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Abstract: Graph kernels are one of the mainstream approaches when dealing with measuring similarity
between graphs, especially for pattern recognition and machine learning tasks. In turn, graphs gained
a lot of attention due to their modeling capabilities for several real-world phenomena ranging from
bioinformatics to social network analysis. However, the attention has been recently moved towards
hypergraphs, generalization of plain graphs where multi-way relations (other than pairwise relations)
can be considered. In this paper, four (hyper)graph kernels are proposed and their efficiency and
effectiveness are compared in a twofold fashion. First, by inferring the simplicial complexes on the top of
underlying graphs and by performing a comparison among 18 benchmark datasets against state-of-the-art
approaches; second, by facing a real-world case study (i.e., metabolic pathways classification) where
input data are natively represented by hypergraphs. With this work, we aim at fostering the extension of
graph kernels towards hypergraphs and, more in general, bridging the gap between structural pattern
recognition and the domain of hypergraphs.

Keywords: hypergraphs; graph kernels; kernel methods; support vector machines; simplicial complexes;
topological data analysis

1. Introduction

Graphs are powerful data structures able to capture semantic and topological information from
data. For this reason, graphs are commonly used to model a plethora of real-world, possibly complex,
systems [1]. Notable examples include biological systems and chemistry [2-13], social and collaboration
networks [14], computer vision and image processing [15-18], natural language processing [19-22],
and energy distribution networks [23].

The price to pay for their modeling capabilities relies on the computational complexity needed in
order to compare two graphs [24], as graphs lie in non-metric spaces and thus lack algebraic structures
by definition [1]. To this end, several techniques have been proposed in literature in order to quantify
(dis)similarities between graphs. Herein, three mainstream approaches are sketched, along with their
respective major techniques, referring the interested reader to reviews such as those in [1,25].

Graph matching techniques evaluate the similarity directly in the graphs domain, conversely to the
other two following approaches. In this family, it is possible to find

o the isomorphism test (i.e., two graphs of the same size can be considered equal if they are isomorphic)
or the subgraph isomorphism test (i.e., if two graphs have different sizes, it is possible to check
whether the smaller graph is isomorphic to a “portion” of the bigger graph);
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e  partial matching, which overcomes the drawback of the two above methods by the evaluation of
the maximum (or minimum) common subgraph or the maximal common subgraphs [26-29]. In fact,
isomorphism (by definition) does not consider partial similarities: two graphs can be isomorphic, not
isomorphic or contained one into the other; and

e inexact graph matching, which does not consider an “exact” match between graphs or their respective
subgraphs. Rather, (dis)similarity between graphs is evaluated by means of a properly formulated cost
function, the seminal example being the (graph) edit distance [30,31], which evaluates the minimum
cost sequence of atomic operations (insertion, deletion and substitution) on nodes and edges in order to
transform the two graphs into one another.

Building an embedding space consists in moving the pattern recognition problem from the graphs
domain towards a possibly metric (Euclidean) space: instead of using the former, one can use the latter
which can be equipped with algebraic structures. To this family belongs

e dissimilarity spaces [32], where each pattern is described by the pairwise dissimilarities with respect
to all training data (or a properly-chosen subset [3,33,34]), and

e embedding via information granulation, where recurrent and meaningful entities called information
granules (e.g., network motifs, graphlets, and the like) are extracted by the training data and
each pattern is cast into an integer-valued vector (symbolic histogram) which counts the number
of occurrences of each granule within the pattern itself [35-40].

In kernel methods, the feature space is implicitly defined by means of a properly defined positive definite
kernel function which projects the (possibly structured) data into a (possibly infinite-dimensional) Hilbert
space in which data points are more likely to be linearly separable [41-43], e.g., by a maximal margin
classifier such as support vector machines [44].

The aim of this paper is the introduction of four hypergraph kernels defined over simplicial complexes.
In fact, while plenty of kernels have been designed for working in the domain of (labeled) graphs, there is
still lack of kernel methods for hypergraphs. More in general, this is true for structural pattern recognition
techniques, with the work in [36] being the only paper whose aim is to define suitable embedding spaces for
hypergraph classification purposes. The strengths of the proposed kernels are as follows: their evaluation
is not iterative; if the underlying graph is available, they are parameter-free; and, for some of them, the
evaluation can be easily vectorized. A potential drawback is that (in their current implementation, at
least) they only work on fully node labeled graphs, where nodes belong to a categorical and finite set (e.g.,
strings). The proposed kernels are compared to state-of-the-art graph kernels both in terms of efficiency
and effectiveness on 18 benchmark datasets for graph classification. Computational results show that
they generally outperform state-of-the-art graph kernels in terms of effectiveness and they are robust
with respect to the size of the dataset. Furthermore, their parameter-free peculiarity makes the training
phase appealing despite some state-of-the-art graph kernels outperform the proposed kernels in terms of
evaluation time.

The remainder of the paper is structured as follows. In Section 2, the current literature on graph
kernels is reviewed. In Section 3, hypergraphs and simplicial complexes are introduced. In Section 4, the
four proposed kernels are described. Section 5 addresses the effectiveness and efficiency of the proposed
kernels by comparing against state-of-the-art graph kernels (Section 5.1) and by facing a real-world
biological case study (Section 5.2) in which input data are natively described by hypergraphs and current
graph kernels cannot be employed. The properties of the proposed kernels are discussed in Section 6
(positive semi-definiteness) and Section 7 (computational complexity). Finally, Section 8 draws some
conclusions and future directions.
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2. Related Works on Graph Kernels

Graph kernels can be divided into four big families [25]. Model driven kernels, for example, exploit
generative models or transformative models. An example of generative model driven kernel is the Fisher
kernel [45], which exploits hidden Markov models. Conversely, an example of transformative model driven
kernel is the diffusion kernel [46], which exploits the heat equation in order to diffuse local information to
neighbor nodes.

