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Abstract: In this paper, we propose a protocol of quantum communication to achieve Byzantine
agreement among multiple parties. Our protocol’s striking feature compared to the existing protocols
is that we do not use entanglement to achieve the agreement. The role played by entangled states
in other protocols is replaced in our protocol by a group of semi-honest list distributors. Such a
replacement makes the implementation of our protocol more feasible. Moreover, our protocol
is efficient in the sense that it achieves agreement in only three rounds which is a significant
improvement with respect to the alternative agreement protocol not using entanglement. In the
first round, a list of numbers that satisfies some special properties is distributed to every participant
by list distributors via quantum secure communication. Then, in the second and third rounds,
those participants exchange some information to reach an agreement.
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1. Introduction

A fundamental problem in distributed computing is how to reach an agreement in the presence
of faulty processes. For example, a database can be replicated on several computers, which ensures
access to the database even if some of the computers are not functional. For the consistency of data,
all computers must preserve the same contents. To achieve this goal, a protocol that ensures that all
computers adopt the same update of the database is needed. This problem is intuitively formulated as
the Byzantine generals problem:

“Three generals of the Byzantine army want to decide upon a common plan of action: either to
attack (0) or to retreat (1). They can only communicate in pairs by sending messages. One of the
generals, the commanding general, must decide on a plan of action and communicate it to the other
generals. However, one of the generals might be a traitor, trying to keep the loyal generals from
agreeing on a plan. How to find a way in which all loyal generals follow the same plan?”

If the generals communicate with each other only by pairwise classical channels, the Byzantine
generals problem is provably unsolvable [1,2]. Even if pairwise quantum channels are used, it will
not help to solve the problem [3]. However, a variation of the Byzantine agreement problem,
called detectable Byzantine agreement (DBA), can be solved using quantum resources. A DBA
protocol ensures that either all loyal generals agree upon a common plan or all abort. In addition, if all
generals are loyal, then they agree upon a common plan.

In 2001, Fitzi et al. [4] presented a DBA protocol for three parties using pairwise quantum
channels and entangled qutrits. Cabello [5] proposed a three-party DBA protocol based on a four-qubit
singlet state. Iblisdir and Gisin [6] developed an improvement of the protocol of Fitzi et al. [4] by
showing that the DBA problem can be solved by using two quantum key distribution channels and
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three classical authenticated channels. Gaertner et al. [7] introduced a new DBA protocol based on
four-qubit entangled state. An experimental implementation of the protocol was also presented by
Gaertner et al. [7]. A device-independent quantum scheme for the Byzantine generals problem was
provided by Rahaman et al. [8].

All the aforementioned DBA protocols only consider the situation of three parties. In actual
distributed computing or in blockchains [9,10], the number of parties involved is significantly larger
than three. Ben-Or and Hassidim [11], Tavakoli et al. [12] and Luo et al. [13] developed DBA
protocols for multiple parties based on high-dimensional entangled states. These states are difficult
to realize by the current technology. In this paper, we develop a new DBA protocol for multiple
parties. The crucial feature of our protocol compared to the existing ones is that no entanglement
is used in an essential way. The role played by entangled states in other protocols is replaced by
a group of semi-honest list distributors in our protocol. Such a replacement makes our protocol
easier to implement. The quantum technology that we use is Quantum Key Distribution (QKD) [14],
which is a relatively mature technology and an active topic of research and has recently attracted the
industry’s interest. It is important to note that, in some QKD protocols (e.g., [15]), the phenomenon of
entanglement is used directly on the physical level, and in others entanglement is used to assist and
improve standard QKD protocols such as BB84 [16,17]. However, our quantum Byzantine Agreement
protocol uses QKD on the data transmission level, so the entanglement usage on the physical level is
not relevant on the essential level of our protocol.

To the best of our knowledge, the only existing work on DBA without using entanglement was
presented by Fitzi et al. [18]. While the protocol of Fitzi et al. [18] requires f + 5 rounds to reach an
agreement, where f is the number of faulty parties, our protocol is more efficient in the sense that
agreement can be achieved in three rounds.

The structure of this paper is as follows. In Section 2, we introduce our protocol. Then, in Section 3,
we analyze the properties of our protocol. We conclude the paper with future work in Section 4.

2. Quantum Byzantine Agreement without Entanglement

Let us begin with formal definitions of Byzantine agreement.

Definition 1. [Byzantine agreement (BA) protocol [4]] A protocol among n parties such that one distinct party
S (the sender) holds an input value xs ∈ D (for some finite domain D) and all other parties (the receivers)
eventually decide on an output value in D is said to achieve Byzantine agreement if the protocol guarantees that
all honest parties decide on the same output value y ∈ D and that y = xs whenever the sender is honest.

