines were used to extract relevant structural data from the generated molecular
dynamics trajectories. The dynamics of the conformational evolution of the oligomer chains were
monitored by the variation with the simulation time of the end-to-end distance of the backbone chains
and the radii of gyration (rg). The radius of gyration is a measure for the extent of a polymer chain and
we applied it as a measure for the collapse of the polymer molecule into a globular state.

An analysis of the intermolecular (oligomer . . . water) hydrogen bonds was also carried out,
with the purpose to correlate the hydrogen bonding patterns around the polymer molecules with the
thermoresponsive behavior observed as a collapse of the polymer chain above the LCST.

2.4. Estimation of Entropy Contributions—Brief Theoretical Intermezzo

2.4.1. Stringent Formal Definition—Sampling of the Complete Phase Space

Formally the entropy calculation seems straightforward—it is a logarithmic measure of the
accessible volume in phase space):

S = −kB
〈
ln(ρ)

〉
(1)

where ρ is the phase space density and kB is the Boltzmann constant, < > denotes ensemble average.
However, in practice the direct calculation of the entropy value is infeasible. The difficulty stems from
the entropy value dependence on the complete phase space of the system. Its evaluation requires an
integral over the complete phase space which is computationally prohibitive.

S = −kB

∫
R

d3Nxd3Npρ(x, p) ln[ρ(x, p)] (2)

where x, p represent the coordinates and momenta of the particles in the ensemble.

2.4.2. Access to Phase Space Density

An additional obstacle is the lack of knowledge of the phase space density. It is not directly
accessible from molecular dynamics trajectories. Therefore, yet another major problem arises in
the entropy calculation methods—finding a suitable approximation of the phase space density.
Two approaches are relevant:

• Phase space density estimation through energy and partition function

The following relation gives access to the density through energy (which is accessible in the
molecular dynamics simulation):

ρ(x, p) =
e−βH(x.p)

Z
(3)

where H is the Hamiltonian and Z is the partition function of the system. However, again an
obstacle arises—the cost for the evaluation of the partition function Z. Thus, we resorted to another
approximation—the quasiharmonic approximation.

• Quasiharmonic approximation—Gaussian analytical ansatz for density

Alternatively, we can direct our thought at constructing an analytical ansatz of the density and fit
it to the molecular dynamics’ trajectory. Karplus et al. [43] utilized the fact that the entropy can be
decomposed into position dependent and moment dependent component. The momentum dependent
component can be estimated analytically. Therefore, the bottleneck of this method is the computation
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of the coordinate dependent component. Again, direct estimation is impossible. However, fitting the
density as an analytical ansatz to the molecular dynamics’ trajectory is a way around this. The density
near local/global minimum on the free energy surface can be approximated by a Gaussian function.
More specifically the generated molecular dynamics trajectories can be used to fit the following
multivariate Gaussian function:

ρ(x, p) =
1

(2π)3N/2
|C|

1
2

e−
1
2 (x−x0)

TC−1(x−x0) (4)

where C is the covariance matrix, |C| is the determinant of the covariance matrix. Actually, the fit
parameters are the eigenvectors of the covariance matrix C—its 3N principal components. Then the
entropy (based on the fitted density) can be obtained by the following formula:

S = −
3
2

NkB +
1
2

kB ln
[
(2π)3N

|C|
]

(5)

The covariance matrix of the atomic fluctuations has peculiar eigenvalue spectrum that might
turn out to be problematic in realistic calculations. The problem comes from the contribution of the
high-frequency motions. The solution comes from the analytic quantum mechanical treatment of the
problematic degrees of freedom.

2.4.3. Quantum Mechanical Considerations and Approximations

• Quantum mechanical entropy of harmonic oscillator

The solution of Schlitter et al. [44] excludes the low eigenvalues by application of quantum
mechanical considerations for the entropy of the harmonic oscillator at room temperature

S = κα
exp(α)−1 − ln(1− exp(−α)),

α = h̄ω
kT

(6)

Quantum mechanical variance is related to the frequency w of the oscillator in the above expressions.
On the other hand, data from molecular dynamics simulations can be used to estimate only the classical
variance (no direct access to quantum mechanical variance).

