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Abstract: Many animal species, including many species of bats, exhibit collective behavior where
groups of individuals coordinate their motion. Bats are unique among these animals in that they use
the active sensing mechanism of echolocation as their primary means of navigation. Due to their use
of echolocation in large groups, bats run the risk of signal interference from sonar jamming. However,
several species of bats have developed strategies to prevent interference, which may lead to different
behavior when flying with conspecifics than when flying alone. This study seeks to explore the role
of this acoustic sensing on the behavior of bat pairs flying together. Field data from a maternity
colony of gray bats (Myotis grisescens) were collected using an array of cameras and microphones.
These data were analyzed using the information theoretic measure of transfer entropy in order to
quantify the interaction between pairs of bats and to determine the effect echolocation calls have on
this interaction. This study expands on previous work that only computed information theoretic
measures on the 3D position of bats without echolocation calls or that looked at the echolocation
calls without using information theoretic analyses. Results show that there is evidence of information
transfer between bats flying in pairs when time series for the speed of the bats and their turning
behavior are used in the analysis. Unidirectional information transfer was found in some subsets of
the data which could be evidence of a leader–follower interaction.
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1. Introduction

Many social animals such as insects, fish, birds, and bats exhibit collective behavior, where one
individual adjusts its behavior in response to other members of the group [1,2]. One aspect of collective
behavior that has received much interest is collective motion of animal groups [3–5], which results in
impressive displays by coordinated bird flocks and fish schools for example, and has applications in
engineering multi-agent or distributed systems. While these behaviors have long been studied from
the point of view of mathematical models, one relatively new method of studying collective motion is
information theory [3].

Information theoretic tools such as mutual information, causation entropy, and transfer entropy
have recently become popular methods for studying the interactions of individuals in a model-free
context. Information theory is based on work by Shannon [6] and has been used in many
studies on topics such as computational neuroscience [7–9], analysis of complex systems [10],
collective robotics [11,12], weather and climate science [13], and social media [14,15]. Specifically,
transfer entropy, an extension of Shannon’s concept of entropy to measure information flow
between time series, has been used to study the interaction of animal groups such as fish [16],
meerkats (Suricat suricatta) [17], and insects [18]. It has also previously been used to determine
leader–follower interactions in meerkats [17], bats [19,20], and in fish–robot interactions [21].
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Previous studies have used information theory to model the interaction between bats flying in
pairs [19,20]. Using 3D trajectories extracted from videos of wild bats in flight, these studies used
transfer entropy and convergent cross mapping to identify interaction between bats. The results
from the studies show evidence of information exchange between bats in a pair as well as greater
information flow from bats flying behind their partners in space, indicating that the rear bat is leading
the pair.

Echolocating bats are somewhat unique from other social animals in that they use the active
sensing mechanism of echolocation as their primary means of navigation and obstacle avoidance [22].
Bats emit directional ultrasonic pulses and are able to receive information about their environment
based on the spectral changes, amplitude, and time delay of the returning echoes [23]. Since the
bats must be able to compare the echo to the original call, they risk interference from calls made
by nearby conspecifics, also known as sonar jamming [24]. Many bat species are social and live in
colonies ranging in size from tens to millions of bats for at least part of their annual life-cycle [25,26].
When roosting in such colonies, they often emerge from roosts nightly in large swarms and fly in
groups at high speeds. Since these bats rarely collide with each other or objects in their environment,
it suggests they have developed strategies to avoid signal interference. Studies supporting this idea
have shown that some of the sensing strategies used by bats may be a response to sonar jamming,
such as frequency modulation [27–29], adjusting pulse emission rates [30–32], and eavesdropping on
conspecifics [33–35].

One strategy used by bats to prevent sonar jamming is adjusting pulse emission rates. In one
study, wild-caught Mexican free-tailed bats (Tadarida brasiliensis Mexicana) were placed in a wire cage
in a recording studio, and the number of calls made by the bats were counted [30]. It was found
that artificial calls played in the recording studio caused slower emission rates by the bats, and this
reduced the relative proportion of emitted pulses that overlapped with another bat. In another study,
Mexican free-tailed bats were recorded flying in a laboratory where artificial calls were directed at
varying angles to the bat’s flight trajectory [31]. The bats reduced their call emission rates in the
presence of the artificial calls and had the worst navigational performance when the artificial calls
where produced from behind the bats in the direction they were flying, leading to the conclusion that
the direction of a conspecific’s call plays a role in the amount of interference. It is worth noting that
these responses may depend heavily on species. For example, observations of Eastern bent-wing bats
(Miniopterus fuliginosus) exiting a cave, suggested this species increased their call emission rate when
more bats were present [32].

