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Abstract: Compression, filtering, and cryptography, as well as the sampling of complex systems, can be
seen as processing information. A large initial configuration or input space is nontrivially mapped to
a smaller set of output or final states. We explored the statistics of filtering of simple patterns on a
number of deterministic and random graphs as a tractable example of such information processing in
complex systems. In this problem, multiple inputs map to the same output, and the statistics of filtering is
represented by the distribution of this degeneracy. For a few simple filter patterns on a ring, we obtained
an exact solution of the problem and numerically described more difficult filter setups. For each of
the filter patterns and networks, we found three key numbers that essentially describe the statistics of
filtering and compared them for different networks. Our results for networks with diverse architectures
are essentially determined by two factors: whether the graphs structure is deterministic or random
and the vertex degree. We find that filtering in random graphs produces much richer statistics than in
deterministic graphs, reflecting the greater complexity of such graphs. Increasing the graph’s degree
reduces this statistical richness, while being at its maximum at the smallest degree not equal to two.
A filter pattern with a strong dependence on the neighbourhood of a node is much more sensitive to
these effects.
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1. Introduction

Many systems of great interest from different domains, from the brain to ecosystems to social systems
and technological systems, share the characteristic of complex behaviours that emerge from the interactions
between their numerous elements. A recurring feature of such systems is a nontrivial mapping of an initial
configuration space to a smaller set of final configurations, appearing in sampling, compression, and more
general information processing [1–6], and in numerous complex systems, including the basins of attraction
of local minima in spin glasses, and deep learning neural networks [7–9]. Understanding the statistics of
these degenerate states can provide important insight into these systems. The statistics of degeneracies,
and their relation to the principle of maximum entropy, were studied in a variety of complex systems in a
recent series of works [1,10–13].

Filtering is the processing of an input signal to produce an output signal according to some rule, based
on the content of the input. The filter does not add information, with the number of possible outputs being
less than (or at most equal to) the number of possible inputs. Thus, outputs degenerate: multiple inputs
map to the same output. Even very simple filters can produce a complex distribution of degeneracies [14].
In a previous work [14], we showed that a simple filtering problem produces analogous behaviour of the
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degeneracy distribution to these more complex systems, and that one can obtain exact results up to large
system sizes that are simply not accessible in more complex problems.

Numerous studies have shown that the heterogeneous structure of interactions between elements
of a complex system, which is usually represented as a complex network, can have a profound effect on
the properties of the system [15]. Here, we examine a simple filtering process on a network. The input
consists of the binary states of nodes in a given network. The filter outputs a 1 for every instance of a
particular pattern of states on a node and its immediate neighbours, and a 0 when the pattern is absent.
This generalises the filtering problem that is examined in Ref. [14] for binary inputs in a cyclical string
(ring). Figure 1 represents the process applied to a small graph. We studied this problem on a variety of
degree-regular graphs. We studied this problem on a variety of degree-regular graphs. We show that one
may find the exact degeneracy distribution corresponding to the complete set of all possible inputs, up to
relatively large system sizes, for any given graph. Just as in our previous study on rings, we show that the
principal characteristics of the degeneracy distribution are asymptotically described by three key numbers.
These numbers may be obtained exactly by simple arguments.

SR WR

Input:

Outputs:

Figure 1. The application of different filters to a set of zeros and ones place on a graph. Each node of
the input and output graphs is in one of two states, namely 0 (open circles) or 1 (closed circles). In the
strong rule (SR) filter, an output node is one only when the corresponding input node is one and all of its
neighbours are zero. In the weak rule (WR) filter, an output node is one when the corresponding input
node is one and one or more of its neighbours are zero.

This problem serves as a tractable simple model to explore information processing in complex
systems. In a graph, the connections between nodes create complex interactions between the filter output
at each node. We show that the degeneracy distribution correctly captures this complexity. In particular,
the entropy of the degeneracy distribution, called the relevance [11] is lower in deterministically
constructed graphs and higher in random graphs. We show that relevance is maximum when the graph
degree takes its smallest value greater than two. We compared two different filters, and found that the
stronger filter (detecting less easily satisfied conditions) is more informative, because it is more sensitive
to the state of neighboring nodes. Interestingly, our results for regular graphs of diverse architectures
essentially depend only on a vertex degree, as Figure 6 demonstrates.