The largest family is composed by syntax driven kernels, which aim at analyzing trees, paths, cycles or
subgraphs. Notable examples include random walk kernels [47,48], shortest path kernels [49], graphlet
kernels [50], and the Weisfeiler-Lehman kernels [51,52]. The first three, respectively, take into consideration
the number of random walks between two graphs via their product graph, the number of common shortest
paths, and the number of common k-order graphlets. The fourth one, instead, computes the number of
subtrees-walks shared between two graphs using the Weisfeiler-Lehman test of graph isomorphism.

Another state-of-the-art approach is given by propagation kernels [53], which are based on the spread of
information across several graphs using early-stage distributions from propagation schemes (e.g., random
walks) in order to model different types of node and edge labels. Such propagation schemes make
propagation kernels suitable for dealing also with unlabeled and partially labeled graphs.

Finally, deep graph kernels [54] can be seen as an extension of the aforementioned syntax driven
kernels, where a positive semi-definite matrix weights (encodes) the relationships between sub-structures
(e.g., graphlets).

For more information about these four families and a more exhaustive list of graph kernels belonging
to each family, the interest reader is referred to the very detailed survey [25].

Fewer works have been done by using hypergraphs: hypergraphs can be seen as generalization of
“plain graphs” where hyperedges can connect two or more nodes. In other words, hypergraphs extend
the modeling capabilities offered by graphs (Section 1) in cases where multi-way relations are of interest;
indeed, graphs take into account only pairwise relations [55-59]. A straightforward example may regard a
scientific collaboration network in which n authors co-authored a paper: if one has to model this scenario
using a graph, then one might consider nodes as authors which are connected by n(n — 1) /2 edges. This
modeling, however, is ambiguous about whether the n authors co-authored a paper or each pair of authors
co-authored a paper. Using hypergraphs, an hyperedge can link the n authors, with no ambiguities.
A more biologically-oriented example include protein interaction networks, where nodes correspond
to proteins and edges exist whether they interact. Again, this representation does not consider protein
complexes [60].

To the best of our knowledge, the only attempt to bridge the gap between hypergraphs and kernel
methods is described in [61], where the authors proposed edit distance-based hypergraphlet kernels for
node and vertex classification and link prediction, e.g., in protein—protein interaction networks.

Conversely to all previous works, in this paper four hypergraph kernels based on simplicial complexes
for classification problems are proposed, therefore we exploit the multi-scale organization of complex
networks addressing whether this modeling can also suit the definition of efficient and/or effective
kernel functions for hypergraph classification tasks and foster the extension of graph kernels towards
hypergraphs.

3. A Primer on Simplicial Complexes

A graph G = {V, £} is defined by a finite set of vertices V and a set of edges £ C V x V. Conversely,
a hypergraph HG = {V, 1} is identified by a finite set of vertices V and a set of hyperedges #, namely,
non-empty subsets of V. The striking difference between graphs and hypergraphs lies in their respective
sets £ and H: in fact, whereas £ collects edges which encode pairwise relationships between nodes,
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‘H collects hyperedges, whose cardinality can be greater than two. In order words, H is able to collect
multi-way relationships among elements in V.

Depending on the nature of the input data, building the corresponding hypergraph can be
straightforward. Let us consider the example of the co-authorship network from Section 2. Given a
paper p, with its respective authors list a4, ...,a,, it is possible to add to the hypergraph ay,...,a, as
nodes and an hyperedge linking them. Furthermore, if authors ay,...,a, co-authored more than one
paper together, the hyperedge can encode also this semantic information (i.e., the hyperedge is weighted
with the number of papers that authors ay, ..., a, co-authored together). An additional example (see later
Section 5.2) may regard the hypergraph representation of a metabolic network. A metabolic network
models the chain of chemical reactions occurring within the cell of a given living organism. It is well
known from basic chemistry that chemical reactions can involve more than two molecules, therefore the
hypergraph corresponding to a given metabolic network sees the molecules involved in any chemical
reaction as vertices, with hyperedges that link together groups of molecules involved in the same chemical
reaction.

Several representations of hypergraphs are available in the literature [59,62,63]. In the following,
let us focus on one of the most commonly used one: simplicial complexes. Before diving into a formal
definition of simplicial complex, it is worth defining the simplex of order (dimension) k (also, k-simplex) as
the convex hull composed by (k + 1) points. For example, points, lines, triangles, and tetrahedrons are
0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional simplices, being composed by 1, 2, 3, and
4 points (vertices), respectively, but also higher-order analogs exist. Every non-empty subset of the (k + 1)
vertices of a k-simplex is a face of the simplex: a face is itself a simplex. Therefore, a simplicial complex S can
be formally defined as a finite collection (set) of simplices having the following two properties,

1. if o € S, then every face of ris also in S, and
2. ifoq, 090 € S, then 07 N oy is a face of both 07 and o5.

A subcomplex of S is a subset of S which is also a simplicial complex: an important subcomplex is the
k-skeleton, namely, a simplicial complex with at most simplices of order k. As the edge itself is a simplex, a
graph can also be seen as a 1-skeleton (or 1-dimensional simplicial complex—where the dimension of a
simplicial complex is defined as the maximum order among its simplices), being composed only by edges
(1-dimensional simplices) and, eventually, nodes (0-dimensional simplices).