As a more extreme response to sonar jamming, bats will sometimes cease making calls for a short
time and instead listen to the pulses produced by another bat. Chiu et al. recorded pairs of big brown
bat (Eptesicus fuscus) in a laboratory setting and found that when the bats were flying close together,
one would often fly silently for more than 0.2 s [33]. Since it has been shown that bats can passively
locate sources of sound, though with less accuracy than through active sensing [34], this study suggests
that the silent bats were able to use the calls made by the conspecific to avoid collisions. Another study
of hoary bats (Lasiurus cinereus) in the wild also found some cases where these bats flew in silence for a
short time [35].

Based on this evidence, this study seeks to test the hypothesis that bats listen to the calls of
their conspecifics. More specifically, this leads to a question that has not received much attention:
how much of a role do sonar calls play in the interaction of flying bats? The aim of this study was to
use transfer entropy to analyze the interactions of pairs of bats in flight and to expand upon and clarify
previous work which uses 3D trajectories by incorporating the calls made by each bat into the analysis.
While previous works have studied the role of echolocation calls in bat interactions, to the best of
our knowledge none of these have used information theoretic techniques to measure this interaction.
We believe that using these techniques gives additional insight into the behavior of bats in flight.
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2. Materials and Methods

2.1. Experimental Setup and Data Collection

Data for this study were collected in September 2019 from a wild bat colony in Bristol, VA, USA.
A maternity colony of about 10,000 gray bats (Myotis grisescens) roosts in a culvert, diverting Beaver
Creek, that runs under Bristol (Figure 1). At sunset, the bats emerge from the culvert and fly along the
creek to forage for insects. Four thermal cameras and an array of eight microphones were placed on a
bridge a short distance from the opening of the culvert to record the bats as they flew along the creek
and under the bridge. We note that the data collected here were not used in previous studies.

(a) Bridge (b) Culvert
Figure 1. Pictures of the bridge over Beaver Creek with the cameras and microphones set up for
recording and the culvert where the bats roost. Culvert photo credit [36]. Photo of the bridge was taken
12 September 2019.

2.1.1. Cameras

Four thermal cameras (Viento 640, Sierra Olympic, Hood River, OR, USA) with video acquisition
rate of 30 Hz, were used to film the bats’ flight paths (Figure 2). The cameras were placed in a line with
approximately 1 m between each camera. All the cameras were set at different angles to focus on a
point about 5 m from the bridge. Using the four views from the cameras, it is possible to obtain 3D
positions of points in a volume of approximately 5 m × 5 m × 8 m with the longest dimension aligned
with the width of the creek.

Figure 2. Thermal camera (in yellow circle) and one array of microphones (in magenta ovals).
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To calibrate the camera system for stereoscopic tracking [37], the intrinsic parameters of each
camera were found by filming a checkerboard with squares of known size and using MATLAB’s
Camera Calibration Toolbox [38]. To find the extrinsic parameters of the cameras, a wand with a
known length was moved though the space seen by all the cameras. The ends of the wand were heated
to be easily seen by the thermal cameras. This was done when all cameras had been set up in position
to record the bats, but before any bats had exited the culvert. The ends of the wand were tracked using
a custom digitizing software, DLT [39]. The extrinsic parameters were calculated using the easyWand
software [40], which relies on open source sparse bundle adjustment routines [41].

The cameras started recording when the bats began to leave the culvert, around sunset, and were
stopped only after most bats had exited, which took approximately 45 min. Pairs of bats were tracked
by hand from the videos to obtain their 3D trajectories. The tracking and acquisition of 3D points
were done in the same digitizing software used to track the wand points [39]. Figure 3 shows a pair
of bats that have been tracked in all four camera views. Pairs were defined as two bats which could
both be seen by all cameras for at least 10 frames while no other bats were in view of the cameras.
The first bat to enter the view of the cameras was designated the front bat and the second, the rear
bat. The 3D trajectories were smoothed using the MATLAB smooth function with the lowess method,
a local regression using weighted linear least squares and a 1st degree polynomial model [42], and then
interpolated using a cubic spline and re-sampled at 120 Hz. Only the trajectories at times in which
both bats were in view of the cameras were used for analysis. An example of the 3D trajectory of a pair
of bats can be seen in Figure 4.