2. Filtering Statistics on a Ring

For orientation, we begin by studying nodes located on a ring. The input is a set of N strings of zeroes
and ones {xi}, xi = 0, 1, of length n, assuming the periodic condition x1 = xn+1. We consider the complete
set of all possible unique inputs. Its size N is determined by the size n of inputs, N = 2n.
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The filter works, as follows: every instance of a specific pattern in the input (a short sequence of ones
and zeroes) is marked by a one in the corresponding position in the output. All other positions are marked
with zeroes. Multiple inputs correspond to the same output, creating a distribution of degeneracies of the
outputs. We illustrate the results from a simple example filter pattern in Figure 2a,b. We observe complex
degeneracy distributions reminiscent of those that were observed in, for example, Ref. [16].

The filter pattern may be arbitrary, but for illustrative purposes we will consider in particular a family
of filters consisting of a string of ones with zeroes at either end: 010, 0110, 01110, etc. The length of the filter,
w, can be used as a crude control parameter to observe the effects on resolution and relevance (see below).
For convenience, we use the notation 1l to indicate a chain of l ones. Thus, the filter of length w is 01w−20.
In principle, for each of the 2n possible inputs we can obtain, one by one, an output numerically. In practice,
we use a more efficient algorithm that is described in Ref. [14]. Other types of filter patterns on a ring may
be analyzed while using the same methods.
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Figure 2. Degeneracy distribution (a) and cumulative degeneracy distribution (b) for the filter 010 on a ring,
and for its generalization on a torus, which is a 1 with four neighboring 0’s (panels (c,d)). These illustrate
the typically broad, but complex, degeneracy distribution. The cumulative distribution exhibits a complex
staircase like structure in the tail.

2.1. Degeneracy Distribution

We obtained the number of outputs N (d) for the full spectrum of degeneracies d for a variety of
filters. The degeneracies di , i = 1, ..., D, form a discrete spectrum of values, where dD is the largest
degeneracy and d1 = 1. Figure 2 shows a few examples of the degeneracy distributions and cumulative
degeneracy distributions. Here,Ncum(di) ≡ ∑D

j=iN (dj). In particular, the total number of outputs is given
by M(n) = Ncum(d1). The cumulative degeneracy distribution is broad, but it decays more rapidly than a
power law.

The tail of the cumulative distribution has a notably complex structure resembling a staircase,
with steep jumps between steps. The heights of these jumps are especially large in the region of high
degeneracies. Similar structures may be observed in real systems, see, for example, Figure 3 of Ref. [16].
When the number of ones in the output is few, and some or all of them are separated by large gaps, such
outputs have very similar but not exactly equal degeneracies for finite n, as shown in Ref. [14]. These closely
located degeneracies lead to the staircase structure that was observed in the cumulative distribution.
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Let us consider the evolution of the degeneracy distribution (and cumulative distribution) with input
size n. The largest degeneracy dD(n) corresponds to the output with all zeroes, and for large n, grows as
dD(n) ∼= zn

d , where the value of zd depends on the specific filter. Naturally N (dD, n) = 1. The number
of outputs with degeneracy 1 behaves as N (1, n) ∼= zn

a . Meanwhile, the total number of outputs, M(n)
is asymptotically M(n) ∼= zn

g . Together, these three key constants, zd, zg, and za, delimit the asymptotic
behaviour of the degeneracy distribution [14]. We list these numbers for a selection of short filter patterns
on a ring in Table 1.

Table 1. Values of the numbers zg, zd, and za for different filters. Note that we also included filter patterns
that consist of all zeroes. For each filter, we also give the relevance per node H[d]/n (in nats) calculated
from the degeneracy distribution and the resolution per node H[y]/n. For the sake of comparison, the
standard entropy of the inputs of this size is H/n = ln 2 = 0.69315. Finally, we include the number of
distinct degeneracies D for each pattern. Inputs of size n = 36 were used, except for filters 00 and 10, for
which n = 34, and 000, for which n = 35. Values for D for these three filters were extrapolated to n = 36
for comparison with other results.