• Reducing the quantum formula to the application of the classical limit of the variance

The classical limit of the coordinate variance can be substituted in the above expression of the
entropy by application of the following relation [44]:

1
α2 =

mkT

h̄2

〈
∆x2

〉
cl

(7)

Then the entropy calculation boils down to the estimation of the classical variance (accessible
from molecular dynamics simulations). The final expression for the entropy makes use of yet another
heuristic approximation by Schlitter [44] and finally generalizing to the multidimensional case by
summing over 3N degrees of freedom yields:

S ≈
1
2

kB

3N∑
i=1

ln
(
1 +

kBT

h̄2

〈
∆x2

i

〉
cl

)
(8)

where
〈
∆x2

i

〉
cl

represent the classical variance of the ith degree of freedom.
In order to estimate the entropy contribution in the coil-to-globule transition, we applied a

computational scheme based on these approaches—the quasiharmonic method of Karplus et al. [43] and
the improvement based on Schlitter’s method [44]. The theoretical foundation and the computational
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bottleneck of the procedure is the evaluation of the covariance matrix of the Cartesian positional
coordinates from the molecular dynamics trajectories. The entropy is calculated from the eigenvalues
obtained after the diagonalization of the mass-weighted covariance matrix. Though not fully validated,
the method had been already applied for entropy estimates in simulations of polymer molecules,
e.g., to examine the entropy change upon protein folding [45].

3. Results and Discussion

Eight different setups for simulations were executed (Table 1). The discussion starts with
examination of the structural variations with the simulation time of the 30-mer and the 24-mer NIPAM
and IPOZ oligomer chains. Next, the results are presented for the multiple 12-mers (multiple chains)
NIPAM and IPOZ molecules in an attempt to reproduce the temperature induced agglomeration of
the multiple chains (in foil to the chain collapse). Molecular characteristics, hydrogen-bonding and
polar contacts, were also determined and discussed. Special attention was devoted at the estimate of
the entropy changes when passing from temperature far below (263.0 K) to temperature far above
(333.0 K) the LCST point (for all cases, including 12-mer, 24-mer, and 30-mer NIPAM and IPOZ
oligomers). The PNIPAM molecule undergoes a discontinuous hydration dehydration transition at
around 305 K [1,2]. We consider the relatively wide span through the supposed transition temperature
as necessary in order to obviate the mismatch between the temperature in the simulation settings and
the real thermodynamic temperature.

Table 1. The simulation setups executed depending on the number of monomeric units, the number of
oligomer molecules in a unit box and the size of the cubic box with model water molecules.

PNIPAM PIPOZ

Number of oligomer molecules
in the unit box 1 2 5 1 2 5

Number of monomeric units 30 24 12 30 24 12

Size of the cubic box with water
molecules [Å] 100.0 300.0 100.0 100.0 100.0 300.0 100.0 100.0

Number of water molecules 11,748 294,902 11,019 10,980 11,733 294,887 11,010 10,945