Figure 3. Flight path of a pair of bats projected into all four camera views as tracked using the DLT
interface [39]. Tracked points are shown in magenta, cyan, and yellow.
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(a) View along x axis (b) View along y axis

Figure 4. 3D trajectories of the bat pair shown in Figure 3, where (a) gives the view along the x axis
and (b) gives the view along the y axis. The positions of the cameras and microphones are also shown.

2.1.2. Microphone Array

An array of eight microphones (USG Omidirectional Electret Ultrasound Microphones, Knowles FG-O,
Avisoft Bioacoustics, Nordbahn, Germany) with an acquisition rate of 250 kHz and a recording interface
(UltraSoundGate 816H, Avisoft Bioacoustics, Nordban, Germany) were used in this study to record
sounds made by the bats (Figure 2). The microphones were placed in two star arrays about 3 m apart.
The positions of the microphones in the array can be seen in Figure 5.

Figure 5. Placement of microphones in the array, where blue circles represent the microphones.

When recording in the field, the microphones were pointed horizontally in direction of the
negative z axis as shown in Figure 4 so they were aimed in the direction the bats were coming from.
The set up of one of the thermal cameras and one of the microphone arrays can be seen in Figure 2.
In order to synchronize the time on the videos and audio recordings, two metal objects were hit
together in view of one of the cameras. This produced a sound that was picked up by the microphones
at virtually the same time the impact can be seen in the video. After selecting bat pairs from the
videos, the calls made by the bats were analyzed using Batalef [43], a custom software program for
sound analysis with special features specifically designed for identifying and analyzing bat calls.
After finding all the calls made by a pair of bats, each call was manualy assigned to the front or rear
bat by looking at the amplitude and differences in the spectrogram of the call. These call assignments
were verified using MATLAB’s k-means cluster classification. An example of the spectrogram of some
calls can be seen in Figure 6.
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Figure 6. An example of calls recorded by the microphones. Top plot shows the microphone voltage
produced by the calls, lower plot shows a spectrogram of the calls. Two calls have been identified as
being produced by the front and rear bat.

2.2. Data Analysis

Transfer entropy (TE) is the measure of information flow from one time series to another and
was developed by Schreiber [44]. The TE is based on the Shannon entropy which is the expected
uncertainty in a random variable [6]. Shannon entropy is defined as:

H(X) = − ∑
x∈X

p[x] log2 p[x], (1)

where x is a measurement of a random variable X, X is the set containing all possible values of X,
and p[x] is the probability distribution function (PDF) of X.

Transfer entropy, TX→Y, measures the amount of information that flows from X to Y. It is
calculated as the amount of information the source, x(t), provides about the next state of the destination,
y(t + 1), in relation to the current state, y(t). It is defined as:

TX→Y = ∑
y(t+1)∈Y(t+1)

y(t)∈Y(t)
x(t)∈X(t)

p[y(t + 1), y(t), x(t)] log
p[y(t + 1)|y(t), x(t)]

p[y(t + 1)|y(t)] , (2)

where p[y(t + 1), y(t), x(t)] is the joint probability of y(t + 1), y(t), and x(t); p[y(t + 1)|y(t), x(t)] is
the probability of y(t + 1) conditioned on y(t) and x(t); and p[y(t + 1)|y(t)] is the probability of
y(t + 1) conditioned on y(t). For discrete time series data, a logarithm base of 2 is used and the units
of TE are bits. For continuous data, a logarithm base of e is used and the units of TE are nats [45].
Transfer entropy is asymmetric so, in general, TX→Y 6= TY→X . Due to this, the direction of information
flow in a system can be determined.

There are a variety of different methods that can be used to construct the PDF used to calculate
the TE [45]. One method is to sort the data into a finite number of bins and count the number of data
points in each bin to determine the probability function. While this method is very fast, it is not as
accurate as other methods. More complex and accurate methods include: a multivariate Gaussian
model, kernel estimation, permutation entropy, and the Kraskov, Stögbauer, and Grassberger (KSG)
technique [46]. Kernel estimation measures the similarity between pairs using a specific resolution.
The KSG technique improves on the kernel estimation method by using a dynamically altered kernel
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width that adjusts with sample density. The KSG method can measure non-linear relationships, is
model free, and requires fewer observations to achieve an accurate PDF estimations. While originally
used to calculate mutual information, it has been extended to also calculate transfer entropy [47].
For these reasons, the KSG technique is one of the most widely used PDF estimators [45]; we use it for
this study.

