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Abstract: We study how to conduct statistical inference in a regression model where the outcome
variable is prone to missing values and the missingness mechanism is unknown. The model we
consider might be a traditional setting or a modern high-dimensional setting where the sparsity
assumption is usually imposed and the regularization technique is popularly used. Motivated by
the fact that the missingness mechanism, albeit usually treated as a nuisance, is difficult to specify
correctly, we adopt the conditional likelihood approach so that the nuisance can be completely
ignored throughout our procedure. We establish the asymptotic theory of the proposed estimator
and develop an easy-to-implement algorithm via some data manipulation strategy. In particular,
under the high-dimensional setting where regularization is needed, we propose a data perturbation
method for the post-selection inference. The proposed methodology is especially appealing when
the true missingness mechanism tends to be missing not at random, e.g., patient reported outcomes
or real world data such as electronic health records. The performance of the proposed method is
evaluated by comprehensive simulation experiments as well as a study of the albumin level in the
MIMIC-III database.

Keywords: nuisance; post-selection inference; missingness mechanism; regularization; asymptotic
theory; unconventional likelihood

1. Introduction

A major step towards scientific discovery is to identify useful associations from various features
and to quantify their uncertainties. This usually warrants building a regression model for an outcome
variable and estimating the coefficient associated with each feature as well as the precision of
the estimator. Besides the traditional regression with a small dimensionality, with advances in
biotechnology, the modern high-dimensional regression usually posits a sparse parameter in the
model, and then applies regularization to select the significant features in order to recover the sparsity.
In particular, the post-selection inference could be challenging in a regularized regression framework.
In this paper, our main interest is to consider a regression model where the outcome variable is prone
to missing values. We study both the traditional setting where regularization is not needed and the
modern one with regularization.

The missing data issue is an inevitable concern for statistical analysis in various disciplines ranging
from biomedical studies to social sciences. In many applications, the occurrence of missing data is
usually not the investigator’s primary interest but complicates the statistical analysis. The validity
of any method devised for missing data heavily depends on the assumption of the missingness
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mechanism [1]. Unfortunately, those assumptions are largely unknown and difficult, if not infeasible,
to be empirically tested. Therefore, one prefers to concentrate on analyzing the regression model for the
outcome variable, while treating the mechanism model as a nuisance. A flexible assumption imposed
at the minimum level on the mechanism would provide protection against model misspecification at
this level.

While it is indeed promising to regard the missingness mechanism as a nuisance with a
flexible assumption, a potential issue is the model identifiability problem if the mechanism contains
missing-not-at-random cases, i.e., allowing the mechanism to depend on the missing values themselves.
In the past few years, researchers have made great progress on this topic by introducing a so-called
instrument. This instrument could be a shadow variable [2–7] or an instrumental variable [8,9].
Both approaches are reasonable and are suitable for different applications. In this paper, we adopt the
shadow variable approach as it facilitates the interpretability of the regression model for the outcome.
The details of the shadow variable approach will be articulated later throughout the paper.

Therefore, we proceed with a semiparametric framework where our primary interest is a
parametric regression, e.g., a linear model, where the statistical task is to estimate the parameter
of interest and conduct statistical inference (particularly post-selection inference for the setting with
regularization). For the nuisance missingness mechanism, we only impose a nonparametric assumption
without specifying a concrete form. We encode the shadow variable as Z, which is one component of
the covariate X. In general, a shadow variable with a smaller dimensionality allows more flexibility
of the missingness mechanism. Therefore, although it could be multidimensional, we only consider
univariate Z throughout the paper. With all of these ingredients, we analyze a conditional likelihood
approach which will eventually result in a nuisance-free procedure for parameter estimation and
statistical inference.

There are at least two extra highlights of our proposed method that are worth mentioning. The first
pertains to the algorithm and computation. Although it looks complicated at first sight, we show
that, via some data manipulation strategy, the conditional likelihood function can be analytically
written as the likelihood of a conventional logistic regression with some prespecified format. Therefore,
our objective function can be readily optimized by many existing software packages. This greatly
alleviates the computational burden of our procedure. Second, while the variance estimation under
the traditional setting is straightforward following the asymptotic approximation, it is challenging for
the setting with regularization. To resolve this problem, we present an easy-to-implement data-driven
method to estimate the variance of the regularized estimator via a data perturbation technique. It is
noted that the current literature on the inference procedure for regularized estimation in the presence of
missing values is very scarce. The authors of [10–12] all considered the model selection problem under
high dimensionality with missing data; however, none of them studied the post-selection inference in
this context.

The remainder of the paper is structured as follows. In Section 2, we first layout our model
formulation and introduce the shadow variable and the conditional likelihood. Section 3 details the
traditional setting without regularization. We present our algorithm of how to maximize the conditional
likelihood function, the theory of how to derive the asymptotic representation of our proposed
estimator and how to estimate its variance. In Section 4, we devote ourselves to the modern setting
where the sparsity assumption is imposed and the regularization technique is adopted. Both algorithm
and theory as well as the variance estimation through the data perturbation technique are presented.
In Section 5, we conduct comprehensive simulation studies to examine the finite sample performance
of our proposed estimator as well as the comparison to some existing methods. Section 6 is the
application of our method to the regression model for the albumin level which suffers from a large
amount of missing values in the MIMIC-III study [13]. The paper is concluded with a discussion in
Section 7.
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2. Methodology

Denote the outcome variable as Y and covariate X. We assume X = (U
T
, Z)

T
where U is

p-dimensional and Z univariate, with detailed interpretation later. We consider the linear model

Y = α + β
T
U + γZ + ε, (1)

where β is also p-dimensional, α and γ are scalars and the true value of γ, γ0, is nonzero, ε ∼ N(0, σ2).
We consider the situation that Y has missing values while X is fully observed. We introduce a binary
variable R to indicate missingness: R = 1 if Y is observed and R = 0 if missing. To allow the greatest
flexibility of the missingness mechanism model, we assume

pr(R = 1 | Y, X) = pr(R = 1 | Y, U) = s(Y, U), (2)

where s(·) merely represents an unknown and unspecified function not depending on Z. We reiterate that,
as the assumption (2), in a nonparametric flavor, does not specify a concrete form of s(·), one does not
need to be worrisome of the mechanism model misspecification. Moreover, as it allows the dependence
on Y, besides missing-completely-at-random (MCAR) and many scenarios of missing-at-random (MAR),
the assumption (2) also contains various situations of missing-not-at-random (MNAR).

We term Z the shadow variable following the works in [5–7,14]. Its existence depends on whether
it is sensible that Z and R are conditionally independent (given Y and U) and that Y heavily relies
on Z (as γ0 6= 0). There are many examples in the literature documenting that the existence of Z is
practically reasonable. In application, a surrogate or a proxy of the outcome variable Y, which would not
synchronically affect the missingness mechanism, could be a good choice for the shadow variable Z.