Duration of the simulation [ns] 30.0 10.0 12.0 12.0 30.0 10.0 12.0 12.0

Two alternative initial setups were considered for the 30-mers with the purpose to assess the
dependence of the results on the size of the solvent box, 100.0 Å and 300.0 Å side lengths, respectively.
Due to computational limitations we were in a position to run only short simulations (10.0 ns) for
the case of the large solvation box (300.0 Å). Although we generated additional simulation data for
intermediate points along the temperature range, we report here only the results for the two extreme
temperatures (263.0 K and 333.0 K). Figure 2 contains data extracted from the 10.0 ns simulation of
single 30-mer NIPAM and IPOZ molecules starting from an initially extended conformation. There is
clear tendency for collapse of the NIPAM oligomer chain at the higher temperature as the molecule
adopts supposedly a globular state, whereas the variations of the radius of gyration and the end-to-end
distance at the low temperature are in support for the persistence of the extended form (Figure 2a,b).
The data for the 30-mer IPOZ molecule unequivocally demonstrate reproducibility of the experimentally
observed LCST effect for PIPOZ solutions (Figure 2c,d). To the best of our knowledge, this is the first
reported fully atomistic molecular dynamics reproduction (using adequate solvation and spatial scale)
of the experimental observations for PIPOZ systems. Though relatively short, the simulation time is
enough in order to show up the LCST effect. In order to get further clear picture at the molecular level,
we illustrate with snapshots from the simulation trajectories the computed molecular structures in the
final stages of the simulations for the two extreme temperature points (Figure 3). Both the NIPAM
and the IPOZ oligomer chains show extended, though not strictly “coiled” conformations at the low
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temperature regime and even simple visual inspection at the higher temperature gives evidence for
adopting globular form. Obviously, the globular conformations suggest dehydration of the polymer
molecules due to diminishing of their contact surface with the surrounding solvent molecules.
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The next set of NIPAM/IPOZ 30-mer simulations uses smaller cubic box with side 100.0 Å but
the time scale was extended up to 30.0 ns. A caveat with using small simulation box is the problem
with the application of periodic boundary conditions. In the case of a small box size the NIPAM/IPOZ
oligomer molecules might interact with the chain image in the adjacent periodic cell. This artificial
interaction might produce nonphysical effects—periodic images are identical physical objects and the
produced effect is actually self-interaction. We took care to check for artificial interactions between
neighboring periodic images in order to avoid nonphysical effects in the simulation results. Figure 4
illustrates the time dependence of the large scale structural changes for the NIPAM and IPOZ 30-mer
oligomers occurring at the two extreme temperatures.
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Special care had to be taken in order to ascertain that no direct interactions between the oligomer
molecules and their periodic images could take place. For this purpose we regularly checked the
minimal distance between periodic images by using the mindist routine of the GROMACS suite.
However, the indirect effects from the interactions of the periodic images are quite difficult to monitor
and list out. These hard to follow interactions are indirect in the sense of being mediated through
the structure of the surrounding solvent molecules, namely the ordering of water molecules at
the nanometer range. Beyond these considerations the results are unequivocally clear that at high
temperatures the 30-mer IPOZ chain experiences collapse as monitored by the abrupt change in the
radius of gyration/end-to-end distance, which is in support for the PIPOZ thermoresponsive behavior.
Data displayed in Figure S1 (in Supporting Information) supports the above conclusions for the 24-mer
NIPAM and IPOZ cases.

We used alternative initial setups for the 12-mer case corresponding to extended and optimized
conformations of the oligomer molecules. In addition, the simulation box contains five oligomers,
thus we attempted to reproduce the effect of agglomeration (concomitant with the chain collapse).
Figure S2 (Supporting Information) presents data for NIPAM and IPOZ starting from an initially
extended conformation. A tendency is evident for polymers to collapse at high temperatures as the
molecule strives to adopt a globular state (Figure S2b). Although slight, the shrinking of the structure
is clearly present above LCST. The same data series for the IPOZ oligomers (Figure S2d) at the high
temperature point also indicates a slight tendency for getting smaller average extent of the molecule as
a consequence of the adoption of a globular structure. At the low temperature point (Figure S2a,c) the
MD trajectories end with structures which preserve some of the spatial extent of the oligomer molecule
which is a sign that temperatures below LCST favor the coil hydrated state. Thus, the simulations for
the 12-mer IPAM and IPOZ molecules also provide evidences for thermoresponsive type behavior.

Besides the process of polymer chain collapse at the single molecule level, an additional
phenomenon manifests itself in the molecular dynamics’ simulations of multiple chains, namely
agglomeration of the collapsed chains. The collapse of the polymer chain is a prerequisite for
the aggregation and the precipitation of the solution thus the two processes can be considered
concomitant. At phenomenological level it can be observed as shrinkage of the polymer microgel.
Our multiple chain simulations are illustrative in this respect and reproduce faithfully the experimentally
observed agglomeration. Figure 5 contains snapshots extracted from the simulation trajectory of
NIPAM oligomers using an extended starting conformation, leading finally to chain collapse at
333.0 K. The visual inspection in a molecular viewer (VMD) supports the phenomenon of low
critical solution point phase transition. A comparison of the first snapshot (dispersed chains in
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solution) and the last snapshot of the trajectory (i.e., at 0.0 ns and 12.0 ns, respectively) witnesses
the collapse of the oligomer chains and their consequent aggregation which experimentally is
registered as insolubility—formation of aggregates above the transition temperature point. Analogous
results (computational reproduction of agglomeration) were reported for yet another N-substituted
acrylamide-based polymer—poly(N-n-propylacrylamide) (PnnPAm) which is a structural isomer of
the poly(N-isopropylacrylamide) [46].Entropy 2020, 22, x FOR PEER REVIEW 10 of 19 
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The dependence of the results on the starting conformations was also examined. Figure S3
displays the results for the 12-mer NIPAM and IPOZ molecules, starting from an initially optimized
conformation [41]. There is slight tendency for both oligomers to unfold at low temperature conditions.
This result is an interesting computational evidence for the thermoresponsive effect in the reverse
direction—the case with initial pre-collapsed chain conformation which strives to adopt extended
state when subjected to low temperature. Previous attempts to demonstrate the effect for initially
collapsed NIPAM oligomer chain failed to observe such behavior, even at very long duration of
the simulation—1.0 µs [47]. A possible reason could be hidden behind their MD setup with a
single chain NIPAM oligomer [47] against the multiple chains’ simulations in our case. The low
temperature simulation of the IPOZ oligomer (with optimized starting conformation) also shows signs
for computational reproduction of the thermoresponsive effect: As expected the simulations at the
low temperature regime lead to increase of the end-to-end distance (Figure S3d). However, obtaining
extended final coil state in a hydrated (a swollen coil) conformation is beyond reach in our simulation
setup since the effect could be fully revealed in computations with much longer time scales.