Transfer entropy was computed for two different 1D time series derived from the positions of
the bats; this analysis was then extended to a multidimensional version by augmenting these time
series with the acoustic data captured by the microphone array, which is detailed later. For the position
data, one of time series used was curvature of the flight trajectories which was chosen to measure the
response of one bat to a change in direction of another bat. The second time series used was the flight
speed, which was chosen to measure the response of one bat to a change in the velocity of another bat.
Examples of these 1D time series for a bat can be seen in Figure 7.

The 3D velocity (v) and acceleration (a) of each bat were calculated numerically by differentiating
the smoothed and interpolated position vector. The curvature (ρ) was then calculated using the
following equations:

an = a− at = a− a · v
||v||2 v (3)

ρ =
||an||
||v||2 (4)

where an is the normal acceleration and at is the tangential acceleration with respect to the flight path.
The speed was calculated as the norm of the 3D velocity vector at each time step.

(a) Curvature (b) Speed
Figure 7. Examples of plots the curvature of the trajectory, and speed of a single bat.

After calls had been found and assigned to each bat, they were translated to vectors of binary
values. These vectors were down sampled to match the trajectory data. Each index had a value of
1 if there was a call at that time and 0 if there were no calls. These vectors for each pair were then
concatenated, similar to the time series data. The final data used for TE analysis were two vectors of
position data for the front and rear bat and two vectors with the corresponding call data for the front
and rear bats.

The TE analysis was performed on 20 bat pairs together and on two subsets of the data.
The partition of the data was based on the time at which the pair flew in front of the cameras and
microphone array. Ten of the pairs of bats were recorded in the first 10 min in which the bat colony was
leaving the culvert. This will be referred to as set “Begin”. The other 10 pairs of bats were recorded
about 45 min later when the majority of the bats had already exited the culvert. This will be referred to
as set “End”.

Since TE analysis requires large sets of data for accurate results, the 1D time series data of each
pair was concatenated into two vectors, one containing all the time series data for the front bats and
the other all the data for the rear bats. By using this ensemble dataset, we have a single experimental
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data point. The higher the value of TE, the more information is shared between the data sets. However
the value of TE that signifies meaningful information transfer varies for different data sets. To create a
baseline for TE values that indicate significant interaction in a pair of bats, the bat pairs in each data set
were scrambled. A different rear bat was randomly assigned to each front bat (see Figure 8). Since bats
from different pairs were unlikely to have time series of the same length, the longer one of each pair
was truncated. The time series for these new pairings were concatenated like before (see Figure 8).
TE was calculated for 250 random pairings of bats for each subset of data. The same 250 random
pairing were used to calculate the baseline for curvature and speed. If the TE of the real pairing of bats
is larger than one standard deviation from the mean of the TE of the random pairings, it is considered
to be significant and evidence of information transfer between bat pairs. This approach was selected
since it takes into account that the experimental data are a single point rather than a mean of multiple
data points, as in for example, a one sample t-test.

(a) Original

(b) Random

Figure 8. Visual representation of concatenating time series and randomly reassigning pairs.

Transfer entropy was calculated for curvature of trajectories and speed of the bats for all 20 pairs
together and each of the subsets. Each of these data types and sets were calculated with calls
(multivariate TE) and without calls (univariate TE). Before computing TE, the data were normalized
to have zero mean and standard deviation of one. All TE calculations were done using the Java
Information Dynamics Toolkit (JIDT) [45]. When calculating TE with a KSG estimator, there is some
variance and bias with respect to the true PDF. If the true value is close to zero, the variance in the
estimated PDF can give small, negative TE values. Since these negative values mean that there is no
information transfer between variables, they are equivalent to zero TE. All calculated TE values that
were negative were set equal to zero for analysis.

3. Results

The results for the interaction of the bat pairs through the curvature of their trajectories can be
seen in Figures 9 and 10. When only position data are considered, the TE values from the rear bats
to the front bats of the Begin subset are above the baseline value for significance. However, in the
direction front to rear, there is very little information transfer. Adding the data about calls made by
the bats increases the TE in the Begin subset in the direction rear to front. However, most of the other
subsets in both directions have a decrease in both the TE values (seen in Figure 9) and in distance from
mean of the baseline (seen in Figure 10) when call data is included.