Pattern zg zd za H[d]/n H[y]/n D

0 (or 1) 2 1 2 0 0.69315 1

00 1.75488 1.61803 1.61803 0.18261 0.48468 924(1)
10 1.61803 1.31951 1 0.13954 0.46986 513(1)

010 1.61803 1.75488 1.46557 0.17248 0.35187 777
000 1.61803 1.83929 1.49710 0.1453(1) 0.30105 554(2)

0110 }
1.46557 1.86676 1.22074 0.11881 0.22387 6980100

0000 1.52895 1.92756 1.41963(2) 0.08856 0.17673 311

00100 1.46557 1.9417 1.38028 0.06434 0.13371 291
01110 }

1.38028 1.93318 1.16730 0.06312 0.13562 25501100
01000
01010 1.44327 1.94789 1.32472 0.06117 0.12584 301
00000 1.46557(2) 1.96595 1.3652(2) 0.05108 0.10052 190

001100 }
1.38028 1.96931 1.2499(2) 0.03606 0.07899 197001000

010010 1.37108(1) 1.97113 1.1938(5) 0.03586 0.07692 218
011110 




1.32472 1.96717 1.13472 0.03448 0.07939 123

011100
011010
011000
010100
010000
000000 1.4176(2) 1.98358 1.32486 0.02968 0.05606 123

0110110 1.32472 1.98574 1.158(2) 0.02084 0.04353 129
0111110 }

1.28520 1.98386 1.11278 0.02016 0.04535 640111010

01111110 1.25542 1.99203 1.09698 0.01213 0.02546 36

011111110 1.23205 1.99605 1.08507 0.00727 0.01411 25

0111111110 1.21315 1.99803 1.07577 0.00427 0.00774 16

Rather surprisingly, one may obtain these asymptotic behaviours, and exact expressions for the
constants zg, zd and za through simple arguments. Each output consists of isolated ones that were
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separated by strings of zeroes of various lengths. By careful consideration of how valid outputs for a
larger n can be constructed by adding specific segments to shorter outputs, one may construct recursive
relations for the key quantities M(n), dD(n) and N(1, n), whose asymptotics are given by zg, zd and za.
To demonstrate this, we focus on the particular family of filter patterns that consist of a chain of ones with
a zero at each end. The shortest such pattern is 010. Each member of this set may be indexed by the length
of the filter, w ≥ 3. The filter pattern length w determines the minimum number of zeroes, w− 2, between
each one. We provide the derivation of zd, zg and za for any w in Section 5.2 below.

2.2. Effect of Filter Length

In analogy with complex systems, we can consider each filter pattern as sampling the hidden state
of a complex system [14]. The length of these filters acts as a crude control parameter of our sampling.
Intuitively, we expect shorter filters to be more informative. The resolution of a sampling process, defined
as the entropy of a sample:

H[y] = − 1
N

N

∑
i=1

log
(

di
N

)
= −∑

d

dN (d, n)
N

log
(

d
N

)
(1)

is a measure of the ability to distinguish, at the output, between different input states [11]. It takes its
maximum value when there is a different output for each input. However in this case, all oof the utputs
are distinct, and so these filters are not informative regarding the system being sampled. As shown in
Ref. [11], the informativeness of a sample is captured by a different entropy measure, the relevance, being
defined as

H[d] = −∑
d

dN (d, n)
N

log
(

dN (d, n)
N

)
. (2)

Table 1 provides the results for a variety of short filter patterns. The family of filters composed
of a string of ones with a zero at each end, 010, 0110, 01110, etc., are indicated in boldface in the Table.
The relevance is greater for shorter filters, but is actually zero for the shortest possible filters 0 and 1, as can
be seen in the Table. The filter pattern 1 trivially reproduces the input, while 0 is inverse, and all outputs
have degeneracy one. Within the family of filters 01w−20, the relevance is maximised for w = 3.