Several types of simplicial complexes exist and the choice mostly depends on their computational
complexity and the cardinality of the starting data [64—66]. Simplicial complexes are widely used in
the novel field of Topological Data Analysis in order to analyze a set of data by means of tools derived
from topology. Therefore, conversely to the previous two examples (i.e., co-authorship network and
metabolic network), in which the relationships between elements were perfectly described (i.e., well-known
authors—paper and molecules—reaction information), usually data may come as a point cloud. A point
cloud is defined as a finite set of points lying in some (possibly metric) space equipped with a notion of
similarity. In this scenario, there are no a priori information about the connectivity among data points and
several simplicial complexes can be employed in order to infer the simplicial structure and highlight the
topological organization of the underlying data points. Notable examples include the Alpha complex and
the Vietoris—Rips complex. The former relies on performing the Delaunay triangulation and then building
the restricted Voronoi regions by intersecting (for each data point) an a-radius ball centered to it with its
Voronoi region. The nerve of the set of all restricted regions is the Alpha complex at scale «. The latter is
more graph-oriented and is defined as follows; a set of k points forms a (k — 1)-dimensional simplex to be
included in the Vietoris-Rips complex if all pairwise distances between points are less than or equal to a
user-defined threshold €. An efficient two-step procedure in order to compute the Vietoris—Rips complex
has been proposed in [67]:



Entropy 2020, 22, 1155 5o0f 21

1. define the Vietoris-Rips neighborhood graph Gyr by scoring edges between any two vertices if their
distance is less than or equal to € and then
2. evaluate the flag complex of Gyr.

In turn, the flag complex (also, clique complex) is the simplicial complex whose simplices are the
maximal cliques in the underlying graph (1-skeleton). In other words, the clique complex is the topological
space in which each k-vertex clique is represented by a (k — 1)-simplex. Despite the minimalistic definition,
it is straightforward to demonstrate that the flag complex is a valid simplicial complex: every maximal
clique is a clique that cannot be made any larger and since every subset of a clique is also a clique (just like
a face of a simplex is a simplex itself), then the closure under inclusion (i.e., closure under taking subsets)
is automatically satisfied.

We stress the flag complex because of the following observation: simplicial complexes like the
Vietoris—Rips complex strictly depend on a scale parameter (i.e., €) which somewhat determines
the resolution of the simplicial complex (i.e., the resolution at which data have been observed).
Usually, by means of techniques such as persistence one finds a suitable value for € [5]. However, if the
underlying graph is already available, there is no need to build the neighborhood graph and find a suitable
value for € in order to build the Vietoris—Rips complex. Therefore, one can directly use the flag complex as
it encodes the same information as the underlying graph, but it additionally completes a topological object
with its fullest possible simplicial structure, being it a canonical polyadic extension of existing networks
(1-skeletons) [55].

4. Proposed Hypergraph Kernels

From Section 3 it is clear that a simplex can be identified by considering the set of corresponding
vertices. For example, when each vertex is just identified by a unique progressive number, it is impossible
to match two simplicial complexes (e.g., determine how many/which simplices they have in common)
and node labels play an important role: a simplex can be represented by the set of labels belonging to the
corresponding vertices. Thanks to the node labels, the matching procedure is straightforward and can be
done in an exact manner: two simplices (possibly belonging to different simplicial complexes) are equal if
they have the same order and they share the same node labels. This observation is at the basis of all of the
four kernels herein described.

4.1. The Histogram Cosine Kernel

The Histogram Cosine Kernel (HCK) is loosely based on the symbolic histogram technique. According
to the latter, a given structured pattern (be it a graph, a sequence, and so on) can be explicitly embedded
towards a Euclidean space by counting the number of recurrent and/or meaningful substructures
(subgraphs, subsequences, and so on) properly extracted from the training data and classification can be
performed in the Euclidean space spanned by these histogram vectors (for further details, the interested
reader is referred to works such as in [1,35,39,68] and references therein). HCK is also inspired by the
Graphlet Sampling kernel [50] and the Vertex Histogram kernel [69]. As the kernel evaluation relies on
pairwise matching between patterns, the pivotal substructures to be considered for the symbolic histograms
evaluation are the unique simplices between the two simplicial complexes to be matched. Specifically, let
S; and S; be two simplicial complexes and let A = S; U S; be the set of unique simplices belonging to
either S; or S;. Then, a given simplicial complex, say S, can be cast into a vector, say f € N I, where

f;, = count(Ay, S), Vk=1,...,]A] 1)
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where count(a, ) is a function that counts the number of occurrences of a4 in b and A;, denotes the k-th
element in A.
Therefore, thanks to Equation (1), §; — £() and S — £(), and HCK has the form

Kuc(Si, ) = (£, £0)y, 2)

where (-, -) denotes the plain dot product. However, HCK defined as in Equation (2) can be skewed by the
different number of simplices within each simplicial complex. To this end, the following normalization
is adopted,

£ £07)
Kyc (S, Sj) = , < , >, —. ®)
V£, €0 (£, £
Thanks to the product property of square roots, the latter can be written as
£ £0)
Kuc(Si, ) = < ) , 4)

VD, £0) -\ [ (0, £

therefore collapsing into the cosine similarity between the vector representation (i.e., histogram) of the two
hypergraphs, hence the name of the kernel.