The results for the interaction of the bat pairs through their speed can be seen in Figures 11 and 12.
When looking at the TE of all the pairs of bats, there is significant information transfer both from
front to rear and rear to front. Adding data about the calls decreases the TE values but they generally
still remain above the baseline for significance. In the Begin subset of pairs, there is also significant
information transfer in both directions. In this subset, adding data about calls does not have much
effect on the number of standard deviations above the mean of random pairings of the TE, as shown
in Figure 12. The End subset only has significant information transfer in the direction rear to front.
Adding call data brings the TE value in both directions to just below the baseline value for significance.
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(a) Front to Rear

(b) Rear to Front

Figure 9. Transfer entropy of curvature of the trajectories for all sets of data. The randomized control
pairs are represented by the bar and error plots, where the bar represents the mean of the randomized
pairs and the error bar is one standard deviation from the mean. The transfer entropy (TE) of the
experimental pairings of bats is represented by the star. The TE of the experimental pairings must be at
least one standard deviation from the mean to be considered significant. (a) The information transfer
from the front bats to the rear bats. (b) The information transfer from the rear bats to the front bats.

(a) Front to Rear

(b) Rear to Front

Figure 10. Relative transfer entropy of curvature of the bat trajectories for all sets of data. The horizontal
axis represents the different subsets of data, and the vertical axis is the number of standard deviations
the experimental pairings are from the mean of the control pairs. Values must be above one standard
deviation from the mean of the random pairs (black horizontal line) to be considered significant. (a) The
information transfer from the front bats to the rear bats. (b) The information transfer from the rear bats
to the front bats.
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(a) Front to Rear

(b) Rear to Front

Figure 11. Transfer entropy of the speed of the bats for all sets of data. The randomized control pairs
are represented by the bar and error plots, where the bar represents the mean of the randomized pairs
and the error bar is one standard deviation from the mean. The TE of the experimental pairings of bats
is represented by the star. The TE of the experimental pairings must be at least one standard deviation
from the mean to be considered significant. (a) The information transfer from the front bats to the rear
bats. (b) The information transfer from the rear bats to the front bats.

(a) Front to Rear

(b) Rear to Front

Figure 12. Relative transfer entropy of the speed of the bats for all sets of data. The horizontal axis
represents the different subsets of data, and the vertical axis is the number of standard deviations the
experimental pairings are from the mean of the control pairs. Values must be above one standard
deviation from the mean of the random pairs (black horizontal line) to be considered significant. (a) The
information transfer from the front bats to the rear bats. (b) The information transfer from the rear bats
to the front bats.
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4. Discussion

For the study performed in this work, the greatest amount of information transfer is seen when
the speed of the bats is used for the transfer entropy analysis. This result suggests that, for many of the
subsets of bats, one of the bats adjusted its speed due to the speed of the other bat. Analysis of all pairs
of bats and the Begin subset show there is information transfer in both directions, meaning there is
no leader–follower interaction. In the End subset, there is information transfer from rear to front but
not front to rear. However, the difference between the two TE values is small and thus, this may not
signify leader–follower interactions. For most subsets, adding data about the echolocation calls does
not change the distance of the TE values from the baseline for significance, except in the set of all bats
where there is a decrease in information transfer. This indicates that the information flow between the
bats’ speeds are not generally changed when the other bat in the pair makes an echolocation call.

Inspection of the time series plots of the speed of the bats shows that the slopes of the line of best
fit for the speed plots tend to be similar for the same pair of bats even when the average speed of the
two bats varies by more than 2 m/s. This can be seen in example plots in Figure 13. This slope of the
speed is the same as the tangential acceleration which is the acceleration of the bats in the direction of
travel. This could mean that the pairs of bats are sharing information about their acceleration instead
of their speed. Due to the relation between speed and tangential acceleration, the TE analysis finds
information transfer in the speed as well. Further analysis needs to be done to confirm this correlation
between the tangential acceleration, and could be an area of study for future work on this topic.

(a) Speed time series of bat pair number 2 (b) Speed time series of bat pair number 15

(c) Speed time series of bat pair number 17

Figure 13. Examples of plots the speed of pairs of bats. A line has been fitted to the data to show the
similarity in the slopes of the speed.

The curvature of the trajectories captures more directional information flow between time series
representing the turning of the bats. TE analysis of the curvature of the bat trajectories shows evidence
of information transfer only in the set of bats that exited the culvert first. In this Begin subset, there is
information transfer from the rear bat to the front bat, but no information flow from the front bat to
the rear bat. This indicates leadership of the rear bats, which is consistent with the findings in [19].
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Including data about calls increases the statistical significance of the information transfer. This suggests
that the front bat listens to echolocation calls made by the rear bat and adjusts its curvature according
to information learned from the calls.