We assume independent and identically distributed observations {ri, yi, ui, zi} for i = 1, ..., N and
the first n subjects are free of missing data. Now we present a s(·)-free procedure via the use of the
conditional likelihood. Denote V = (Y, U

T
)

T
. We start with

n

∏
i=1

p(vi | zi, ri = 1) =
n

∏
i=1

s(vi)

g(zi)
p(vi | zi),

where g(zi) = pr(ri = 1 | zi) =
∫

pr(ri = 1 | v)p(v | zi)dv and p(· | ·) is a generic notation for
conditional probability density/mass function. If V were univariate, we denote A as the rank statistic
of {v1, ..., vn}, then

n

∏
i=1

p(vi | zi, ri = 1) = p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

= p(A | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1)p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1). (3)

The conditional likelihood that we use, the first term on the right hand side of (3), is exactly

p(A | v(1), ..., v(n), z1, ..., zn, r1 = · · · = rn = 1) =
p(v1, ..., vn | z1, ..., zn, r1 = · · · = rn = 1)

p(v(1), ..., v(n) | z1, ..., zn, r1 = · · · = rn = 1)

=
∏n

i=1 p(vi | zi, ri = 1)
Σω∈Ω ∏n

i=1 p(vω(i) | zi, ri = 1)
=

∏n
i=1 p(vi | zi)

Σω∈Ω ∏n
i=1 p(vω(i) | zi)

, (4)

where Ω represents the collection of all one-to-one mappings from {1, ..., n} to {1, ..., n}. Now (4) is
nuisance-free and can be used to estimate the unknown parameters in p(vi | zi).

Although V is multidimensional in our case, the idea presented above can still be applied and it
leads to

∏n
i=1 p(yi, ui | zi, ri = 1)

Σω∈Ω ∏n
i=1 p(yω(i), uω(i) | zi, ri = 1)

=
∏n

i=1 p(yi, ui | zi)

Σω∈Ω ∏n
i=1 p(yω(i), uω(i) | zi)

. (5)
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Furthermore, to simplify the computation, we adopt the pairwise fashion of (5) following the
previous discussion on pairwise pseudo-likelihood in [15], which results

∏
1≤i<j≤n

p(yi, ui | zi)p(yj, uj | zj)

p(yi, ui | zi)p(yj, uj | zj) + p(yi, ui | zj)p(yj, uj | zi)
.

After plugging in model (1) and some algebra, the objective eventually becomes to minimize

L(θ) =
(

N
2

)−1

∑
1≤i<j≤N

φij(θ) =

(
N
2

)−1

∑
1≤i<j≤N

rirj log{1 + Wij exp(θ
T
dij)}, (6)

where θ = (γ̃, β̃
T
)

T
, γ̃ = γ/σ2, β̃ = γ̃β, dij = (−yi\jzi\j, u

T

i\jzi\j)
T
, yi\j = yi − yj, ui\j = ui − uj,

zi\j = zi − zj and Wij = p(zi | uj)p(zj | ui)/{p(zi | ui)p(zj | uj)}.
Denote the minimizer of (6) as θ̂. By checking that

∂2φij(θ)

∂θ∂θ
T = rirj{1 + Wij exp(θ

T
dij)}−2Wij exp(θ

T
dij)dijd

T

ij

is positive definite, θ̂ uniquely exists. To compute θ̂, one also needs a model for Wij. Fortunately, this model
only depends on fully observed data xi and xj. Essentially any existing parametric, semiparametric,
or nonparametric modeling technique for p(z | u) can be used, and Wij can be estimated accordingly.
Throughout, we denote Ŵij as an available well-behaved estimator of Wij. Although our procedure
stems from p(y, u | z, r = 1), which only relies on the data {yi, xi} with i = 1, it can be seen that,
not only the data {yi, xi}with i = 1 are used to compute θ̂, the data {xi}with i = 0 are also used in the
process of estimating Wij. Therefore, all observed data, both from completely-observed subjects and from
partially-observed subjects, are utilized in our procedure.

One can notice that, due to the assumption (2) which allows the greatest flexibility of the
mechanism model and the adoption of the conditional likelihood, not all parameters α, β, γ, and σ2

are estimable. Nevertheless, the parameter β, which quantifies the association between Y and U after
adjusting for Z and is of primarily scientific interest, can be fully estimable. The remainder of the paper
focuses on the estimation and inference of β, as well as the variable selection procedure based on β.

Before moving on, we give some comparison with the existing literature to underline the novel
contributions we make in this paper. Based on a slightly different but more restrictive missingness
mechanism assumption that pr(R = 1 | Y, X) = a(Y)b(X), Refs. [16–18] used the similar idea to
analyze non-ignorable missing data for a generalized linear model and a semiparametric proportional
likelihood ratio model, respectively. They focused on different aspects of how to use the conditional
likelihoods and their consequences such as the partial identifiability issue and the large bias issue.
In this paper, we focus on the linear model (1) and we just showed that the parameter β is fully
identifiable. It can be seen that the method presented in this paper can be applied to different models,
but their identifiability problems or some other relevant issues have to be analyzed on a case-by-case
basis. For instance, Ref. [19] studied the parameter estimation problem in a logistic regression model
with a low dimensionality under assumption (2). They showed that, different from the current paper,
all the unknown parameters are identifiable in their context. However, because of the complexity
of their objective function, the algorithm studied in [19] is trivial and cannot be extended to a high
dimensional setting.

3. Traditional Setting without Regularization

Computation. Directly minimizing L(θ) is feasible; however, it is very computationally involved.
From rearranging the terms in L(θ), we realize that it can be rewritten as the negative log-likelihood
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function of a standard logistic regression model. To be more specific, let k be the index of pair (i, j)
with k = 1, ..., K and K = (n

2). Then,

L(θ) =
1
K

K

∑
k=1

log
{

1 + exp
(

skθ
T
tk + log Ŵk

)}
, (7)

where sk = −sign(zi\j), tk = (|zi\j|yi\j,−|zi\j|u
T

i\j)
T
. Denote gk = I{zi\j > 0}, then one can show that

the summand in (7), log
{

1 + exp
(

skθ
T
tk + log Ŵk

)}
, equals,

−
[

gk

(
θ

T
tk + sk log Ŵk

)
− log

{
1 + exp

(
θ

T
tk + sk log Ŵk

)}]
,

which is the contribution of the k-th subject to the negative log-likelihood of a logistic regression with
gk as the response, θ as the coefficient, tk as the covariate, and sk log Ŵk as the offset term, but without
an intercept. Therefore, θ̂ can be obtained by fitting the aforementioned logistic regression model.
Algorithm 1 describes the steps for data manipulation and model fitting to estimate θ under this
traditional setting.

Algorithm 1 Minimization of (6) without penalization

1: Inputs: {yi, ui, zi}, {yj, uj, zj}, Ŵij, for i = 1, ..., n and j = 1, ..., n
2: Initialize: k← 0
3: for j ∈ {2 : n} do
4: for i ∈ {1 : (j− 1)} do
5: k← k + 1
6: yi\j ← yi − yj, ui\j ← ui − uj, zi\j ← zi − zj, Ŵk ← Ŵij

7: gk ← I{zi\j > 0}
8: sk ← −sign(zi\j)

9: tk ← (|zi\j|yi\j,−|zi\j|u
T

i\j)
T

10: Fit logistic regression with response g, covariate t, offset s
T

log Ŵ, and no intercept.
11: Outputs: θ̂

Asymptotic Theory. The asymptotic theory of θ̂ involves a model of p(z | u), which does not
contain any missing values, and therefore any statistical model, either parametric, or semiparametric,
or nonparametric, can be used. For simplicity, we only discuss the parametric case here, and any
further elaborations will be rendered into Section 7. For a parametric model p(z | u; η), one can apply
the standard maximum likelihood estimate η̂. Here, we simply assume

√
N (η̂− η0) = −G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}+ op(1), (8)

where G = E
[

∂2

∂η∂η
T log {p(z | u; η0)}

]
, E‖ ∂2

∂η∂η
T log {p(z | u; η0)} ‖2 < ∞, η0 is the true value of η,

and ‖M‖ =
√

trace(MMT) for a matrix M. With this prerequisite, we have the following result for θ̂,
and its proof is provided in Appendix A.