4.2. The Weighted Jaccard Kernel

From Section 3 it is clear that simplicial complexes are sets. A straightforward idea is to use a similarity
measure between sets as the core of the kernel. The seminal example is the Jaccard similarity, defined as
the ratio between the size of the intersection divided by the size of the union between two sets. Since a
simplex can be identified by the set of labels associated to each node, different simplices within the same
simplicial complex can share the same node labels. This means that simplicial complexes are de facto
multisets and the Jaccard similarity as previously defined loses its effectiveness and needs to be extended
towards multisets. If S; and S; are two simplicial complexes to be matched, then their respective multiset
representations read as

Si = {ST(Sl),. . .,S;‘lff:(sni)} S] = {ST].(Sl),. . .,Szj(snj)}

where 71; and 7; denote the number of simplices in §; and Sj, respectively, and p; : S; — Nxo, ptj : Sj = N
are the two multiplicity functions for S; and ;. The latter is a function from the multiset (i.e., simplicial
complex) towards the non-negative integers that returns the multiplicity (i.e., the number of occurrences)
of an element (i.e., simplex s) within the multiset, with the caveat that if an element does not exist in
the multiset, its multiplicity is 0. Let us now define the universe I/ from which the support of the two
simplicial complexes are drawn

U = {s € Silui(s) > 0} U {s € Sjuj(s) >0} 5)

support of S; support of S;

Alike to the Jaccard similarity, the Weighted Jaccard Kernel is defined as the ratio between intersection and
union of the two simplicial complexes that, being multisets, generalizes as

min(p;(s), u(s))
max (p;(s), #(s))

KW](Si, S]) = Vs e U. (6)
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4.3. The Edit Kernel

The Edit Kernel (EK) aims at measuring the similarity between two simplicial complexes according
to the number of simplices to be inserted, removed and/or substituted in order to transform the two
simplicial complexes into one another. Let e(S;, S;) be an edit distance (Levenshtein-like) with unitary
weights. The first step is to convert the distance measure into a (possibly normalized) similarity measure.
In [70], it has been demonstrated that

. B 2'6(8118])
e(SlrS]) - |SZ| —+ |S]| —|—€(81,S])

@)

is a normalized edit distance in range [0, 1] which satisfies the properties of a metric. Furthermore, in [71],
it has been shown that if d is a normalized metric distance, then 1 — d is a normalized metric similarity.
Therefore, EK has the form

KE(SI,S]) = 1—8_(51',5]‘). (8)

It is noteworthy that edit distances/similarities are sensitive to the order of the input sequences. In order
to ease the matching procedure, within each simplicial complex, simplices are jointly sorted both
lexicographically (i.e., according to the node labels) and according to their orders.

4.4. The Stratified Edit Kernel

The Stratified Edit Kernel (SEK) takes into account the following issue with EK: the latter can be
skewed if the two simplicial complexes have a high variety of simplices per order. Let K be the set
of different orders amongst simplices in the two simplicial complexes to be matched, then the SEK is
defined as 1

_r ok k
Kse(S;,S)) = o L 157, 8) ©)
| ‘ ke
where S*) denotes the subset of k-simplices in the simplicial complex S. The stratification allows
to treat independently subsets of simplices having the same order; nonetheless, simplices are sorted
lexicographically within each subset.

5. Tests and Results

5.1. On Benchmark Datasets

In order to investigate both the effectiveness and the efficiency of the proposed kernels, 18 datasets
for graph classification have been considered. Details on the considered datasets (e.g., average number of
nodes, average number of edges, number of samples, nodes and edges attributes), along with download
links, can be found in [72]. No preprocessing has been performed on such data.

The four proposed kernels (HCK, WJK, EK and SEK) have been benchmarked against nine
state-of-the-art graph kernels, listed below along with their respective parameters (and admissible values)
to be tuned:

e  Graphlet Sampling (GS) [50]. Parameters: the dimension of the graphlets k € {3,4,5}

e  Neighborhood Hash (NH) [73]. Parameters: number of hashes R € {2,3,4,5} and the byte size of the
hashes 2% where b € {2,3,4}. Other settings: simple hash type

e  ODD-Sth (OS) [74]. Parameters: maximum single DAG heighth € {1,2,...,8}
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e  Propagation Kernel (PK) [53]. Parameters: number of iterations t € {1,2,...,10} and LSH width
w € [1078,1071]. Other settings: total variation as distance metric for LSH, base kernel set as the
linear kernel

e  Pyramid Match (PM) [75]. Parameters: pyramid histogram level L € {2,3,4,5} and hypercube
dimensiond € {2,...,10}.

e  Random Walk (RW) [76]. Parameters: decay factor A € (0,0.5)

e SVM Theta (ST) [77]. Parameters: maximum size of the vertex set of sampled subgraphs
M € {2,3,...,10} (minimum size m = 2) and number of samples s € {20,21,...,100}. Other settings:
product metric between theta numbers

e  Weisfeiler-Lehman Subtree Kernel (WL) [52]. Parameters: number of iterations ¢ € {1,2,...,10}.

e  Weisfeiler-Lehman Shortest Path Kernel (WLSP) [49,52]. Parameters: number of iterations
t € {1,2,...,10}. Other settings: shortest path matrices evaluated thanks to the Dijkstra algorithm.

As discussed in Section 3, the proposed four kernels are parameter-free (the flag complex can easily
be evaluated using the Bron-Kerbosch algorithm [78,79]), whereas the same is not true for the nine
competitors. A v-SVM [80] has been used in order to perform classification. The regularization term
v € (0,1], along with kernel parameters (if any) are learned via 10-fold cross-validation, driven by
random-search [81]. For all datasets except FIRSTMM_DB, due to heavy unbalancing between number
of splits and labels’ distribution, the cross-validation procedure has been stratified according to the
ground-truth labels.