Filter patterns of length two begin to have nontrivial properties. For the pattern 01, the number of
outputs with degeneracy 1, N(1, n), is either 0 (when n is odd) or 2 (when n is even), so za = 1. This is
because the only outputs that have degeneracy one are periodic sequences of alternating 0’s and 1’s—there
are two of these sequences n is even, and none when n odd. The maximum degeneracy dD(n) for this
pattern grows by an integer factor of 4 for an increment in n of 5. In fact, it can be written explicitly,

dD(n > 11) =
[

3
44/5

]−mod(n,−5)
4n/5, (3)

where the coefficient of 4n/5 equals (3/44/5)0 = 1, (3/44/5)4 = 0.959164, (3/44/5)3 = 0.969214,
(3/44/5)2 = 0.979369, and (3/44/5)1 = 0.989631 for mod(n, 5) = 0, 1, 2, 3, and 4, respectively. As a
result, the number zd, which gives the asymptotic behaviour of the maximum degeneracy dD, is equal
to 41/5.

The degeneracy distribution of the filter 01 does not have the characteristic shape, and the broad
tailed cumulative distribution seen in other filters, as can be seen in Figure 5c.The filter pattern 00 already
produces more complexity, see Figure 5a. The degeneracy distribution and the cumulative distribution
already have the shape and complexity seen in longer filters [14]. Curiously, N(1, n) = dD(n) + in + (−i)n
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(where i is the imaginary unit) where the last two terms give 0, 2, 0,−2, 0, 2, 0,−2, 0, . . . for n = 3, 4, 5, 6, . . . .
This means that zd = za ≈ 1.618.

The largest degeneracies behave as ∼= zn
d for large n. The number zd quickly approaches 2 as the

filter pattern length increases. Because N = 2n, this means that almost all outputs concentrate in a few
outputs and, in the limit, in a single state, i.e., all outputs are the same and the filter patterns are not
informative. For the shortest filter patterns, the value of zd falls rapidly, while the relevance increases,
indicating a transition to informative sampling. On the contrary, zg, which gives the total number of
outputs M(n), increases with decreasing filter length, as shorter filters have more possible outputs. Taken
together, these results indicate that the maximally informative sampling for a given family of filters is
the shortest pattern having a length greater than 1. This behavior is analogous to the transition that was
observed in more complex problems (see for example [10]).

Note that one may also consider filters that are constructed as logical combinations of more than one
pattern. For example, there are three kinds of ‘OR’ filters of size 2 + 2 (in fact, there are (16− 4)/2 = 6
combinations of different filters, but some are equivalent in terms of degeneracies). All of these OR filters
have trivial degeneracies: 01 OR 10 detects when the next digit is different from the current one. Given the
value of an input digit we can completely reconstruct that input, and, since the first input digit has two
possible values, each output has degeneracy 2. The only degeneracy in the spectrum is 2 and its frequency
is 2n−1, so zd = 1 and zg = 2. There are no outputs of degeneracy one, N(1, n) = 0. 00 OR 11 detects when
the next digit is the same as the current one. The same reasoning as for the filter 01 OR 10 applies here: we
can reconstruct the input completely from the output if we know a single digit of the input. Finally, 11 OR
10 (which is the same as 11 OR 01, 00 OR 10 and 00 OR 01) is equivalent to the filter 1 of length 1.

3. Filtering on Graphs

The process that is described in the previous Section may be generalised to an arbitrary graph,
as follows. The input consists of the binary status for each node in the graph. We filter for a particular
condition of the state of a node and of its immediate neighbors. If the state of the node and its neighbours
matches the filter pattern, then the output for that node is 1, otherwise it is 0. We consider two examples:
firstly, we set the output to 1 if the selected node has state 1 and all of its neighbours have state 0 (we refer
to this filter as the strong rule, or SR). This filter that is applied on a ring is equivalent to the pattern 010
discussed in the previous Section. Secondly, we apply a less selective filter, outputting 1 if a node is in
state 1 and any of its neighbours has state 0 (we call this filter the weak rule, or WR). We illustrate the
application of these two filter patterns to a small graph in Figure 1.