Theorem 1. Assume (8) as well as E
∥∥∥∥ ∂2φij(θ0,η0)

∂θ∂θ
T

∥∥∥∥2
< ∞. Denote θ0 the true value of θ. Then

√
N
(

θ̂− θ0

)
d−→ N

(
0, A−1ΣA−1

)
,
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where A = E
{

∂2φij(θ0,η0)

∂θ∂θ
T

}
, Σ = 4E

{
λ12(θ0, η0)λ13(θ0, η0)

T
}

, λij(θ0, η0) = BG−1Mij(η0)−Nij(θ0, η0),

B = E
{

∂2φij(θ0,η0)

∂θ∂η
T

}
, Mij(η0) = 1

2

{
∂

∂η log p(zi | ui; η0) +
∂

∂η log p(zj | uj; η0)
}

, and Nij(θ0, η0) =

∂φij(θ0,η0)

∂θ .

If one prefers the asymptotic result of β̂, we have

Corollary 1. Let C be a p× (p + 1) matrix such that Cθ = β, i.e.,

C =


0 1/γ̃0 0 · · · 0
0 0 1/γ̃0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/γ̃0

 .

Denote β0 the true value of β. Then, following Theorem 1, we have
√

N
(

β̂− β0

)
d−→ N

(
0, CA−1ΣA−1C

T
)

.

Variance Estimation. With Theorem 1 and Corollary 1, the variance estimation is straightforward
using the plugging in strategy. Note that var(θ̂) = 1

N A−1ΣA−1, then one would have the estimate

v̂ar(θ̂) = 1
N Â−1Σ̂Â−1 where Â = (N

2 )
−1

∑1≤i<j≤N
∂2φij(θ̂,η̂)

∂θ∂θ
T ,

Σ̂ = 4
N−1 ∑N

i=1

[
1

N−1 ∑N
j=1,j 6=i

{
B̂Ĝ−1Mij(η̂)−Nij(θ̂, η̂)

}]⊗2
, B̂ = (N

2 )
−1

∑1≤i<j≤N
∂2φij(θ̂,η̂)

∂θ∂η
T , and Ĝ =

1
N ∑N

i=1
∂2

∂η∂η
T log {p(zi | ui; η̂)}.

4. Modern Setting with Regularization

In the past few decades, it has become a standard practice to consider the high-dimensional
regression model, where one assumes the parameter β is sparse and often uses the regularization
technique to recover the sparsity. While it is a prominent problem to analyze this type of model when
the data are prone to missing values, the literature is quite scarce primarily because it is cumbersome
to rigorously address the missingness under high dimensionality. Therefore, it is valuable to extend
the nuisance-free likelihood procedure proposed in Section 3 to the setting with regularization.
Computation. Regularization is a powerful technique to identify the zero elements of a sparse
parameter in a regression model. Various penalty functions have been extensively studied, such as
LASSO [20], SCAD [21], and MCP [22]. In particular, we study the adaptive LASSO penalty [23] with
the objective of minimizing the following function

Lλ(θ) = L(θ) +
p

∑
j=1

λ
∣∣∣̂̃βj

∣∣∣−1 ∣∣∣β̃ j

∣∣∣ , (9)

where λ > 0 is the tuning parameter. Following [23], ̂̃βj is a root-N-consistent estimator of β̃ j; for
example, one can use the estimator via minimizing the unregularized objective Function (6). Obviously,
the penalty term in (9) does not alter the numerical characteristic of L(θ) that we presented in Section 3.
The Lλ(θ) is essentially the regularized log-likelihood of a logistic regression model with the similar
format as discussed in (7).

To choose the tuning parameter λ, one can follow either the cross-validation method or various
information-based criteria. Fortunately, all of these approaches have been extensively studied in the
literature. In this paper, we follow the Bayesian information criterion (BIC) to determine λ. Specifically,
we choose λ to be the minimizer of the following BIC function
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BIC(λ) = 2L(θ) + pλ
log(n)

n
,

where pλ is the number of nonzero elements in ̂̃βλ and the minimizer of (9) is encoded as

θ̂λ = (̂̃γλ, ̂̃βT

λ)
T. We summarize the whole computation pipeline as Algorithm 2 below.

Algorithm 2 Minimization of (9) with the ALASSO penalty

1: Inputs: {yi, ui, zi}, {yj, uj, zj}, Ŵij, for i = 1, ..., n and j = 1, ..., n
2: Initialize: k← 0
3: for j ∈ {2 : n} do
4: for i ∈ {1 : (j− 1)} do
5: k← k + 1
6: yi\j ← yi − yj, ui\j ← ui − uj, zi\j ← zi − zj, Ŵk ← Ŵij

7: gk ← I{zi\j > 0}
8: sk ← −sign(zi\j)

9: tk ← (|zi\j|yi\j, |zi\j|u
T

i\j)
T

10: Fit logistic regression with response g, covariates t, offset s
T

log W, and no intercept.
11: Obtain ̂̃θ.
12: Fit logistic regression with ALASSO penalty.
13: Find λ? which minimizes the BIC.
14: Outputs: θ̂(λ?) = θ̂λ

Asymptotic Theory. Recall that θ = (γ̃, β̃T)T. Without loss of generality, we assume the first p0

parameters in β̃ are nonzero, where 1 ≤ p0 < p. For simplicity, we denote θT = (γ̃, β̃1, ..., β̃p0)
T as the

vector of nonzero components and θTc = (β̃p0+1, ..., β̃p)T as the vector of zeros.

In Theorem 1, we defined A = E
{

∂2φij(θ0,η0)

∂θ∂θ
T

}
, a (p + 1)× (p + 1) matrix. Now we assume it can

be partitioned as A =

(
A1 A2

A
T

2 A3

)
, where A1 is a (p0 + 1)× (p0 + 1) submatrix corresponding to θT .

Similarly, we defined Σ = 4E
{

λ12(θ0, η0)λ13(θ0, η0)
T
}

, and we also assume it can be partitioned as

Σ =

(
Σ1 Σ2

Σ
T

2 Σ3

)
, where Σ1 is a (p0 + 1)× (p0 + 1) submatrix corresponding to θT as well. We denote

the minimizer of (9), θ̂λ, as θ̂λ = (θ̂T
λ,T , θ̂T

λ,Tc)T, and its true value θ0 = (θT
0,T , θT

0,Tc)T.
Now, we present the oracle property pertaining to θ̂λ, which includes the asymptotic normality for

the nonzero components and the variable selection consistency. The proof is provided in Appendix B.

Theorem 2. Assume (8), A1 is positive definite and E‖ ∂φij(θ0,η0)

∂θ ‖2 < ∞ for each θ in a neighborhood of θ0.
We also assume

√
Nλ→ 0 and Nλ→ ∞. Then,

√
N
(

θ̂λ,T − θ0,T

)
d−→ N

(
0, A−1

1 Σ1A−1
1

)
.