Comparison of the subsets Begin and End can give some additional insight into the behavior
of the bats. There is more information transfer in the Begin subset than the End subset in both the
curvature and speed analyses. This could indicate different behavior from the group of bats that leave
the roost before the majority of the colony and the group that leaves the roost after the majority of
the other bats which may be due to intrinsic characteristics of the bats, like boldness, hunger, or age.
An extension of this study could be to record bats over the span of many nights to see if this is a
recurring behavior.

Overall, the results from this study are consistent with the result found in a previous study [19],
showing that there is evidence of leadership by the rear bat in the curvature of the trajectories.
The addition of data from the echolocation calls also supports this finding. This study expanded on the
previous study by using a new data set on a different colony of bats, looking at the speed and flight
direction of the bats, as well as adding data about the echolocation calls. There are a few areas in which
future work could be done to expand on this study. The first would be to record bats at different times
of the year or at different times in the same night to see if there are any behavioral changes that can be
identified in the information transfer. Another potential study would be to expand the area captured
by the cameras. This could give more information on how distance affects the interaction between in a
pair of bats. The previous study [19] also looked at how obstacles affected interaction, and this could
be studied in further detail by adding data from the echolocation calls made by the bats.

5. Conclusions

Based on the results from this study, we propose some theories about the behavior of the bats that
were recorded. The increased information transfer in the beginning set of bats compared to the ending
set of bats suggests that some characteristics of the first bats to leave the colony were different from the
last bats to leave the colony. A possible explanation for this is that the bats who left early were hungry
and begin to forage for insects immediately after leaving the culvert, where as the bats who left later
might have been less hungry and did not start hunting immediately. The study by Chiu [48] suggests
that bats follow each other when capturing insects. Thus, the bats who left the culvert early and
immediately started hunting might follow each other more than bats that are flying without searching
for food.

Another possible theory is that the age of the bats plays a role in the amount of their interaction.
The colony at which these data were collected was a maternity colony. At the time of year the data were
collected, the population of bats was made up of adult female bats and nearly fully grown juveniles.
It is possible that certain pairings of bats are more likely to share information each other than other
pairings. For example, a juvenile might be more likely to follow an adult bat, since the older bat may
be better at navigation and foraging. Under this assumption, it is possible that the first bat pairs to
leave the culvert were made up of more mixed-age bats that wanted to follow each other than the bat
pairs leaving the culvert later.

Overall this study gives insight into the behavior of bats in flight. Beyond the experimental
extensions detailed in the discussion, it would be possible to use other information theoretic measures,
such as mutual information or other entropies. These measures may highlight different trends in the
data that are not revealed by transfer entropy and may offer a more nuanced view of information
transfer between the bats.

Author Contributions: Conceptualization, I.S. and N.A.; data curation, I.S.; funding acquisition, N.A.;
methodology, I.S. and N.A.; software, I.S.; visualization, I.S., N.A.; writing—original draft, I.S.; writing—review
and editing, I.S. and N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation under grant CMMI-1751498.



Entropy 2020, 22, 1176 13 of 15

Acknowledgments: The authors would like to acknowledge W. Mark Ford and Hila Taylor for their assistance in
finding and selecting the bat colony used for data collection in this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Parrish, J.K.; Hamner, W.M. Animal Groups in Three Dimensions: How Species Aggregate; Cambridge University
Press: Cambridge, UK, 1997.

2. Krause, J.; Ruxton, G.D. Living in Groups; Oxford University Press: Oxford, UK, 2002.
3. Pilkiewicz, K.; Lemasson, B.; Rowland, M.; Hein, A.; Sun, J.; Berdahl, A.; Mayo, M.; Moehlis, J.; Porfiri, M.;

Fernández-Juricic, E.; et al. Decoding collective communications using information theory tools. J. R.
Soc. Interface 2020, 17, 20190563.

4. Lemasson, B.H.; Anderson, J.J.; Goodwin, R.A. Collective motion in animal groups from a neurobiological
perspective: The adaptive benefits of dynamic sensory loads and selective attention. J. Theor. Biol. 2009,
261, 501–510.