These filters were applied to several families of degree-regular graphs. These were chosen to have
a variety of structures and to vary in the degree of randomness in their construction, while being of
comparable size and degree. We considered the following families of graphs: Small world graphs. These
graphs are created by placing all nodes in a ring, and adding shortcuts between nodes to reach the desired
degree. The locations of shortcuts were either random—we use the code SW(q) for these graphs, where q
is the graph degree—or in a deterministic way—SWB(q); Random regular graphs (RRG); Tori, which are
two dimensional square lattices with cyclic boundary conditions; and, Cages. These are graphs that are
defined by two numbers, the degree q and the shortest cycle length g. A (q,g)-cage is the graph fulfilling
these properties while having the smallest possible numbers n of nodes [17]. For each family of graphs,
we considered different sizes, up to at least n = 30, and, where possible, degrees, from q = 2 up to q = 5.
Finally, we investigated the second and third Apollonian networks (Apollonian 2 and 3), which are the
only graphs here that are not degree regular.
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3.1. Degeneracy Distributions

We give some examples of the resulting degeneracy distributions and cumulative degeneracy
distributions, for the SR filter, in Figure 3, for random graphs, and Figure 4, for deterministically generated
graphs. Note that the distributions for random graphs correspond to a single realization of the graph.
We see that there is a dramatic difference in the distribution for random graphs between degree two and
degree three. The degree two random regular graph necessarily consists of one or several closed rings,
and the distribution is a little different than that shown in Figure 2a. For degree three, there is a great deal
of randomness in the formation of the graph, and this is reflected in the degeneracy distribution, which
becomes much more dense, having a fine structure that is not observed in deterministic graphs. For higher
degrees, the distribution becomes less broad and, as we will discuss below, this corresponds to a reducing
relevance with increasing degree.
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Figure 3. Evolution of the degeneracy distribution (left) and cumulative degeneracy distributions (right)
with network degree for outputs of the SR filter on random regular graphs. There is a dramatic difference in
the density and complexity of the distributions between degree 2 (a,b) and degree 3 (c,d). For degree 4 (e,f),
the distributions appear to be similar, but are less broad.
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Figure 4. Degeneracy distributions and cumulative degeneracy distributions for outputs of the SR filter
on selected deterministic graphs of degree 2 (a,b) 3 (c,d), and 4 (e,f). We do not see the same increase in
complexity for degrees that are greater than two that we observe in random graphs.

We have not included examples of the distributions for the “small world” graphs. The deterministic
small world graphs, SWB(q), produce distributions that are almost indistinguishable from those for
other deterministic graphs of the same degree, while the random small world graphs, SW(q), generate
degeneracy distributions very similar to those that are found for random regular graphs. For completeness,
we give the degeneracy distributions and cumulative distributions for the same graphs while using the
WR filter in Figures A1 and A2 in Appendix A.

We plot some examples of some less typical degeneracy distributions in Figure 5. These are the 00
and 10 filters that are applied on a ring, and the SR filter applied to Apollonian networks (which are not
degree regular).
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Figure 5. Degeneracy distributions and cumulative degeneracy distributions for outputs of different filters
on selected deterministic graphs, showing a variety of possible distribution shapes. (a,b) The filter ‘00’ on a
ring, (c,d) ‘01’ on a ring, (e,f) SR filter on an Apollonian graph with degree 3, and (g,h) WR filter on the
same Apollonian graph.

3.2. Behaviour of Important Quantities

In Figure 6, we represent various quantities of interest as a function of graph degree, for the different
graph families studied. We see that there is a clear separation in results between the two filters.
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Figure 6. Dependence of key observables related to the degeneracy distribution on graph degree q.
(a) The relevance entropy H[d] scaled by system size n. (b) Resolution H[y]. (c) Total number of degeneracies
D(n) for n = 30. (d) The nth root of the largest degeneracy dD(n), which tends to zd. (e) The nth root of
the number of outputs M(n), tending to zg. (f) The nth root of the number of outputs of degeneracy onem
N(1, n), tending to za. There is a clear difference in the relevance entropy between random graphs and
deterministic graphs under the SR filter, supporting the conclusion that this measure of entropy is the most
informative. The entropy increases with a decreasing degree, except for degree two, which shows a sharp
drop due to the highly predictable structure of degree two networks. These features are also reflected in the
number of degeneracies, underlining the importance of studying the degeneracy distribution. The other
quantities are almost entirely dependent on only network degree, and on which filter is used.