In addition, let TN = {j ∈ {1, ..., p} : ̂̃βj,λ 6= 0} and T = {j ∈ {1, ..., p} : β̃ j,0 6= 0}, then

lim
N→∞

pr(TN = T) = 1.

Variance Estimation. Although the above theory provides a rigorous justification for the asymptotic
property of θ̂λ, in practice, however, it does not guide the standard error estimation. Here, we propose
a data perturbation approach for the variance estimation. Specifically, following [24], we generate a
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set of independent and identically distributed positive random variables Ξ = {ξi, i = 1, ..., N} with
E(ξi) = 1 and var(ξi) = 1, e.g., the standard exponential distribution. Since it is based on a U-statistic
structure, we perturb our objective function by adding κij = ξiξ j to each of its pairwise terms. We first
obtain the estimator θ̂? by minimizing the perturbed version of (6):

L?(θ) =

(
N
2

)−1

∑
1≤i<j≤N

κijφij(θ).

Then, we obtain the estimator θ̂?λ by minimizing the perturbed version of (9):

L?
λ(θ) =

(
N
2

)−1

∑
1≤i<j≤N

κijφij(θ) +
p

∑
j=1

λ∣∣∣∣̂̃β?

j

∣∣∣∣
∣∣∣β̃ j

∣∣∣ ,

where the optimal λ is also computed by the BIC. We repeat this data perturbation scheme a large
number of times, say, M.

Following the theory in [25,26], under some regularity conditions, one can first show that√
N
(

θ̂?λ,T − θ0,T

)
converges in distribution to N(0, A−1

1 Σ1A−1
1 ), the same limiting distribution of

√
N
(

θ̂λ − θ0

)
. Furthermore, one can also show pr∗

(
θ̂?λ,Tc = 0

)
→ 1, where pr∗ is the probability

measure generated by the original data X and the perturbation data Ξ. In addition, one can show
that the distribution of

√
N
(

θ̂?λ,T − θ̂λ,T

)
conditional on the data can be used to approximate the

unconditional distribution of
√

N
(

θ̂λ,T − θ0,T

)
and that pr∗

(
θ̂?λ,Tc = 0 | X

)
→ 1.

To achieve a confidence interval for θj, the j-th coordinate in θ, the lower and upper bounds
can be formed by θ̂?λ,j,α/2 and θ̂?λ,j,1−α/2, respectively, where θ̂?λ,j,q represents the q-th quantile of{

θ̂?λ,j,m, m = 1, ..., M
}

.

5. Simulation Studies

We conduct comprehensive simulation studies to evaluate the finite sample performance of our
proposed estimators and also compare with some currently existing methods. We first present the
results under the model without regularization, then with regularization.

5.1. Scenarios without Regularization

For the proposed estimator studied in Section 3, we generate {Ri, Yi, UT
i , Zi}, i = 1, . . . , N,

independent and identically distributed copies of (R, Y, UT, Z), as follows. We first generate the
random vector U = (U1, . . . , Up)T with Ui ∼ N(0.5, 1) and p = 4, and then generate Z = αz + ηTU+ εz

with αz = 0.5, η = (−0.5, 1,−1, 1.5)T, εz ∼ N(0, 1). Afterwards, the outcome variable Y is generated
following the model (1) with α = −1, β = (−0.5, 1,−1, 1.5)T, γ = 0.5, and ε ∼ N(0, 1), and the
missingness indicator R is generated following pr(R = 1 | Y, U) = I(Y < 2.5, U1 < 2, U2 < 2, U3 <

2, U4 < 2) which results in around 40% missing values. We examine two situations with sample size
N = 500 and N = 1000 respectively. Besides the estimator studied in Section 3 (Proposed), we also
implement the estimator using all simulated data (FullData) and the estimator using completely
observed subjects only (CC). Based on 1000 simulation replicates, for each of the three estimators,
we summarize the sample bias, sample standard deviation, estimated standard error, and coverage
probability of 95% confidence intervals in Table 1.
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Table 1. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error
(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all
simulated data), CC (using only completely observed subjects), and of the proposed estimator studied
in Section 3.

N Parameter Method Bias SD SE CP

500

γ̃
FullData 0.0026 0.0444 0.0450 0.9540

CC −0.0329 0.0564 0.0560 0.9100
Proposed 0.0174 0.0829 0.0789 0.9450

β1

FullData 0.0022 0.0489 0.0503 0.9510
CC 0.0376 0.0670 0.0699 0.9300

Proposed 0.0164 0.1644 0.1607 0.9400

β2

FullData −0.0017 0.0657 0.0635 0.9310
CC −0.0649 0.0851 0.0835 0.8680

Proposed −0.0399 0.2305 0.2239 0.9360

β3

FullData 0.0022 0.0616 0.0635 0.9540
CC 0.0778 0.0871 0.0867 0.8430

Proposed 0.0462 0.2323 0.2298 0.9410

β4

FullData −0.0045 0.0792 0.0810 0.9530
CC −0.0988 0.1007 0.1043 0.8550

Proposed −0.0672 0.3081 0.3047 0.9380

1000

γ̃
FullData −0.0012 0.0317 0.0317 0.9540

CC −0.0348 0.0396 0.0393 0.8510
Proposed 0.0068 0.0573 0.0555 0.9350

β1

FullData 0.0011 0.0367 0.0355 0.9370
CC 0.0399 0.0490 0.0494 0.8840

Proposed 0.0154 0.1154 0.1138 0.9460

β2

Full Data 0.0020 0.0448 0.0448 0.9500
CC −0.0649 0.0577 0.0588 0.8110

Proposed −0.0153 0.1531 0.1591 0.9590

β3

Full Data −0.0015 0.0458 0.0449 0.9460
CC 0.0779 0.0605 0.0611 0.7490

Proposed 0.0135 0.1598 0.1634 0.9480

β4

Full Data 0.0009 0.0564 0.0571 0.9540
CC −0.0949 0.0720 0.0734 0.7550

Proposed −0.0242 0.2091 0.2167 0.9430

Furthermore, we consider a similar simulation setting where the generation is the same as above
except for a logistic missingness mechanism model with logit{pr(R = 1 | Y, U)} = 3− 2Y + 0.5U1 −
U2 + U3 − 1.5U4, which also results in around 40% missing values. We replicate the results, shown in
Table 2.

We can reach the following conclusions from Tables 1 and 2. For the estimator Proposed,
although its bias is slightly larger than the benchmark FullData, it is still very close to zero. The sample
standard deviation and the estimated standard error are rather close to each other. The sample
coverage probability of the estimated 95% confidence interval is also very close to the nominal
level. This observation well matches our theoretical justification in Theorem 1. On the contrary,
the estimator CC is clearly biased, resulting in empirical coverage far from the nominal level,
and therefore is not recommended to use in practice. It is also clear that, compared to the benchmark
FullData, the estimator Proposed has estimation efficiency loss to some extent. This is because the
proposed method uses the conditional likelihood approach and it completely eliminates the effect of
the nuisance.
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Table 2. In Section 5.1, sample bias (Bias), sample standard deviation (SD), estimated standard error
(SE), and coverage probability (CP) of 95% confidence interval of the estimator of FullData (using all
simulated data), CC (using only completely observed subjects), and of the proposed estimator studied
in Section 3, with a logistic missingness mechanism model.