Definition 2. [Detectable Byzantine agreement (DBA) protocol [4]] A protocol among n parties such that one
sender S holds an input value xs ∈ D and all other receivers eventually decide on an output value in D is said to
achieve detectable Byzantine agreement if the protocol guarantees the following:

1. Agreement: Either all honest parties abort the protocol or all honest parties decide on the same output value
y ∈ D.

2. Validity: If all parties are honest, then they decide on the same output value y = xs.

We assume the parties are pairwise connected by a classical channel and a quantum channel.
Both channels are error-free and synchronous. Being synchronous means that parties share a discrete
global clock that starts out at time 0 and advances by increments of one. Communication proceeds
in a sequence of rounds, with round k taking place between time k− 1 and time k. In each round,
every party first sends the messages it needs to send to other parties, and then it receives the messages
that were sent to it by other parties in the same round. The classical channels are further assumed to
be authenticated, which means that every party can always send classical messages directly to every
other party. The adversary can neither prevent those messages from being sent nor introduce new
messages on the channel. The quantum channels, however, are insecure in the sense that quantum
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messages may be tampered by the adversary. Those assumptions ensures that parties can pairwise
establish secret keys by quantum key distribution. Indeed, we assume that secret keys with sufficient
length are already established before our protocol starts. These assumptions also ensure the parties
to create unconditionally secure signatures [19,20] for the communication of classical information.
Thus, we assume that all classical messages in our protocol are signed by an unconditionally secure
signature scheme.

Now, we introduce our protocol. It consists of three rounds. The aim of the first round is to
distribute correlated lists of numbers among the parties involved in the protocol. We call such a
list reference list since the parties refer to that lists to check whether the information they receive is
trustworthy. Then, in the second and third rounds, parties use the reference lists to achieve consensus.
We assume the existence of semi-honest parties to handle the task of reference list distribution.
This assumption is similar to the one made by Luo et al. [13]. For a party to be semi-honest means that
the party acts according to the description of the protocol, but may disclose information with a certain
probability p, 0 < p < 1.

2.1. Round 1: List Distribution

Let {P1, . . . , Pn, Pn+1, . . . , Pn+d} be a set of parties. Let further P1 be the sender of the DBA
protocol, P2, . . . , Pn be receivers and Pn+1, . . . , Pn+d be list distributors. To distinguish the sender
and the receivers from the distributors, we also call the former two participants. We assume that
Pn+1, . . . , Pn+d are semi-honest. For every party Pi ∈ {Pn+1, . . . , Pn+d}, the task of Pi is to use the
technique of quantum secure communication (communicate with the encryption/decryption keys
distributed by quantum key distribution) to send a list of numbers Li

k (a reference list) to each
Pk ∈ {P1, . . . , Pn} such that the following is satisfied:

1. For all k ∈ {1, . . . , n}, |Li
k| = m for some integer m which is a multiple of 6.

2. Li
1 ∈ {0, 1, 2}m. m

3 numbers on Li
1 are 0. m

3 numbers on Li
1 are 1. m

3 numbers on Li
1 are 2.

3. For all k ∈ {2, . . . , n}, Li
k ∈ {0, 1}m.

4. For all j ∈ {1, . . . , m}, if Li
1[j] = 0, then Li

2[j] = . . . = Li
n[j] = 0.

5. For all j ∈ {1, . . . , m}, if Li
1[j] = 1, then Li

2[j] = . . . = Li
n[j] = 1.

6. For all j ∈ {1, . . . , m}, if Li
1[j] = 2, then for all k ∈ {2, . . . , n} the probability that Li

k[j] = 0 and
that Li

k[j] = 1 are equal (i.e., the numbers of occurences of 0 and 1 are equal in the list).
7. For all j, k ∈ {1, . . . , m}, Li

j = Li
k.

Distributors create their lists independently; thus, for different i and j, the lists Li
1 and Lj

1 may be
different (indeed, the probability that they are the same is quite small).

After the lists are distributed, P1, . . . , Pn use sequential composition to form a longer list to be
used in the next stage: L1 = Ln+1

1 . . . Ln+d
1 , . . . , Ln = Ln+1

n . . . Ln+d
n .

Obviously, L2 = L3 = ... = Ln. We call the longer lists combined reference lists. Notice that every
distributor contributes 1

d to the combined reference lists.