The weak filter (WR) detects when a node has state 1, while having at least one immediate neighbor
with state 0. This neighbour condition is more easily satisfied the larger the number of neighbours q. Thus
for large q, the number of possible outputs M(n) for the WR filter approaches the number of possible
inputs, 2n. We see in panel (e) that, indeed, the nth root of M(n), which tends to zg for large n, approaches
2 for large q. By the same token, most outputs have a degeneracy of one, so the number of outputs
of degeneracy one, N(1, n) also approaches 2n (za approaching 2) for large q (panel (f)), with while the
largest degeneracy dD(n) (whose asymptotic behaviour is given by zd) only grows slowly with n, (panel
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(d)). The resolution H[y] measures how well the filter distinguishes different inputs, and as we see in
panel (b) of Figure 6, and in agreement with the above observations, the resolution for the weak filter is
high. The maximum possible value of H[y] is n ln 2, which corresponds to a value of H[y]/n = 0.693... in
the figure. We see that the resolution is already close to this value at q = 5.

The correct measure of how informative a sample of the observable variables of a complex system is
about the underlying system is the relevance [11], H[d]. Such sampling is represented in our problem as
the filtering process, and the interactions of the system by the graph structure. Our results confirm the
importance of the relevance, as shown in Figure 6a. A higher relevance is measured in graphs having
some randomness in their structure, while deterministic and regular graphs have lower relevance. This
is particularly true for the strong filter SR, which produces a significantly higher relevance for random
regular graphs (RRG) and rings with random shortcuts (SW), as compared with rings with deterministic
shortcuts (SWB) and cages. The effect for the WR filter is much less pronounced.

The highest relevance occurs at degree q = 3. The explanation for this is clear. Smaller filters generally
produce higher relevance, as there are more outputs than for larger filters, except in the extreme limit of
perfect reproduction of the input (maximum resolution), as shown above, and in [14]. Thus, we would
expect lower values of q, which correspond to smaller SR filters, to have higher relevance. Meanwhile,
and opposing this trend, graphs of degree q = 2 are necessarily either rings or sets of rings, which thus
have a (nearly) deterministic structure and suffer a penalty in relevance. Additionally, notice the similarity
of the degeneracy distributions for q = 2 in Figures 3 and A1. The reduction in relevance in moving from
q = 3 to q = 2 due to this regularity outweighing the expected increase due to the filter being smaller,
as can be seen in the figure. To put it another way, the maximum relevance occurs at the smallest value
of q for which the graph is non deterministic. This echoes our finding for filters on rings, for which
the maximum relevance is found for the shortest filter that does not trivially reproduce the input [14].
We show the degeneracy ditribution for q = 3 for a deterministic graph in Figure 4, and for a random
graph in Figure 3.

For the SR filter, in contrast to the weak filter, there is significant degeneracy of the outputs. The number
of outputs is significantly less than the number of inputs, as is the number of outputs with degeneracy one.
Similarly, the resolution is small for the SR filter, for all graph families, and decreases with q. The largest
degeneracy, dD, on the other hand, does become very large. In the limit of large q, a large fraction of
possible outputs give the same single output (all zeroes). In Figure 6c, the behaviour of the number of
degeneracies, D(n) noticeably mirrors that of the relevance, H[d]. Note that data points for random graphs
are averaged over several realisations of the graph.