N Parameter Method Bias SD SE CP

500

γ̃
FullData −0.0011 0.0464 0.0451 0.9410

CC −0.0306 0.0567 0.0567 0.9200
Proposed 0.0100 0.0822 0.0787 0.9380

β1

FullData −0.0004 0.0509 0.0503 0.9520
CC 0.0440 0.0636 0.0637 0.8930

Proposed 0.0146 0.1308 0.1236 0.9420

β2

FullData 0.0013 0.0639 0.0637 0.9520
CC −0.0871 0.0828 0.0821 0.8190

Proposed −0.0173 0.1824 0.1753 0.9430

β3

FullData −0.0030 0.0655 0.0636 0.9400
CC 0.0876 0.0847 0.0821 0.8030

Proposed 0.0214 0.1840 0.1756 0.9440

β4

FullData 0.0023 0.0845 0.0812 0.9390
CC −0.1307 0.1083 0.1061 0.7560

Proposed −0.0331 0.2533 0.2384 0.9360

1000

γ̃
FullData 0.0004 0.0315 0.0317 0.9490

CC −0.0286 0.0396 0.0398 0.8950
Proposed 0.0060 0.0568 0.0555 0.9390

β1

FullData 0.0007 0.0362 0.0354 0.9420
CC 0.0442 0.0451 0.0447 0.8410

Proposed 0.0079 0.0910 0.0859 0.9290

β2

FullData −0.0004 0.0450 0.0448 0.9390
CC −0.0879 0.0571 0.0576 0.6640

Proposed −0.0044 0.1277 0.1220 0.9420

β3

FullData −0.0009 0.0450 0.0448 0.9450
CC 0.0880 0.0588 0.0577 0.6660

Proposed 0.0114 0.1309 0.1222 0.9380

β4

FullData −0.0005 0.0576 0.0572 0.9510
CC −0.1342 0.0755 0.0745 0.5740

Proposed −0.0191 0.1757 0.1661 0.9370

5.2. Scenarios with Regularization

For the estimator studied in Section 4, the independent and identically distributed samples
are generated as follows. The variable U = (U1, . . . , Up)T is generated from MVN(0, Σu)

with Σu = (0.5|i−j|)1≤i,j≤p and p = 8. Then, the shadow variable Z is generated following
Z = αz + ηTU + εz with αz = 0, η = (−0.5, 0.5,−1, 1,−0.5, 0.5,−1, 1)T and εz ∼ N(0, 1). The outcome
variable Y is generated from model (1) with α = 0, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, γ = 3, ε ∼ N(0, σ2)

and σ = 3. The distribution of the missingness indicator follows from logit{pr(R = 1 | Y, U)} =

5 + 5Y + 0.2U1 + 0.2U7, which results in about 45% missing values. Similar to Section 5.1, we also
examine two situations with sample size N = 500 and N = 1000 respectively, and we implement three
estimators FullData, CC, and Proposed. When the estimator Proposed is implemented, we perform
M = 500 perturbations in order to obtain the confidence interval for the unknown parameter. The
results summarized below are based on 1000 simulation replicates.

Figure 1 shows the L1, L2, and L∞ norms of the bias for the three different estimators. As sample
size increases, there is no doubt that the estimation bias is getting smaller for any method. It is also
clear that the bias of the Proposed estimator is larger than the benchmark FullData, but much smaller
than the method CC.
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Figure 1. In Section 5.2, L1 (1st column), L2 (2nd column), and L∞ (3rd column) norms of the estimation
bias of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects), and of the proposed estimator studied in Section 4.

We present the statistical inference results in Table 3 for N = 500 and Table 4 for
N = 1000, respectively, including sample bias, sample standard deviation, estimated standard error,
coverage probability, and length of 95% confidence interval for the three different methods. For the
nonzero β’s as well as γ̃, similar to Section 5.1, the method CC clearly prompts coverage probability
far from the nominal level hence is not reliable. For the method Proposed, its estimation bias is quite
close to zero, and its sample standard deviation and estimated standard error are quite close to each
other. The coverage probability of the confidence interval converges to the nominal level 95% as the
sample size gets larger. For the noisy zero β’s, the coverage probabilities in the three methods are all
close to 1, reflecting the variable selection consistency in the oracle property, even for the CC method.
Furthermore, a very nice finite sample property of our proposed estimator is that it produces the
confidence interval with the shortest length, which can be clearly seen from both Tables 3 and 4.
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Table 3. In Section 5.2, with sample size N = 500, sample bias (Bias), sample standard deviation
(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence
interval of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

γ̃
FullData 0.0001 0.0120 0.0132 0.9480 0.0515

CC −0.0729 0.0180 0.0183 0.0370 0.0716
Proposed −0.0423 0.0500 0.0498 0.8200 0.1926

True Nonzero

β1

FullData 0.0021 0.1686 0.1649 0.9400 0.6415
CC −0.6547 0.2207 0.2114 0.1460 0.8233

Proposed 0.0354 0.4698 0.4746 0.9320 1.8513

β2

Full Data −0.0275 0.1692 0.1791 0.9440 0.6952
CC −0.3501 0.2227 0.2174 0.6180 0.8471

Proposed −0.2654 0.5843 0.5609 0.8940 1.9237

β5

Full Data −0.0172 0.1576 0.1756 0.9650 0.6826
CC −0.4478 0.2172 0.2161 0.4370 0.8418

Proposed −0.1251 0.4037 0.4611 0.9330 1.8063

True Zero

β3

FullData 0.0085 0.1567 0.1890 0.9960 0.7184
CC 0.0063 0.2067 0.2304 0.9890 0.8890

Proposed 0.0109 0.0988 0.1690 1.0000 0.4398

β4

Full Data −0.0019 0.1581 0.1900 0.9940 0.7206
CC −0.0017 0.2097 0.2307 0.9900 0.8914

Proposed 0.0126 0.1112 0.1447 1.0000 0.3668

β6

Full Data 0.0045 0.1212 0.1606 0.9980 0.6146
CC −0.0053 0.1749 0.1953 0.9900 0.7560

Proposed 0.0034 0.0664 0.1160 1.0000 0.2555

β7

Full Data 0.0014 0.1351 0.1839 0.9980 0.7063
CC −0.0055 0.1870 0.2245 0.9950 0.8717

Proposed 0.0024 0.0386 0.1115 1.0000 0.2538

β8

Full Data −0.0072 0.1295 0.1748 0.9990 0.6653
CC −0.0062 0.1795 0.2125 0.9940 0.8251

Proposed 0.0016 0.0741 0.1066 1.0000 0.2284

Table 4. In Section 5.2, with sample size N = 1000, sample bias (Bias), sample standard derivation
(SD), estimated standard error (SE), coverage probability (CP), and length (Length) of 95% confidence
interval of the estimator of FullData (using all simulated data), CC (using only completely observed
subjects) and of the proposed estimator studied in Section 4.