Next, we looked for details about the solvent structure around the hydrophobic and the hydrophilic
moieties of the oligomers. More specifically, in order to elicit the factors at molecular level that govern
the thermoresponsive behavior we examined the modes of solvent–polymer interactions in terms of
hydrogen-bonding and overall polar contacts. Supposedly the major role in the process has to be
ascribed to the so-called “bound water”. One can differentiate two types of bound water molecules:
Hydrogen bonded water molecules with the –C=O or –N–H groups of the polymer molecule and
interactions that can take place with the participation of the hydrophobic groups—methyl groups or
the main-chain skeleton. As far as hydrophobic ordering is concerned, we tackle the issue of solvation
patterns and reorganizations around hydrophobic moieties in terms of entropy contribution. Actually,
the organization of the proximal solvent molecules is reflected in the entropy calculations (vide infra).
The detailed local structure of the water clathrates around the polymer molecule is beyond the scope
of our examination.

We consider atoms X–H . . . Y (X, Y–N or O) to constitute a hydrogen bond if they fulfill the
following requirements: The donor–acceptor distance X . . . Y is less than 3.6 Å, the hydrogen–acceptor
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distance is less than 2.45 Å, and the angle between the donor–hydrogen vector and the donor–acceptor
vector is less than 30.0◦. The water–polymer hydrogen bonds are of two types: The polymer molecule
provides the donor group and the water oxygen atoms are acceptors in hydrogen bonding, or the
polymer molecule participates with acceptor groups and the water molecules are the donors in the
hydrogen bond pair. We estimated also the number of pairs of oligomer–solvent polar atom contacts.