In Table 2, we list the key degeneracy distribution statistics for the SR filter, for all families of graphs
studied. Corresponding results for the WR filter may be found in Table A1. In addition to representing
the data that are highlighted in Figure 6 in the quantitative form, these tables demonstrate the size effects
with exponentially rapid convergence to the infinite n limit. In this work, we are mainly interested in
regular graphs (graphs where nodes have a uniform degree), because we can better isolate the effects of
varying the graph’s degree. Nevertheless, for the sake of completeness, we also present results for a few
examples of non-regular graphs, namely Apollonian networks. In Tables 2 and A1, each group of rows
that are delimited by horizontal lines represents a different class of graphs. The four classes at the top of
the tables, namely Apollonian networks, cage graphs, square lattices with periodic boundary conditions
(torus), and rings with deterministic shortcuts, are deterministic graphs, while the two remaining classes
represent random models, namely random regular graphs and rings with random shortcuts. The numbers
that are presented for the random models result from averaging over 10 realizations sampled uniformly
at random.
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Table 2. Important values for the degeneracy distribution that results from applying the strong rule
(SR) filter to various graphs. The numbers n√M(n), n√dD(n) and n√N(1, n) approximate zg, zd, and za

respectively. We also give the relevance per node H[d]/n and the resolution per node H[y]/n. Numbers for
RRG(q) and SW(q) were obtained by averaging over 10 random realizations.

Graph n n
√

M(n) n
√

dD(n) n
√

N(1, n) H[d]/n H[y]/n

Apollonian 2 7 1.47236 1.94420 1.40854 0.08504 0.12919
Apollonian 3 16 1.52380 1.94596 1.49013 0.08148 0.13005

(3,5)-cage 10 1.54199 1.88916 1.42694 0.10463 0.22185
(3,6)-cage 14 1.54904 1.88549 1.46952 0.09741 0.22302
(3,7)-cage 24 1.54516 1.88688 1.42191 0.12412 0.22268
(3,8)-cage 30 1.54618 1.88722 1.44630 0.08763 0.22254
(4,5)-cage 19 1.48991 1.94458 1.37494 0.08094 0.13458
(4,6)-cage 26 1.50129 1.94386 1.44997 0.05243 0.13497
(5,5)-cage 1 30 1.44928 1.97192 1.34932 0.04164 0.07890
(5,5)-cage 2 30 1.44984 1.97191 1.35558 0.04602 0.07891
(5,5)-cage 3 30 1.44954 1.97192 1.35543 0.04201 0.07890
(5,5)-cage 4 30 1.44964 1.97191 1.35280 0.05264 0.07891

torus 3×3 9 1.47967 1.94480 1.42350 0.07165 0.13112
torus 4×4 16 1.51160 1.94843 1.46895 0.06205 0.13043
torus 5×5 25 1.50066 1.94752 1.41779 0.05857 0.13132
torus 6×5 30 1.50206 1.94754 1.42286 0.06159 0.13131
torus 10×3 30 1.48922 1.94678 1.39796 0.05933 0.13100
torus 8×4 32 1.50701 1.94785 1.44980 0.06251 0.13096
torus 6×6 36 1.50405 1.94756 1.44490 0.05890 0.13130

SWB(3) 10 1.55564 1.89336 1.48457 0.10987 0.21539
SWB(3) 20 1.55376 1.89450 1.46394 0.09850 0.21540
SWB(3) 30 1.55377 1.89450 1.46573 0.10256 0.21541
SWB(4) 12 1.48818 1.94653 1.40063 0.07107 0.13103
SWB(4) 21 1.48924 1.94678 1.39802 0.06401 0.13100
SWB(4) 30 1.48922 1.94678 1.39797 0.06211 0.13100
SWB(5) 12 1.43618 1.97359 1.32007 0.04433 0.07602
SWB(5) 20 1.43469 1.97223 1.31634 0.03927 0.07765
SWB(5) 32 1.43463 1.97225 1.31607 0.03597 0.07765

RRG(2) 10 1.55934 1.77122 1.41900 0.15869 0.32044
RRG(2) 20 1.60061 1.76297 1.45744 0.16195 0.33977
RRG(2) 30 1.61251 1.75289 1.46125 0.16997 0.35053
RRG(3) 10 1.49614 1.87903 1.30837 0.17514 0.21708
RRG(3) 20 1.52503 1.87847 1.37793 0.20373 0.22357
RRG(3) 30 1.54129 1.87706 1.41134 0.21442 0.22868
RRG(4) 10 1.44023 1.93770 1.30201 0.11648 0.13463
RRG(4) 20 1.48205 1.93399 1.36490 0.14077 0.14659
RRG(4) 30 1.48439 1.93797 1.37705 0.13959 0.14166
RRG(5) 10 1.41641 1.95111 1.27098 0.10038 0.11042
RRG(5) 20 1.42488 1.96513 1.30706 0.08722 0.08896
RRG(5) 30 1.43068 1.96825 1.31653 0.08344 0.08393