Parameter Method Bias SD SE CP Length

γ̃
FullData −0.0005 0.0073 0.0088 0.9690 0.0344

CC −0.0730 0.0126 0.0130 0.0000 0.0507
Proposed −0.0213 0.0311 0.0334 0.8700 0.1293

True Nonzero

β1

FullData −0.0005 0.1186 0.1170 0.9300 0.4547
CC −0.6655 0.1568 0.1507 0.0090 0.5864

Proposed 0.0211 0.2911 0.2969 0.9300 1.1631

β2

Full Data −0.0321 0.1175 0.1249 0.9550 0.4861
CC −0.3387 0.1477 0.1534 0.3960 0.5972

Proposed −0.0979 0.2907 0.3383 0.9230 1.3115

β5

Full Data −0.0225 0.1051 0.1206 0.9590 0.4698
CC −0.4485 0.1478 0.1534 0.1770 0.5964

Proposed −0.0621 0.2351 0.2526 0.9290 0.9871
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Table 4. Cont.

Parameter Method Bias SD SE CP Length

True Zero

β3

FullData −0.0007 0.0621 0.1162 1.0000 0.4253
CC 0.0023 0.1414 0.1614 0.9920 0.6180

Proposed 0.0044 0.0581 0.0910 1.0000 0.2091

β4

Full Data 0.0020 0.0632 0.1170 1.0000 0.4271
CC −0.0005 0.1333 0.1608 0.9930 0.6207

Proposed 0.0063 0.0584 0.0887 1.0000 0.2107

β6

Full Data 0.0013 0.0571 0.1010 1.0000 0.3670
CC −0.0034 0.1159 0.1378 0.9950 0.5313

Proposed 0.0012 0.0281 0.0688 1.0000 0.1430

β7

Full Data −0.0028 0.0599 0.1144 1.0000 0.4231
CC −0.0033 0.1243 0.1584 0.9970 0.6131

Proposed 0.0016 0.0288 0.0698 1.0000 0.1421

β8

Full Data 0.0039 0.0589 0.1080 1.0000 0.3970
CC 0.0028 0.1256 0.1497 0.9940 0.5752

Proposed 0.0000 0.0333 0.0644 1.0000 0.1314

6. Real Data Application

The Medical Information Mart for Intensive Care III (MIMIC-III) is an openly available electronic
health records (EHR) database, developed by the MIT Lab for Computational Physiology [13],
comprising de-identified health-related data associated with intensive care unit patients with rich
information including demographics, vital signs, laboratory test, medications, and more.

Our initial motivation for this data analysis is to understand the missingness mechanism for some
laboratory test biomarkers in this EHR system. As for the EHR database, since the data are collected in
a non-prescheduled fashion, i.e., only available when the patient seeks care or the physician orders
care, the visiting process could be potentially informative about the patients’ risk categories. Therefore,
it is very plausible that the data are missing not at random, or a mix of missing not at random and
missing at random [27,28]. When we first conducted the data cleaning process briefly, an interesting
phenomenon we observe is that, compared to most biomarkers which usually have <3% missing
values, the albumin level in the blood sample, a very indicative biomarker associated with different
types of diseases [29], has around 30% missingness.

To further understand this phenomenon, we concentrate on a subset of the data with sample size
N = 1359 in which 421 samples have missing values in the albumin level but all other variables are
complete. We aim to apply the proposed method to the study of the albumin level (Y). The calcium level
in the blood sample, free of missing data, has been shown in the biomedical literature that it has high
correlation with the albumin level [30–32]; therefore, we adopt the calcium level as the shadow variable
Z. Seventeen other variables comprise the vector U, which are either demographics (age and gender),
chart events (respiratory rate, glucose, heart rate, systolic blood pressure, diastolic blood pressure,
and temperature), other laboratory tests (urea nitrogen, platelets, magnesium, hematocrit, red blood
cell, white blood cell, and peripheral capillary oxygen saturation (SpO2)), or aggregated metrics
(simplified acute physiology score (SAPS-II) and sequential organ failure assessment score (SOFA)).

We implement the proposed estimator studied in Section 4 to achieve both variable selection and
post-selection inference. We also compare it with the CC method which naively fits the regularized
linear regression with the ALASSO penalty. For each of the methods, we apply the data perturbation
scheme presented in Section 4 with M = 500 for standard error estimation. The results are summarized
in Table 5. The solution path of the Proposed method, as the tuning parameter λ varies, is also provided
in Figure 2.
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Table 5. In Section 6, the parameter estimate (Estimate), standard error (SE), and confidence interval
(CI) of the estimator of CC (using only completely observed subjects) and of the proposed estimator
studied in Section 4 in the MIMIC−III study.

Effect CC Proposed

Estimate SE CI Estimate SE CI

Calcium(shadow) 0.7707 0.0691 [0.6532, 0.9153] 1.5271 0.1796 [1.1815, 1.8835]

Red Blood Cell 0.6491 0.0514 [0.5337, 0.7257] 0.7545 0.1631 [0.3594, 1.0109]
Magnesium 0.0000 0.0686 [−0.2073, 0.0000] 0.2731 0.2452 [0.0000, 0.6609]
SOFA −0.2720 0.0268 [−0.3135, −0.2099] −0.1852 0.1040 [−0.3467, 0.0000]
Temperature −0.0360 0.0351 [−0.0883, 0.0659] 0.0000 0.0964 [0.0000, 0.3132]
White Blood Cell −0.0245 0.0123 [−0.0416, 0.0000] 0.0000 0.0025 [0.0000, 0.0000]
Age 0.0000 0.0008 [0.0000, 0.0000] 0.0000 0.0017 [0.0000. 0.0000]
Gender 0.0000 0.0240 [−0.0477, 0.0662] 0.0000 0.1320 [−0.4025, 0.0000]
Respiratory Rate 0.0000 0.0034 [−0.0141, 0.0000] 0.0000 0.0008 [0.0000, 0.0000]
Glucose 0.0000 0.0000 [0.0000, 0.0000] 0.0000 0.0005 [0.0000, 0.0000]
Heart Rate 0.0000 0.0025 [−0.0091, 0.0000] 0.0000 0.0004 [0.0000, 0.0000]
Systolic BP 0.0000 0.0045 [−0.0139, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Diastolic BP 0.0000 0.0072 [0.0000, 0.0223] 0.0000 0.0000 [0.0000, 0.0000]
Urea Nitrogen 0.0000 0.0004 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Platelets 0.0000 0.0000 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
Hematocrit 0.0000 0.0027 [0.0000, 0.0000] 0.0000 0.0000 [0.0000, 0.0000]
SpO2 0.0000 0.0145 [−0.0479, 0.0000] 0.0000 0.0162 [0.0000, 0.0000]
SAPS-II 0.0000 0.0106 [−0.0051, 0.0269] 0.0000 0.0000 [0.0000, 0.0000]
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Figure 2. In Section 6, as tuning parameter λ varies, the solution path of the proposed estimator in the
MIMIC-III study. The optimal λ, λ∗, equals 1.0030 and log λ∗ = 0.0030.

In general, both methods achieve the goal of variable selection and post-selection inference by
leveraging the regularization technique coupled with the data perturbation strategy, and identify
many variables as noise with zero coefficients. In particular, the Proposed method provides larger
effects for the calcium level (the shadow variable) and the red blood cell count, whereas a smaller
effect for the aggregated SOFA score. The Proposed method simplifies the body temperature and the
white blood cell count as nonsignificant variables, which are identified as nonzero but with a very
small effect using the CC method. It is also worthwhile to mention that the Proposed method signifies
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the magnesium level with a quite significant coefficient, which was extensively investigated in the
scientific literature [33–35].