The results for the variation with the simulation time of the hydrogen bond number and the
polar contacts for the 30-mer, 24-mer, and 12-mer NIPAM/IPOZ oligomer molecules are presented in
Figures 6 and 7 (and in Figures S4 and S5). The data is consistent with the thermoresponsive effect.
The number of hydrogen bonds remains constant at the low temperature (263.0 K) (Figure 6a,c and
Figure 7a,c and Figures S4a,c and S5a,c), whereas it diminishes sharply with the simulation time at
high temperature (333.0 K) reflecting the folding process of the oligomer chains with concomitant
breaking of water-oligomer hydrogen bonds (Figure 6b,d and Figure 7b,d and Figures S4b,d and
S5b,d). The time dependence of the polar contacts follows closely the hydrogen bond number curve in
all cases.
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between polar atoms of the 30-mer NIPAM/IPOZ molecules and the solvent molecules, starting from
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With the next set of time series (Figure 8) we seek to find differences in the time dependent
hydrogen bonding patterns for the NIPAM and the IPOZ oligomers when the starting conformation of
the oligomer molecule is optimized from conformational search [41]. At high temperature (333.0 K)
the number of both PNIPAM-water (Figure 8b) and PIPOZ-water (Figure 8d) hydrogen bonds remains
constant (very low) with the simulation time, as expected for the folded state of a thermoresponsive
polymer at high temperature. The rapid increase of the oligomer–water hydrogen bonds number
at low temperature in the first few nanoseconds reflects the process of unfolding for both PNIPAM
(Figure 8a) and PIPOZ (Figure 8c). Evidently, the effects are even more strongly pronounced when
using initially optimized geometries.
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For the sake of delving deeper into the thermodynamic factors governing the phase transition,
we focused on estimating the entropy component of the free energy as a possible reason for the
thermoresponsive behavior. Such a scenario consistently explains the reverse temperature effect: If the
change of entropy is positive (increase of entropy), then with increasing the temperature the free energy
of the system will change favorably (diminishes due to the term –T∆S). Moreover, one can decompose
the entropy effect into separate contributions that provides means to gain further insight into the
mechanism of the thermoresponsive phase transition. The entropy change can be decomposed either
in terms of the separate system components (e.g., solute vs. solvent) or estimated as contributions
corresponding to the classification of the degrees of freedom of the system as translational, rotational
and vibrational. What we attempted was to determine the entropy differences of the oligomer chains at
two temperatures, one of them below and the other above the LCST, and to compare it with the entropy
change related to the water solvent shell. Our estimates are based on the approach of Schlitter [43,44].
The covariance matrix of the positional fluctuations of the atoms (the g_covar routine of the GROMACS
suite was used) was determined for the purpose, i.e., the configurational entropy was extracted from
the fluctuations of the 3N-6 internal degrees of freedom of the oligomer. The elements of the covariance
matrix are time averages over the configurations along the molecular dynamics’ trajectory. Then the
Schlitter’s formula was applied by using the eigenvalues/eigenvectors of the covariance matrix [44].
The estimation of the entropy changes of the solvent also poses specific problems, originating from
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the diffusive motion of the water molecules which leads to enlargement of the configurational space
available to the solvent. Here again we evaluated the Cartesian-coordinate covariance matrix.

Figure 9 displays the computed total entropy changes (including both, the oligomer and the
solvent contributions) at 263.0 K and 333.0 K. For all 30-mer cases the calculated entropy change is
negative at the low temperature and it is positive for the simulations at the high temperature regime.
The data unequivocally supports the “entropy driven” hypothesis for the thermoresponsive effect.
On the other hand, the case of 24-mers and 12-mers is characterized with positive total entropy changes
at high and at low temperatures. However, the entropy change at 263.0 K is smaller in comparison
to the 333.0 K and thus entropy is still favorable for the folding events at high temperatures in this
case. This difference is even more pronounced in terms of the entropy contribution to the free energy
change, since the entropy term is given higher weight with heightening of the temperature (due to the
–T∆S term). Thus, even close values of the entropy variation may lead to significant differences in the
free energy change of the process. Therefore, the sets of 24-mer and 12-mer data is also in support for
the decisive role of the entropy change as the key thermodynamic factor responsible for the collapse
of the polymer at high temperatures. It is honest to mention that this data set contains a peculiar
point—NIPAM12_OPT large entropy change which cannot be logically explained.
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adequate sampling is problematic for rugged and frustrated energy surfaces—it is tricky to visit all 
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factor appears to be a system specific property—the properties of the energy surface. It is supposed 
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Figure 9. The overall entropy changes for the 30-mer, 24-mer and 12-mer NIPAM and IPOZ systems
(NIPAM30_L and IPOZ30_L refer to simulations with large box size (300 Å side); NIPAM12_OPT and
IPOZ12_OPT refer to simulations with initially optimized forms). The figure displays the results from
simulations at two extreme temperature points—at 263.0 K (blue bars) and at 333.0 K (red bars).

We have to keep in mind the approximations underlying the quasiharmonic approach, namely not
accounting for anharmonicities of the vibrations and the correlations of the probability distributions.
A necessary condition for convergence to realistic entropy values is the adequate phase space sampling
which could be controlled but may require long simulation times. Besides, adequate sampling is
problematic for rugged and frustrated energy surfaces—it is tricky to visit all relevant energy wells
and estimate their relative populations. Therefore, an important limiting factor appears to be a system
specific property—the properties of the energy surface. It is supposed to be approximated by quadratic
function of the internal coordinates. This condition is severely critical for the solvent dynamics. If the
water molecules’ dynamics do not deviate from harmonic approximation (which validates the analysis
of the covariance matrix) we can give credit to the reported computational results and consequent
conclusions. Unfortunately, the literature is scant for data on the numerical accuracy of the approach.
One possible avenue for future improvements of the accuracy of the results is the inclusion of the cubic
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anharmonic terms [48]. Assuming that our systems meet these conditions, we can proceed with this
method to dissect further the entropy contributions.