The four proposed kernels are implemented in Python, using NumPy [82] and NetworkX [83] as
external dependencies, whereas the nine competitors belong to the GraKel library [84]. Finally, the v-SVM
implementation from the Scikit-Learn library [85] has been used for classification. The hardware setup
includes a Linux CentOS 7 workstation equipped with two hyperthreaded 14-core Intel® Xeon® Gold
5120 CPU @ 2.20 GHz with 192 GB of RAM. Multithreaded parallelism has been exploited in order to speed
up the optimization phase, where each thread processes the dataset by using a different set of parameters.

One final facet to stress before diving into the computational results lies on the graphs vs. hypergraphs
duality: indeed, the datasets used for experiments are graph datasets (not hypergraphs), yet the proposed
kernels are hypergraph kernels. The possibility to infer the simplicial structure from the underlying
graph (e.g., thanks to the flag complex) has a crucial role in this regard, thanks to which one can infer
hypergraphs starting from graphs, by adding additional information due to the definition of new possible
n-ary relations [55,58]. This makes the four proposed kernels comparable with graph kernels (i.e., they
both start from the same graphs). Notwithstanding that, it is safe to say that the four proposed kernels are
indeed hypergraph kernels since they work on the top of the simplicial complexes that, in this case, have
been obtained from the underlying 1-skeletons.

Figure 1 shows the results in terms of 10-fold cross-validation accuracy, a common practice in related
research papers on graph kernels. Due to intrinsic randomness in both cross-validation and random search,
each experiment has been repeated five times and the average value is shown. From Figure 1 it is possible
to see that the four proposed kernels are competitive against the nine competitors. Furthermore, they are
also very appealing for large datasets such as DD as no out-of-memory errors have been triggered and all
executions terminated within the 24 h deadline (for details, see caption of Figure 1).
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HCK WJK EK SEK GS NH (05} PK PM RW ST WL WL-SP

DHFR
ENZYMES
FIRSTMM_DB
MSRC_21

PROTEINS
PTC_FM
PTC_FR
PTC_MM
PTC_MR

Figure 1. Average accuracy on the test set. The color scale has been normalized row-wise (i.e., for each
dataset) from yellow (lower values) towards red (higher values, preferred). The times sign (x) indicates that
the experiment has been aborted after passing a 24-h deadline. The dagger (1) indicates that the experiment
went out-of-memory.

Conversely, Figure 2 shows the running times (in seconds) for evaluating the kernel matrix over the
entire dataset. Wall-clock times refer to a single-threaded evaluation, no parallelism has been exploited.
As the execution time is not deterministic due to spurious processes running in background, running
times have been averaged across five evaluations of the kernel matrices. For the nine competitors, the best
parameters returned by cross-validation have been used. From Figure 2 it is possible to see that RW is by
far the slowest kernels to compute, followed by EK and SEK. The latter two kernels lack any vectorized
statements, whereas the same is not true for HCK and WJK whose computational burden is competitive
with current approaches. Notwithstanding the running times as such, it is worth stressing that the nine
graph kernel competitors shall be evaluated several times in order to find a suitable set of parameters,
whereas HCK, WJK, EK, and SEK can be evaluated only once.
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HCK WJK EK SEK GS NH os PK PM RW ST WL WL-SP

AIDS| 09 20 511 762 98 484 53 311 1028 103 11 454
BZR| 03 03 102 113 60 31 18 26 43 13 02 181
Ccox2| 04 04 174 188 53 34 08 15 58 x 15 02
DD| 145 1508 2866 + 840 1851 f 736 175
DHFR| 07 07 151 236 254 180 x 31 07
ENZYMES| 05 06 1 115 90 50 133 112 x 22 05
FIRSTMM DB| 32 32 w 29 x 18 129 x 417 19
MSRC21| 03 04 64 57 15 26 14 22 171 09 02 177
MSRC.9| 16 23 1641 1358 64 t 135 143 x 28 13

MUTAG | 0.1 0.1 0.6 0.8 1.0 0.7 0.2 0.5 0.1 39

Mutagenicity | 3.1 5.7 1112 3642 x 311 37 i
NCIl| 29 55 72 4029 { X 290 71
NCI09| 29 56 730 3120 t 3094 X 291 48 t
PROTEINS| 12 14 188 403 20 372 374 x 77 18 1

PTC_FM| 0.1 0.1 1.3 21 24 1.6 22 1.8 28 09 0.2 4.0
PTC_FR| 0.1 0.1 1.4 21 1.5 1.6 1.3 1.0 815 1.1 0.1 47
PTC_MM| 0.1 0.1 1.2 19 14 15 0.6 15 43 0.8 0.2 8.8
PTC_MR| 0.1 0.1 1.3 2.0 1.4 1.3 1.1 1.3 43 0.8 0.2 35

Figure 2. Average running times (in seconds) for evaluating the kernel matrix on the entire dataset.
The color scale has been normalized row-wise (i.e., for each dataset) from yellow (lower values, preferred)
towards red (higher values). The times sign (x) indicates that the experiment has been aborted after
passing a 24-h deadline. The dagger (1) indicates that the experiment went out-of-memory. For the
four proposed kernels, running times also include the simplicial complexes evaluation starting from the
underlying graphs.