7. Discussion

In this paper, we provide a systematic approach for parameter estimation and statistical inference
in both traditional linear model where the regularization is not needed and the modern regularized
regression setting, when the outcome variable is prone to missing values and the missingness
mechanism can be arbitrarily flexible. A pivotal condition rooted in our procedure is the shadow
variable Z, which overcomes the model identifiability problem and enables the nuisance-free
conditional likelihood process.

Certainly any method would have its own limitations and could be potentially improved.
One needs a model p(z | u) to implement the proposed estimator in Sections 3 and 4. As its modeling
does not involve any missing data, we simply use the parametric maximum likelihood estimation in
our algorithm as well as in the theoretical justification. Indeed, any statistical or machine learning
method can be used for modeling p(z | u). For instance, if one would like to consider a semiparametric
model [36], e.g.,

p(z | u; η, F) =
exp(ηTuz) f (z)∫
exp(ηTuz)dF(z)

,

where η = (η1, ..., ηp)
T

is a vector of unknown parameters and f (z) is the density of an unknown
baseline distribution function F with respect to some dominating measure ν. With this model fitted,
Wij can be simplified to Wij = exp(−zi\jη

T
ui\j). Therefore, a similar conditional likelihood approach

can be used to estimate η without estimating the nonparametric component f (z).
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Appendix A. Proof of Theorem 1

Proof. Note that θ̂ is obtained by setting estimating equation ∂L(θ̂,η̂)
∂θ = 0, which is equivalent to{

∂L(θ̂, η̂)

∂θ
− ∂L(θ0, η̂)

∂θ

}
+

{
∂L(θ0, η̂)

∂θ
− ∂L(θ0, η0)

∂θ

}
+

∂L(θ0, η0)

∂θ
= 0. (A1)

Specifically,
∂L(θ̂, η̂)

∂θ
− ∂L(θ0, η̂)

∂θ
=

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+ op

(
N−

1
2

)
, (A2)

by Taylor expansion. Similarly,

∂L(θ0, η̂)

∂θ
− ∂L(θ0, η0)

∂θ
=

∂2L(θ0, η0)

∂θ∂η
T (η̂− η0) + op

(
N−

1
2

)
. (A3)

With (A2) and (A3) plugging into (A1), we can obtain the following equation,

√
N

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+
√

N
∂2L(θ0, η0)

∂θ∂η
T (η̂− η0) +

√
N

∂L(θ0, η0)

∂θ
+ op(1) = 0. (A4)

As
√

N (η̂− η0) = −G−1
√

N 1
N ∑N

i=1
∂

∂η log {p(zi | ui; η0)}+ op(1) from the asymptotic property of η̂,
(A4) is equivalent to
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√
N

∂2L(θ0, η̂)

∂θ∂θ
T

(
θ̂− θ0

)
+

∂2L(θ0, η0)

∂θ∂η
T

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]

+
√

N
∂L(θ0, η0)

∂θ
+ op(1) = 0.

Thus,

√
N
(

θ̂− θ0

)
= −

{
∂2L(θ0, η̂)

∂θ∂θ
T

}−1

×
{

∂2L(θ0, η0)

∂θ∂η
T

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]
+
√

N
∂L(θ0, η0)

∂θ

}
+op(1)

= −A−1

{
B

[
−G−1

√
N

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)}

]
+
√

N
∂L(θ0, η0)

∂θ

}
+ op(1), (A5)

where ∂2L(θ0,η0)

∂θ∂θ
T

p−→ A = E
{

∂2φij(θ0,η0)

∂θ∂θ
T

}
, and ∂2L(θ0,η0)

∂θ∂η
T

p−→ B = E
{

∂2φij(θ0,η0)

∂θ∂η
T

}
. In addition, we need to

form a projection of 1
N ∑N

i=1
∂

∂η log {p(zi | ui; η0)} in (A5) through

1
N

N

∑
i=1

∂

∂η
log {p(zi | ui; η0)} =

(
N
2

)−1

∑
1≤i<j≤N

1
2

[
∂

∂η
log {p(zi | ui; η0)}+

∂

∂η
log
{

p(zj | uj; η0)
}]

,

and
∂L(θ0, η0)

∂θ
=

(
N
2

)−1

∑
1≤i<j≤N

∂φij(θ0, η0)

∂θ
.

To sum up, (A5) can be formed as

√
N
(

θ̂− θ0

)
= A−1

√
N
(

N
2

)−1

∑
1≤i<j≤N

{
BG−1Mij(η0)−Nij(θ0, η0)

}
+ op(1),

where Mij(η0) =
1
2

[
∂

∂η log {p(zi | ui; η0)}+ ∂
∂η log

{
p(zj | uj; η0)

}]
and Nij(θ0, η0) =

∂φij(θ0,η0)

∂θ .

Appendix B. Proof of Theorem 2

Proof. Define function

qij(θ) = φij

(
θ0 +

θ√
N

, η̂

)
− φij(θ0, η̂)−

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
= Op

(
1
N

)
, (A6)

and we can form a U-statistic based on qij(θ) as

QN(θ) =
2

N(N − 1) ∑
1≤i<j≤N

qij(θ)

= L
(

θ0 +
θ√
N

)
− L(θ0)−

1√
N
· 2

N(N − 1)
θ

T
∑

1≤i<j≤N

∂φij(θ0, η̂)

∂θ
.

The variance of QN(θ) is bounded by var {QN(θ)} ≤ 2
N var

{
qij(θ)

}
, from Corollary 3.2 of [37].

Meanwhile, 2
N var

{
qij(θ)

}
= 2

N

[
E
{

qij(θ)
2}− E

{
qij(θ)

}2
]
≤ 2

N E
{

qij(θ)
2}, as E

{
qij(θ)

}2 ≥ 0.
As φij(θ, η̂) is convex, that is, differentiable at θ0, we can conclude
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φij

(
θ0 +

θ√
N

, η̂

)
− φij (θ0, η̂) ≥

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
, (A7)

from which we can obtain qij(θ) ≥ 0. Similarly,

φij

(
θ0 +

θ√
N

, η̂

)
− φij (θ0, η̂) ≤

(
θ√
N

)T ∂φij

(
θ0 +

θ√
N

, η̂
)

∂θ
. (A8)

From (A6)–(A8), we can conclude

0 ≤ qij(θ) ≤
(

θ√
N

)T
∂φij

(
θ0 +

θ√
N

, η̂
)

∂θ
−

∂φij (θ0, η̂)

∂θ

 .

Therefore, we can bound

2
N

E
{

qij(θ)
2
}
≤ 2

N

(
1√
N

)2
E
[

θ
T
{

∂

∂θ
φij

(
θ0 +

θ√
N

, η̂

)
−

∂φij(θ0, η̂)

∂θ

}]2

.