2.2. Rounds 2 and 3: Reaching Agreement

Now, the parties P1, . . . , Pn run the following steps to reach an agreement:

Round 2 P1 sends a binary number b1,k to all Pk, k ∈ {2, . . . , n}. Together with b1,k, P1 sends to Pk the
list of numbers ID1,k, which indicate all positions of b1,k on the list L1. The length of ID1,k is
to be md

3 , where md is the length of L1. P1 uses b1,k as the final value it outputs.
Round 3 Pk checks the obtained message (b1,k, ID1,k) against his own reference list Lk. If the analysis

of Pk shows that (b1,k, ID1,k) is consistent with Lk, then he sets (bk,j, IDk,j) := (b1,k, ID1,k)

and sends (bk,j, IDk,j) to all other receivers Pj, j ∈ {2, . . . , n}. Here, (b1,k, ID1,k) is consistent
with Lk means that for all index x ∈ ID1,k, Lk[x] = b1,k. However, if (b1,k, ID1,k) is not
consistent with Lk, then Pk immediately ascertains that P1 is dishonest and sends to other
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receivers Pj, j ∈ {2, . . . , n}message: ⊥, meaning: “I have received an inconsistent message”.
To acknowledge the fact that every receiver knows his own output, we formally assume
that each of them receives a message from himself.

Time 3 After all messages have been exchanged between the receivers, every Pk analyzes the data
received from P2, . . . , Pn and acts according to the following criteria:

(a) If there is a set of receivers H with |H| ≥ 2 such that, for all j ∈ H, (bj,k, IDj,k) is
consistent with Lk, and for some i, j ∈ H, bi,k 6= bj,k, then Pk sets his output value to
be ⊥.

(b) If there is a set of receivers H with |H| ≥ 2 such that for all j ∈ H, (bj,k, IDj,k) is
consistent with Lk and all bj,k are the same, and for all i 6∈ H, (bi,k, IDi,k) is not
consistent with Lk, then Pk sets his output value to be bj,k.

(c) If there is a set of receivers H with |H| ≥ 2 such that for all j ∈ H, (bj,k, IDj,k) is
consistent with Lk and all bj,k are the same, and for all i 6∈ H, the message sent by Pi is
⊥, then Pk sets his output value to be bj,k.

(d) In all other cases, Pk sets his value to be ⊥.

Criteria (a)–(d) are crucial for our protocol. Let us now briefly explain the rationale behind them.
In a nutshell, the most important factor here is the following claims:

Theorem 1. For all k, j ∈ {2, . . . , n}, Pk believes that Pj is honest whenever (bj,k, IDj,k) is consistent with Lk.

Proof. We prove the theorem by showing that if Pj is dishonest then the probability that Pj sets
(bj,k, IDj,k) to be consistent with Lk is extremely small, when bj,k 6= b1,j.

Suppose Pj is dishonest and bj,k 6= b1,j. Now, Pj wants to construct the message (bj,k, IDj,k) and
send to Pk such that (bj,k, IDj,k) is consistent with Lk. Note that, in Lj = Lk, there are md

2 positions on
which bj,k appears. However, on L1, there are only md

3 positions on which bj,k appears. We say that
a position x is a discord position iff L1[x] = 2. If Pj selects a discord position x and puts it into IDj,k,
then with probability 1

3 it will be that Lk[x] 6= bj,k. To ensure that (bj,k, IDj,k) is consistent with Lk,
Pj has to make a correct choice on all indexes. Therefore, the probability of making a correct choice on

all indexes is ( 2
3 )

md
3 , which is extremely small when md is relatively large. Therefore, if it is the case

that (bj,k, IDj,k) is consistent with Lk, then Pk can conclude that Pj is honest.

Theorem 2. For all k, j ∈ {2, . . . , n}, if Pj is honest and he sends (bj,k, IDj,k) to Pk, then (bj,k, IDj,k) is
consistent with Lk.

Proof. If Pj is honest and he sends (bj,k, IDj,k) to Pk, then (bj,k, IDj,k) = (b1,j, ID1,j) must be consistent
with Lj. Since Lj = Lk, we know that (bj,k, IDj,k) is consistent with Lk.

Thus, any receiver Pk can conclusively deduce about any other receiver Pj what follows:

• If Pj has sent a message consistent with Lk, then Pj is honest.
• If Pj has sent a message inconsistent with Lk, then Pj is dishonest.
• If Pj has sent ⊥, then Pj may be honest or dishonest. However, if in this case Pj is honest, then P1

must be dishonest.