5. Strömbom, D. Collective motion from local attraction. J. Theor. Biol. 2011, 283, 145–151.
6. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.
7. Stramaglia, S.; Wu, G.R.; Pellicoro, M.; Marinazzo, D. Expanding the transfer entropy to identify information

circuits in complex systems. Phys. Rev. E 2012, 86, 066211.
8. Lizier, J.T.; Heinzle, J.; Horstmann, A.; Haynes, J.D.; Prokopenko, M. Multivariate information-theoretic

measures reveal directed information structure and task relevant changes in fMRI connectivity.
J. Comput. Neurosci. 2011, 30, 85–107.

9. Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—a model-free measure of effective connectivity
for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67.

10. Prokopenko, M.; Boschetti, F.; Ryan, A.J. An information-theoretic primer on complexity, self-organization,
and emergence. Complexity 2009, 15, 11–28.

11. Martinoli, A.; Easton, K.; Agassounon, W. Modeling swarm robotic systems: A case study in collaborative
distributed manipulation. Int. J. Robot. Res. 2004, 23, 415–436.

12. Dudek, G.; Jenkin, M.R.; Milios, E.; Wilkes, D. A taxonomy for multi-agent robotics. Auton. Robot. 1996,
3, 375–397.

13. Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the curse of dimensionality in estimating multivariate
transfer entropy. Phys. Rev. Lett. 2012, 108, 258701.

14. Ver Steeg, G.; Galstyan, A. Information-theoretic measures of influence based on content dynamics.
In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Rome, Italy,
4–8 Feburary 2013; pp. 3–12.

15. Bauer, T.L.; Colbaugh, R.; Glass, K.; Schnizlein, D. Use of transfer entropy to infer relationships from
behavior. In Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research
Workshop, Oak Ridge, TN, USA, 8–10 January 2013; pp. 1–4.

16. Butail, S.; Mwaffo, V.; Porfiri, M. Model-free information-theoretic approach to infer leadership in pairs of
zebrafish. Phys. Rev. E 2016, 93, 042411.

17. Richardson, T.O.; Perony, N.; Tessone, C.J.; Bousquet, C.A.; Manser, M.B.; Schweitzer, F. Dynamical coupling
during collective animal motion. arXiv 2013, arXiv:1311.1417.

18. Lord, W.M.; Sun, J.; Ouellette, N.T.; Bollt, E.M. Inference of causal information flow in collective animal
behavior. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2016, 2, 107–116.

19. Roy, S.; Howes, K.; Müller, R.; Butail, S.; Abaid, N. Extracting Interactions between Flying Bat Pairs Using
Model-Free Methods. Entropy 2019, 21, 42.

20. Orange, N.; Abaid, N. A transfer entropy analysis of leader-follower interactions in flying bats. Eur. Phys. J.
Spec. Top. 2015, 224, 3279–3293.

21. Butail, S.; Ladu, F.; Spinello, D.; Porfiri, M. Information flow in animal-robot interactions. Entropy 2014,
16, 1315–1330.



Entropy 2020, 22, 1176 14 of 15

22. Nelson, M.E.; MacIver, M.A. Sensory acquisition in active sensing systems. J. Comp. Physiol. A 2006,
192, 573–586.

23. Thomas, J.A.; Moss, C.F.; Vater, M. Echolocation in Bats and Dolphins; University of Chicago Press:
Chicago, IL, USA, 2004.

24. Ulanovsky, N.; Fenton, M.B.; Tsoar, A.; Korine, C. Dynamics of jamming avoidance in echolocating bats.
Proc. R. Soc. London. Ser. B Biol. Sci. 2004, 271, 1467–1475.

25. Betke, M.; Hirsh, D.E.; Makris, N.C.; McCracken, G.F.; Procopio, M.; Hristov, N.I.; Tang, S.; Bagchi, A.;
Reichard, J.D.; Horn, J.W.; et al. Thermal imaging reveals significantly smaller Brazilian free-tailed bat
colonies than previously estimated. J. Mammal. 2008, 89, 18–24.

26. McFarlane, D.A.; Keeler, R.C.; Mizutani, H. Ammonia volatilization in a Mexican bat cave ecosystem.
Biogeochemistry 1995, 30, 1–8.

27. Bates, M.E.; Stamper, S.A.; Simmons, J.A. Jamming avoidance response of big brown bats in target detection.
J. Exp. Biol. 2008, 211, 106–113.

28. Hase, K.; Miyamoto, T.; Kobayasi, K.I.; Hiryu, S. Rapid frequency control of sonar sounds by the FM bat,
Miniopterus fuliginosus, in response to spectral overlap. Behav. Process. 2016, 128, 126–133.