5.2. A Biological Case Study: Analysis of Metabolic Pathways

In Section 5.1, a suite of 18 benchmark datasets for graph classification has been used in order to assess
the performances of the proposed four kernels. Tests have been carried out against current approaches
by inferring the simplicial complex from the underlying 1-skeletons in order to make them comparable.
Here we present a biological case study in which entities are natively represented by hypergraphs and
regards the classification of metabolic pathways. Metabolic pathways represent the chain of chemical
reactions occurring in a cell and allow a straightforward network formalism [39,86,87]: vertices correspond
to metabolites (product/substrate of a chemical reaction) and edges are scored whether there exists a
chemical reaction transforming the two nodes into one another. Despite the network formalism has been
extensively used in order to analyze metabolic pathways, some information is necessarily lost in the
network formalization [88,89]. In fact, metabolic reactions often involve more than two reactants (e.g.,
A 4+ B — C+ D) and can be more conveniently represented by an hyperedge.

From the KEGG database, the metabolic pathways of 5299 organisms have been collected using its
API in KGML format: KGML is the KEGG markup-like format in which each reaction in a given metabolic
network is returned as a list of substrates and list of products. Therefore, the KEGG output can be
interpreted as an hyperedge list, starting from which the native hypergraph modeling is straightforward.
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From the initial set of 5299 organisms, four classification problems are investigated by following the
Linnaeus’ taxonomy at different scales:

e Problem 1 sees the entire set of 5299 organisms divided in two classes, according to their cellular
architecture: Eukaryotes and Prokaryotes

e  Problem 2 sees the entire set of 5299 organism divided in six classes, depending on their kingdom:
Animals, Archaea, Bacteria, Fungi, Plants, and Protists

e Problem 3 sees a subset of 143 organisms (animals) divided in five classes, depending on their
(Linnaeus’) class: Birds, Fishes, Insects, Mammals, and Reptiles

e  Problem 4 sees a subset of 1456 organisms (bacteria) divided in seventeen classes, depending on their
(Linnaeus’) class: Bacillus, Bifidobacterium, Burkholderia, Campylobacter, Chlamydia, Clostridium,
Corynebacterium, Escherichia, Helicobacter, Lactobacillus, Mycobacterium, Mycoplasma,
Pseudomonas, Salmonella, Staphylococcus, Streptococcus, and Streptomyces.

For additional information about the dataset, the interested reader is referred to the work in [39]. For
these tests, a more thoughtful modeling has been employed in order also to address the generalization
capabilities of the proposed kernels: for each of the four problems, the available patterns have been split
in training set (50%), validation set (25%), and test set (25%) in a stratified manner in order to preserve
labels’ distribution across the three splits. The best parameter v* is the one that maximizes the accuracy
of the v-SVM on the validation set after being trained on the training set. The best resulting model is
finally evaluated on the test set. In order to take into account the intrinsic randomness in data splitting
and hyperparameter tuning, for each problem, 10 experiments have been performed and results in terms
of accuracy, specificity and sensitivity are shown in Tables 1-3, respectively. Clearly, the four proposed
kernels show remarkable performances on the test set, regardless of the “resolution” at which the Linnaean
taxonomy is investigated. Further discussion about the biological significance of being able to efficiently
discriminate organisms according to their metabolic wiring can be found in [39,87].

Table 1. Accuracy on the test set (average + standard deviation) for the four metabolic pathways
classification problems.

Kernel Problem 1 Problem 2 Problem 3 Problem 4

HCK  9998+0.05 9995+0.05 98.89+1.84 99.89£0.18
WJK 100.0£0.0 9991+0.07 98.61+£186 99.89+0.25

EK 99.93+0.14 99.86+0.09 97.78+1.67 99.73+£0.27
SEK 99.98+0.03 99.87+0.13 97.78+2.08 99.51£0.32

Table 2. Specificity on the test set (average + standard deviation) for the four metabolic pathways
classification problems.

Kernel Problem 1 Problem 2 Problem 3 Problem 4

HCK  99.99+0.03 9999+0.01 99.74+041 99.99+£0.01
WJK 100.0£0.0 9998+0.01 99.69+0.42 99.99 £0.02

EK 99.96 £0.07 9998+0.02 99.49£0.38 99.98 +0.02
SEK 99.99+0.02 9998+0.02 99.52+044 99.97£0.02
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Table 3. Sensitivity on the test set (average * standard deviation) for the four metabolic pathways
classification problems.

Kernel Problem 1 Problem 2 Problem 3 Problem 4

HCK  9999+0.03 99.82+028 994+1.28 99.91=£0.15
WJK 100.0£0.0 99.67+051 972+345 99.89£0.27

EK 99.96 £0.07 99.59+1.06 9572£327 99.75+0.24
SEK 99.99+0.02 9937+0.82 96.36+4.01 99.47+0.34

6. On the Positive Definiteness of the Proposed Kernels

It is well known that a proper kernel function must satisfy the Mercer’s condition on positive
(semi-)definiteness [90]. Herein, the positive (semi-)definiteness of the four proposed kernels is
addressed. To this end, let us anticipate three theorems regarding well-known properties of positive
(semi-)definite matrices.

Theorem 1. Let U and V be two positive semidefinite matrices, then their Hadamard product U © V (also known
as element-wise product or point-wise product) is positive semidefinite. Furthermore, if U and 'V are positive definite,
then U ® V is positive definite.

Proof of Theorem 1. Given in [91]. See also in [42,92]. [

Theorem 2. Let Uy, ..., Uy, be m positive semidefinite matrices and let ay, . . ., an, be m non-negative scalars. Then,
the matrix resulting from their linear combination Y-X_, a;U; is also positive semidefinite. Furthermore, if there
existsaj € {1,...,m} such that a; > 0 and U is positive definite, then YK | a;U; is positive definite.