The term θ
T
{

∂
∂θ φij

(
θ0 +

θ√
N

, η̂
)
− ∂φij(θ0,η̂)

∂θ

} p−→ 0 as N → ∞. Thus, var {N ·QN(θ)}
p−→ 0

and consequently

N ·QN(θ)− N · E{QN(θ)}
p−→ 0. (A9)

Meanwhile, E {QN(θ)} = E
{

φij

(
θ0 +

θ√
N

, η̂
)}
− E

{
φij(θ0, η̂)

}
. Eventually from (A9) we have

N
{

L
(

θ0 +
θ√
N

)
− L (θ0)

}
− θ

T√
N

2
N(N − 1) ∑

1≤i<j≤N

∂φij(θ0, η̂)

∂θ

− N
[

E
{

φij

(
θ0 +

θ√
N

, η̂

)}
− E

{
φij(θ0, η̂)

}] p−→ 0. (A10)

The third term on the left side of (A10) has convergence properties

N
[

E
{

φij

(
θ0 +

θ√
N

, η̂

)}
− E

{
φij(θ0, η̂)

}]
= N

[
E

{
φij(θ0, η̂) +

(
θ√
N

)T
∂φij(θ0, η̂)

∂θ
+

1
2

(
θ√
N

)T
∂2φij(θ0, η̂)

∂θ∂θ
T

θ√
N

+ op

(
1
N

)}
−E

{
φij(θ0, η̂)

}]
p−→ 1

2
θ

T
Aθ.

By CLT for U-statistics,

√
N

[
2

N(N − 1) ∑
1≤i<j≤N

∂φij(θ0, η̂)

∂θ

]
d−→ N(0, Σ).

Using Slutsky’s theorem, we can simplify (A10) as

N
{

L
(

θ0 +
θ√
N

)
− L(θ0)

}
d−→ 1

2
θ

T
Aθ+ θ

T
W,

where W ∼ N(0, Σ). Based on convexity [38], for every compact set K ⊂ Rp+1, we have
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[
N
{

L
(

θ0 +
θ√
N

, η̂

)
− L(θ0, η̂)

}
: θ ∈ K

]
d−→
{

1
2

θ
T
Aθ+ θ

T
W : θ ∈ K

}
. (A11)

Now we develop large sample properties on the penalty term in objective function with adaptive
LASSO penalty. We modify the penalty term as

N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣
∣∣∣∣∣β̃ j,0 +

β̃ j√
N

∣∣∣∣∣− N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣
∣∣∣β̃ j,0

∣∣∣ .

From Theorem 1, we have already obtained
√

N
(̂̃βj − β̃ j,0

)
= Op(1). Meanwhile, Nλ→ ∞ and

√
Nλ→ 0. If β̃ j,0 6= 0, then

√
Nλ/

∣∣∣̂̃βj

∣∣∣ p−→ 0 and
∣∣∣√Nβ̃ j,0 + β̃ j

∣∣∣− ∣∣∣√Nβ̃ j,0

∣∣∣→ sign(β̃ j,0)β̃ j. Eventually

N
λ∣∣∣̂̃βj

∣∣∣
(∣∣∣∣∣β̃ j,0 +

β̃ j√
N

∣∣∣∣∣− ∣∣∣β̃ j,0

∣∣∣) =
√

N
λ∣∣∣̂̃βj

∣∣∣
(∣∣∣√Nβ̃ j,0 + β̃ j

∣∣∣− ∣∣∣√Nβ̃ j,0

∣∣∣) p−→ 0.

If β̃ j,0 = 0, then
√

Nλ/
∣∣∣̂̃βj

∣∣∣ = Nλ/
(√

N
∣∣∣̂̃βj

∣∣∣) p−→ ∞, consequently

N
λ∣∣∣̂̃βj

∣∣∣
(∣∣∣∣∣β̃ j,0 +

β̃ j√
N

∣∣∣∣∣− ∣∣∣β̃ j,0

∣∣∣) =
√

N
λ∣∣∣̂̃βj

∣∣∣
∣∣∣β̃ j

∣∣∣ p−→
{

0, if β̃ j = 0,

∞, if β̃ j 6= 0.

Therefore, we can summarize

N
p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣
(∣∣∣∣∣β̃ j,0 +

β̃ j√
N

∣∣∣∣∣− ∣∣∣β̃ j,0

∣∣∣) p−→
{

0, if β̃ = (β̃1, ..., β̃p0 , 0, ..., 0),

∞, otherwise.

We have infinity in the limit function, so we cannot use standard argumentation relating
to uniform convergence in probability on compacts [39]. However, we can apply slightly more
complicated epi-convergence. Thus, based on the works in [23,40,41], we have

N
{

L
(

θ0 +
θ√
N

)
− L (θ0)

}
+ N

p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣
(∣∣∣∣∣β̃ j,0 +

β̃ j√
N

∣∣∣∣∣− ∣∣∣β̃ j,0

∣∣∣) e−d−−→ V(θ), (A12)

and

V(θ) =

{
1
2 θ

T

TA1θT + θ
T

TWT , if θ = (γ̃, β̃1, ..., β̃p0 , 0, ..., 0),

∞, otherwise.

and WT ∼ N(0, Σ1). Specifically, the left side of (A12) is minimized if θ =
√

N
(

θ̂λ − θ0

)
and

V(θ) has a unique minimizer
(
−(A−1

1 WT)
T
, 0

T
)T

by setting ∂V(θ)
∂θ = 0. Therefore, convergence of

minimizers [40] can be concluded from (A12):

√
N
(

θ̂λ,T − θ0,T

)
d−→ −A−1

1 WT and
√

N
(

θ̂λ,Tc − θ0,Tc

)
d−→ 0. (A13)

For j ∈ T,

pr (j /∈ TN) = pr
(̂̃βj,λ = 0

)
→ 0.

Thus, pr (T ⊂ TN) → 1. In addition, θ̂λ minimizes the convex objective function Lλ(θ) so that
0 ∈ ∂Lλ(θ̂λ). As Lλ(θ) might be nondifferentiable and gradient of Lλ(θ) does not exist for some θ, we
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use ∂Lλ(θ) to represent an arbitrary selection of the subgradient of Lλ(θ). By taking the subgradient
of the objective function with adaptive LASSO penalty, we can obtain

∂Lλ(θ̂λ) = ∂L(θ̂λ) + ∂

 p

∑
j=1

λ∣∣∣̂̃βj

∣∣∣
∣∣∣̂̃βj,λ

∣∣∣
 .

For j /∈ T, pr (j ∈ TN) can be upper bounded by

pr

∂jL(θ̂λ) +
λ∣∣∣̂̃βj

∣∣∣ sign
(̂̃βj,λ

)
= 0

 ≤ pr

√N
∣∣∣∂jL(θ̂λ)

∣∣∣ = √N
λ∣∣∣̂̃βj

∣∣∣
 , (A14)

where ∂j is the j-th coordinate of subgradient and
√

Nλ/
∣∣∣̂̃βj

∣∣∣ p−→ ∞ as j /∈ T.

We can expand the subgradient
√

N∂L(θ̂λ) as

√
N∂L(θ̂λ) =

√
N
{

∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)}
+
√

N∂L(θ0) +
√

NA
(

θ̂λ − θ0

)
, (A15)

where
√

N∂L(θ0) is bounded in probability,
√

NA
(

θ̂λ − θ0

)
D−→
√

NW which is bounded in
probability as well. By Theorem 1 of the work in [42],

sup
|θ̂λ−θ0|≤M/

√
N

∣∣∣∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)∣∣∣ = op

(
1√
N

)
.

Therefore,
√

N
{

∂L(θ̂λ)− ∂L(θ0)−A
(

θ̂λ − θ0

)} p−→ 0. Finally,
√

N
∣∣∣∂jL(θ̂λ)

∣∣∣ is bounded and
the right side of (A14) converges to 0, which proves pr(j ∈ TN)→ 0 for j /∈ T.
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