Next, we estimated the variation of the entropy in a decomposed mode, namely for the oligomer
component (Figure 10a) versus the solvent component (Figure 10b) for the two extreme temperature
points—263.0 K vs. 333.0 K. Both the NIPAM and the IPOZ oligomers show loss of configurational
entropy of the backbone chain upon its collapse at high temperature for all cases, except for the 12-mer
IPOZ with optimized initial conformation. However, the concurrent entropy change of the solvent
increases in all cases (Figure 10b) and compensates for the entropy loss of the oligomer—in total
the entropy change is positive as shown in Figure 9. The backbone chain entropy changes at low
temperature are negative for most cases. A notable exception is the 12-mer IPAM oligomer with
optimized initial conformation. However, this is not surprising, because the thermoresponsive oligomer
is supposed to strive to unfold at low temperature and increase its absolute entropy thus making the
entropy change for the process positive. The solvent entropy change for the low temperature series is
markedly convenient for explaining the thermoresponsive effect in the 30-mer case, i.e., the negative
entropy change contribution which overcomes considerably the positive entropy change of the
oligomers, makes temperature induced folding unfavorable. The case of the solvent entropy values for
the 24-mers and 12-mers at low temperature can be discussed in comparison with the high temperature
point results and explained as done above for the total entropy changes in order to apply the entropy
calculations results for explanation of the thermoresponsive effect.
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contribution. The figure displays the results from simulations at two extreme temperature points—at
263.0 K (blue bars) and at 333.0 K (red bars). Entropy calculations were carried out for the 30-mer, 24-mer
and 12-mer NIPAM and IPOZ systems (NIPAM30_L and IPOZ30_L refer to simulations with large box
size (300 Å side); NIPAM12_OPT and IPOZ12_OPT refer to simulations with initially optimized forms).

On the other hand, a possible explanation at the molecular level might be given in terms of
the solvent-solvent interactions in the presence of exposed functional groups of the polymer in the
extended conformation, and compared with the inaccessibility of these functional groups by the solvent
in the collapsed globular state. For the extended form of the polymer, at temperatures below the
LCST, the solvent molecules organize themselves in ordered structures of water clusters around the
exposed polymer functional groups linked via hydrogen-bonded networks with the polymer. It had
been shown that the solvent molecules of the first solvation shell are involved in a hydrogen bond
network characterized by hydrogen bonding bridges between neighboring isopropylamide groups in
a way that favors an extended conformation of the PNIPAM molecule below LCST [49]. Such ordered
structures contribute for the lowering of the overall entropy of the system by restricting the degrees of
freedom of the system. This arrangement of water molecules is no longer stable above the transition
temperature point. The additional degrees of freedom upon release of solvent molecules raise the
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entropy significantly. With increasing the temperature, increases the weight of the entropy contribution
to the overall free energy of mixing, whereas when the free energy change is positive then the observed
effect is phase separation. According to our results, the entropy of the solvent is the decisive factor for
the thermoresponsive behavior of the PNIPAM/water and the PIPOZ/water binary solutions.

4. Conclusions

We attempted to elucidate the mechanism of the heat-induced phase separation in two
thermoresponsive polymers containing amide groups, PNIPAM and PIPOZ, and we succeeded
in reproducing the existence of transition temperature point. We found out that the entropy has
an important contribution to the thermodynamics of the phase separation transition. Moreover,
we revealed that the entropy of the solvent has the decisive share for the lowering of the free energy of
the system when increasing the temperature above the LCST. The water molecules structured around
the functional groups of the polymer that are exposed to contact with the solvent in the extended
conformation lower the enthalpy of the system, but at certain temperature the extended conformation
of the polymer collapses as a result of dominating entropy gain from “released” water molecules.
In addition to further longer simulations, one could expect that upon increasing the number of polymer
chains in the simulation box and the size of the oligomer molecules the effect of the temperature
change on the polymer conformation and consequent aggregation of the solute molecules will be more
clearly pronounced.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/10/1187/s1,
Figures presenting the variation with the simulation time of the end-to-end distance, the radius of gyration and
the polymer–water hydrogen bonds. A section describing AMBER03 force field with explicit functional form.
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