Proof of Theorem 2. Given in [91]. See also in [42]. [

Theorem 3. Let U be a symmetric matrix (or Hermitian, in the complex case), then U is positive definite if all of its
eigenvalues are positive. Furthermore, U is positive semi-definite if all of its eigenvalues are non-negative.

Proof of Theorem 3. Givenin [91]. O

6.1. The Histogram Cosine Kernel

The core of the HCK is the pairwise evaluation of the cosine similarity between histograms. Therefore,
showing that the cosine similarity is positive semi-definite suffices in order to show that HCK is a
valid kernel. To this end, we give two equivalent proofs that exploit different properties of positive
semi-definite matrices.

The first proof sees the cosine pairwise similarity matrix as written as the Hadamard product between
two matrices, say N and D, respectively, defined as

Ni,j = (x(i>,x(7)) (10)

(11

Di,j =
\/<x(i)/x(i)> . \/<x(]),x(])>
The former is the Gram matrix between histograms, therefore it trivially satisfies Mercer’s condition [91].
The latter has been shown to be positive semi-definite in [92]. Therefore, thanks to Theorem 1, HCK is a
valid kernel.
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The second proof involves a matrix, say X, with patterns (i.e., histograms) organized as rows, that is

x(

X=| : 12)

Let us now normalize each row according to the ¢, norm of the row itself, that is

x /x|
X= : (13)
xN)/|x(N) |

The cosine similarity matrix can dually be defined as X - X", hence as the Gram matrix of X, which trivially
satisfies Mercer’s condition.

It is worth remarking that the space spanned by the symbolic histograms (cf. Equation (1)) can be
equipped with any basic kernel for vector data: the choice of cosine similarity (i.e., normalized dot product)
rather than, for example, polynomial or radial basis function stems from the work in [50,69].

6.2. The Weighted Jaccard Kernel

In order to show that WJK is a valid kernel, a vectorial representation of the kernel is analyzed. This
also provides an efficient W]K evaluation procedure. It is well known that sets can be represented by binary
vectors scoring 1 in position i if the i-th element exists in the set, and 0 otherwise. Similarly, multisets can
be represented by integer-valued vectors which see in position i the value of the multiplicity function (-)
for the i-th element: in other words, two simplicial complexes (say S; and ;) can be transformed into
vectorial collections (say £(0) and £U ) by following Equation (1). Under this light, the W]K (cf. Equation (6))
can be rewritten as

Ky (8, Sj) = Jw(£9,£0), (14)
where

i1 min(a;, b;)

Jw(a,b) = fora,b € R" (15)

?:1 max(ai, bl) !

is known as weighted Jaccard similarity (or Ruzicka index). In order to begin with the proof, it is worth
mentioning the following theorem.

Theorem 4. Let K(a,b) be a kernel function satisfying Mercer’s condition, then the following kernel is still valid,

K(a,b)

K(a,b) = ) TK(b,b) = K(a,0) (16)
Proof of Theorem 4. Givenin [93]. [
Equation (15) can be rewritten as follows,
n 1 . .
Jw(a,b) = =1 (s b 17)

tiai+ Y b;— Y min(a;,b;)’
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and, by considering Equations (16) and (17), it can be rewritten as

1(1:1 min(ai, bl>
Y min(a; a;) + Y/ ; min(b;, b;) — Y1 ; min(a;, b;)

Jw(a,b) = (18)
By comparing Equations (16) and (18) and by Theorem 4, it is clear that WJK is a valid kernel if K(a,b) =

" ,min(a;, b;) is a valid kernel as well. In order to demonstrate the latter, it is worth mentioning the
following lemma.

Lemma 1. Let {ay,...,ay} be afinite set of real-valued numbers, then the matrix M € R™*™ defined as
M,'/j = min(ai, a]) (19)
is a valid kernel matrix.

Proof of Lemma 1. Givenin [92]. O

As WJK deals with real-valued vectors in R" and not with real-valued scalars as in the previous
lemma, we shall extend the lemma to the former case. To this end, it is possible to build a series of n
matrices, where each matrix (of the form as in Equation (19)) considers the pairwise minimum along a
given dimension, say i = 1,...,n, of the considered vectors and then perform the element-wise sum of
such matrices:

K(ab) =MD 4. +MD 4 4+ Mm" (20)

Finally, Equation (20) can easily be shown to be a valid kernel matrix thanks to Theorem 2.

6.3. The Edit Kernel and Stratified Edit Kernel

Edit distances (similarities) are well known to lead to possibly indefinite kernels [29]. From Theorem 3,
positive semi-definite matrices have non-negative eigenvalues. In order to quantify the goodness of the
two proposed edit-based kernels, the negative eigenfraction (NEF) is investigated, defined as the relative
mass of the negative eigenvalues [94]:

Yir<0 Al
iAo

Clearly, NEF € [0,1]: the closer to 0, the better. Figure 3 shows the NEF of the kernel matrices evaluated
over the 18 datasets from Section 5 for EK and SEK. Both the proposed kernels have rather low NEEF, the
maximum being 0.0631 (dataset AIDS when using EK). Another interesting aspect is that SEK always
outperforms EK in terms of NEF for all datasets (i.e., always less than or equal to). As they do not
satisfy Mercer’s condition, it would be probably more suitable refer to those as indefinite kernels, following

NEF = (21)

works such as [29,94,95], namely, “kernels” that despite their not being positive (semi-)definite perform
reasonably good as confirmed, in our case, by competitive classification performances (Figure 1) and
behavior remarkably close to a positive (semi-)definite kernel (Figure 3).
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Figure 3. Negative Eigenfraction for the 18 tested datasets.
7. On the Computational Complexity of the Proposed Kernels

Each of the four proposed kernels works on a properly defined simplicial complex. Let us discuss
the case of the clique complex used in this work: recall that the clique complex is the topological space
in which each k-vertex clique is represented by a (k — 1)-simplex. For an n-vertex graph, the maximum
number of cliques in the worst-case goes like O(3"/3) [96] and the Bron-Kerbosh algorithm matches this
bound [97]. Therefore, the worst-case cardinality of the clique complex also follows this bound. For the
sake of completeness, the same same holds for the Vietoris—Rips complex [67].