The rationale of Criterion (a) follows from Theorem 1. Pk can conclude that Pi and Pj are honest
when (bi,k, IDi,k) and (bj,k, IDj,k) are consistent with Lk. Now, if in addition bi,k 6= bj,k, Pk can safely
conclude that the sender (P1) is dishonest. Consequently all the messages are not trustworthy and the
output ⊥ is adequate for the situation.

As for Criterion (b), according to Theorem 1, we may conclude that all the receivers from the
set H are honest and all others are not. Thus, H is the set of all honest receivers and their common
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message is trustworthy. Criterion (c) is similar to Criterion (b). Receivers from H here are also honest.
However, in this case, some participants who are not in H may also be honest. The honest ones
finally will change their output value from ⊥ to bj,k. For safety reasons with respect to the agreement
condition of DBA presented in Definition 2 by Criterion (d) in all other cases honest parties abort our
protocol by setting their output to ⊥.

3. Analysis of the Protocol

Now, let us analyze the performance of our protocol under an attack of an adversary. We make
the following assumption about the adversary:

1. The adversary can control a fixed set of participants and let those participants send arbitrary
messages at his will. A participant is dishonest if and only if he is controlled by the adversary.
The amount of honest participants is ≥3.

2. The adversary can bribe the list distributors to disclose certain information. When being bribed,
a list distributor will disclose information with probability p.

3. The adversary has unlimited computing power.

In short, the adversary is static, Byzantine and with unlimited computing power.

Theorem 3. Our protocol satisfies agreement and validity under the attack of an adversary.

Proof. It is easy to see that validity is satisfied. Indeed, if none of the participants is controlled by
the adversary, then they behave as the protocol specifies. Even if the adversary collects information
from a large number of list distributors, the correlated list of numbers will still be correctly distributed.
All participants will send consistent messages and the same output value will be established.

We now turn to the proof of agreement. First, note that the adversary can hardly have complete
information of the combined reference lists (L1, . . . , Ln). By our assumption, every list distributor is
semi-honest. They will disclose the content of the list that they distributed with probability p < 1, if the
adversary bribes them. Since every list distributor contributes only 1

d to the lists, to collect complete
information about L1, . . . , Ln, the adversary must bribe all d list distributors and still the probability
of collecting complete information is pd, which decreases exponentially as d grows. For those list
distributors that the adversary does not bribe, the adversary cannot collect any information because
the lists are distributed by quantum secure communication. The unlimited computing power the
adversary has is not helpful in this case. Therefore, we conclude that the first stage of our protocol can
be correctly and safely executed.

Now, we consider the second and third rounds. If the sender is honest, then there are at least
two honest receivers. All honest receivers will receive the same consistent data from the sender.
Those honest receivers will forward the same data to other participants. Therefore, according to
Criterion (b) in our protocol, all honest participants will output the same value as the sender. If the
sender P1 is dishonest, then there are two cases:

1. All honest receivers receive consistent data. In this case, there are two sub-cases:

(a) All honest receivers receive the same data. In this case, according to Criterion (b), all honest
participants will output the same value.

(b) Not all honest receivers receive the same data. Then, according to Criterion (a), all honest
receivers will abort the protocol (output ⊥).

2. Not all honest receivers receive consistent data. In this case, if there are still two receivers that
receive the same and consistent data and all other receivers output ⊥, then, according to Criterion
(c), all honest receivers will output the same value. Otherwise, according to Criterion (a) or
Criterion (d), all honest receivers will output ⊥.
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Therefore, in all possible cases, the agreement is achieved.

The above proof also implies an interesting property of our protocol which is stronger than
validity. We present it as a corollary.

Corollary 1. Our protocol satisfies the following honest-success property under the attack of an adversary:
if the sender is honest, then all honest parties decide on the same output as the sender.

4. Conclusions and Future Work

We propose a protocol of quantum communication to achieve detectable Byzantine agreement
among multiple parties. The significant feature of our protocol, compared to most existing protocols,
is that it does not use entanglement. The success of our protocol relies on the distribution of sequences
of reference lists, which in turn relies on the unconditional security of QKD. The way QKD is obtained
is beyond the scope of the paper; we can just mention that in principle QKD can also be implemented
without entanglement even if in some proposals the performance of QKD is improved by using
two-qubit entangled state [16].

We also assume the participation of semi-honest list distributors in the protocol. This assumption is
the price to pay for not using entanglement. Since low-dimensional entanglement can be implemented
by current technology, in the future, we will study whether semi-honest distributors could be replaced
by low-dimensional entanglement. One potential application of our DBA protocol is in the field of
quantum blockchain [21–23]. In the future, we plan to apply our protocol to quantum blockchain to
solve particular problems such as auction, lottery and multi-party secure computation.
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