29. Hiryu, S.; Bates, M.E.; Simmons, J.A.; Riquimaroux, H. FM echolocating bats shift frequencies to avoid
broadcast–echo ambiguity in clutter. Proc. Natl. Acad. Sci. USA 2010, 107, 7048–7053.

30. Jarvis, J.; Jackson, W.; Smotherman, M. Groups of bats improve sonar efficiency through mutual suppression
of pulse emissions. Front. Physiol. 2013, 4, 140.

31. Adams, A.M.; Patricio, A.; Manohar, R.; Smotherman, M. Influence of signal direction on sonar interference.
Anim. Behav. 2019, 155, 249–256.

32. Lin, Y.; Abaid, N.; Müller, R. Bats adjust their pulse emission rates with swarm size in the field. J. Acoust.
Soc. Am. 2016, 140, 4318–4325.

33. Chiu, C.; Xian, W.; Moss, C.F. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.
Proc. Natl. Acad. Sci. USA 2008, 105, 13116–13121.

34. Koay, G.; Kearns, D.; Heffner, H.E.; Heffner, R.S. Passive sound-localization ability of the big brown bat
(Eptesicus Fuscus). Hear. Res. 1998, 119, 37–48.

35. Corcoran, A.J.; Weller, T.J. Inconspicuous echolocation in hoary bats (Lasiurus Cinereus). Proc. R. Soc. B
Biol. Sci. 2018, 285, 20180441.

36. Ristau, R. Analysis Finds 37 of Nearly 500 Bridges in Region Structurally Deficient. 2017.
Available online: https://www.heraldcourier.com/news/analysis-finds-of-nearly-bridges-in-region-
structurally-deficient/article_fa077501-077d-5e91-8f8e-9be20b967ecf.html (accessed on 14 October 2020) .

37. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000,
22, 1330–1334.

38. MathWorks. Help Center: What Is Camera Calibration. 2020. Available online: https://www.mathworks.
com/help/vision/ug/camera-calibration.html (accessed on 14 October 2020).

39. Hedrick, T.L. Software techniques for two-and three-dimensional kinematic measurements of biological and
biomimetic systems. Bioinspir. Biomimetics 2008, 3, 034001.

40. Theriault, D.H.; Fuller, N.W.; Jackson, B.E.; Bluhm, E.; Evangelista, D.; Wu, Z.; Betke, M.; Hedrick, T.L.
A protocol and calibration method for accurate multi-camera field videography. J. Exp. Biol. 2014,
217, 1843–1848.

41. Lourakis, M.I.; Argyros, A.A. SBA: A software package for generic sparse bundle adjustment. ACM Trans.
Math. Softw. (TOMS) 2009, 36, 1–30.

42. MathWorks. Help Center: Smooth. 2020. Available online: https://www.mathworks.com/help/curvefit/
smooth.html (accessed on 14 October 2020).

43. Yovel, Y. Batalef—Audio Analysis Software for Animal Research. 2020. Available online: www.yossiyovel.
com (accessed on 14 October 2020).

44. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461.
45. Lizier, J.T. JIDT: An information-theoretic toolkit for studying the dynamics of complex systems.

Front. Robot. AI 2014, 1, 11.

https://www.heraldcourier.com/news/analysis-finds-of-nearly-bridges-in-region-structurally-deficient/ article_fa077501-077d-5e91-8f8e-9be20b967ecf.html
https://www.heraldcourier.com/news/analysis-finds-of-nearly-bridges-in-region-structurally-deficient/ article_fa077501-077d-5e91-8f8e-9be20b967ecf.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/curvefit/smooth.html
https://www.mathworks.com/help/curvefit/smooth.html
www.yossiyovel.com
www.yossiyovel.com


Entropy 2020, 22, 1176 15 of 15

46. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
47. Gómez-Herrero, G.; Wu, W.; Rutanen, K.; Soriano, M.C.; Pipa, G.; Vicente, R. Assessing coupling dynamics

from an ensemble of time series. Entropy 2015, 17, 1958–1970.
48. Chiu, C.; Reddy, P.V.; Xian, W.; Krishnaprasad, P.S.; Moss, C.F. Effects of competitive prey capture on

flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. J. Exp. Biol. 2010,
213, 3348–3356.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Experimental Setup and Data Collection
	Cameras
	Microphone Array

	Data Analysis

	Results
	Discussion
	Conclusions
	References