For any two simplicial complexes, say S; and S, with cardinality n; = |S;| and np = |S;|, the evaluation
of HCK and WJK is linear with the order of the two simplicial complexes, with a worst-case of O (11 +
ny), that is, when the two simplicial complexes have no simplices in common. For EK and SEK, as a
Levenshtein-like edit distance [98,99] has been used, that is, instead of adding/substituting/deleting letters
between two words, simplices has been added /substituted /deleted between two simplicial complexes,
the computational complexity grows as O(ny - ny).

8. Conclusions

In this paper, four (hyper)graph kernels have been proposed in order to exploit the native multi-scale
organization in complex networks. All of the four kernels rely on simplicial complexes, one of the possible
hypergraph representations and, specifically, on the flag complex of the underlying graph. What makes
the hypergraph paradigm preferable (for some applications) over the “plain graph” modeling is that the
former better captures the information in the data by taking into account multi-way relations, whereas
the latter intrinsically takes into account only pairwise relations. The four kernels exploit simplicial
complexes under different lights: for HCK, an explicit embedding towards a vector space is performed
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before evaluating the linear kernel; W]K relies on the set (or, better, multiset) structure of the simplicial
complexes when equipped with semantic information on their respective nodes; EK and SEK measure the
similarity in terms of edit operations defined on simplices.

All of the four kernels are easy to compute and rely on exact matching procedures among simplices
given the categorical nature of the node labels. This is at the same time a strength and a weakness of the
proposed kernels since edge labels and node attributes are not allowed. Future research endeavors can
extend the proposed kernels to work with more complex node and/or edge labels.

An interesting aspect of the proposed kernels relies on them being parameter-free: if the underlying
graph is available, its simplicial complex can be directly evaluated without any parameters to be tuned.
This also holds if data natively comes as an hypergraph. This one-shot evaluation makes the training
phase incredibly fast and appealing, as there is no need to evaluate multiple times the kernel matrix with
different parameters and the only hyperparameter(s) to be tuned regard the classifier itself. Conversely, if
the underlying graph is not available and data (nodes) come as a point cloud, the proposed kernels can still
be employed, but they loose their parameter-free peculiarity: indeed, the flag complex cannot be directly
used if the 1-skeleton is not natively available and one shall consider different simplicial complexes, such
as the Vietoris—Rips complex or the Alpha complex, both of which strongly depend on a scale parameter
(€ and &, respectively, cf. Section 3) which shall be tuned accordingly.

The four proposed kernels (HCK, WJK, EK, and SEK) have been benchmarked against nine
state-of-the-art graph kernels (GS, NH, OS, PK, PM, RW, ST, WL, and WL-SP) on 18 open access datasets for
graph classification. From this analysis, the following results emerged; the four kernels have competitive
performances against current graph kernels, with HCK being slightly less accurate. Thanks to their
parameter-free peculiarity, all of the proposed kernels have very fast training procedures. Furthermore
they are also very appealing for large datasets, conversely to kernels such as OS, RW and WL-SP that went
over the 24 h deadline or triggered out-of-memory errors. A second analysis regards the classification
of metabolic pathways that, due to intrinsic molecular interactions, are conveniently represented by
hypergraphs. Four classification problems are considered, following the Linnaeus’ taxonomy at different
scales: from coarse-grained discrimination (e.g., eukaryotes vs. prokaryotes) to fine-grained discrimination
(e.g., among bacteria). Regardless of the resolution at which organisms are classified, all of the four
proposed kernels show remarkable performances: a clear sign that the four proposed kernels are able
to capture the metabolic diversity across different layers of biological organization allowing, in turn, a
consistent classification spanning at different scales.

By jointly considering performances and time required in order to evaluate the kernel matrix,
WJK seems the most promising kernel among the proposed ones. HCK is featured by faster evaluation
times, but its performances are slightly lower. For EK and SEK, their evaluation time is incredibly high due
to lack of vectorization. However, future research avenues can investigate the possibility to use dedicated
hardware in order to speed-up the edit distance evaluation between simplicial complexes, see, e.g., in [99].
Finally, WJK has also been demonstrated to be a valid kernel as the Mercer’s condition is satisfied.
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Abbreviations

The following abbreviations are used in this manuscript.

EK
GS
HCK
NEF
NH
0S
PK
PM
RM
SEK
ST
SVM
WIK
WL

Edit Kernel

Graphlet Sampling
Histogram Cosine Kernel
Negative EigenFraction
Neighborhood Hash
ODD-Sth

Propagation Kernel
Pyramid Match

Random Walk

Stratified Edit Kernel
SVM Theta

Support Vector Machine
Weighted Jaccard Kernel
Weisfeiler-Lehman (Subtree Kernel)

WLSP  Weisfeiler-Lehman Shortest Path Kernel
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