SW(3) 10 1.55356 1.87107 1.43216 0.16610 0.23788
SW(3) 20 1.55998 1.86334 1.43951 0.22050 0.24702
SW(3) 30 1.54842 1.88077 1.43167 0.21643 0.22839
SW(4) 10 1.47637 1.91449 1.33514 0.14321 0.16987
SW(4) 20 1.49157 1.93385 1.38141 0.14235 0.14885
SW(4) 30 1.49811 1.93505 1.39764 0.14519 0.14804
SW(5) 10 1.43017 1.95045 1.29919 0.09802 0.11240
SW(5) 20 1.44575 1.95995 1.33955 0.09722 0.09962
SW(5) 30 1.45251 1.96562 1.35962 0.08951 0.09047

We include results for graphs of several sizes for each type of graph. This allows fpr one to see the
convergence of values with increasing n. Within the set of consecutive rows of each class, the graphs are
ordered by ascending degree, then by ascending number of nodes. The exception to this organization is
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the two first rows, which are for the non-regular Apollonian networks. All of these numbers, as well as the
number of degeneracies D, for n = 30 are plotted in Figure 6.

For fully connected graphs, both the strong and weak rules produce trivial output and degeneracy
distributions. Using the strong rule, for an output node yi to be 1, we must have xi = 1 and all other
inputs xj 6=i = 0. Accordingly, when there is a one in the output string, we have yi = xi. There are n of
these outputs, and their degeneracy is 1. Because, there can be no more than a single 1 in the output
string, the only other possible output is a string of n zeros, which has degeneracy 2n − n. In this case, there
are only two degeneracies in the degree distribution d1 = 1 and d2 = 2n − n, and their frequencies are
N(d1, n) = n, and N(d2, n) = 1, respectively.

On a fully connected graph under the weak rule, for an output node yi to be 1, it is enough to have
xi = 1 and just one other input xj 6=i = 0. Therefore, when one or more of the inputs xi is 0 the output is
equal to the input. The only situation in which the output does not match the input is for an input string
of all 1’s, in which case the output is a strings of 0’s. The weak rule also onlyproduces two degeneracies
d1 = 1 and d2 = 2, with frequencies N(d1, n) = 2n − 2 and N(d2, n) = 1.

It is worth noticing the relation with the class of cage graphs, which we have studied here: (q, 3)-cage
graphs are fully connected graphs with q + 1 nodes, while the (q, 4)-cages are bipartite graphs with two
fully connected layers of q nodes each. Bipartite graphs with two fully connected layers of the same
size also result in trivial degeneracy distributions in both the strong and weak rules. With the strong
rule applied to such a bipartite graph, for an output yi to be 1, we must have all inputs in the opposite
layer to be xi = 0. Conversely, when one input of one of the layers is xi = 1 all the outputs of the other
layer are 0. Accordingly, when all of the input digits of one of the layers are all equal to 0 the outputs
equal the inputs, yi = xi, and when there are 1’s in both layers of the input, the output is all 0’s. In this
case, the degeneracy distribution also contains just two degeneracies, d1 = 1 and d2 = 2n − 2n/2+1,
with frequencies N(d1, n) = 2n/2+1 and N(d2, n) = 1, respectively (notice there are n/2 nodes in each
layer). With the weak rule applied to symmetrical fully connected bipartite graphs, for an output yi to
be 1, it is enough to have just one xi = 0 in the opposite layer. Therefore, all of the inputs with at least a
0 in each layer produce an output yi = xi. All of the inputs with at least one 0 in layer α and only 1’s in
layer β produce an output consisting of all 0’s in layer α and all 1’s in layer β. Finally, if the input contains
no 0’s in either layer, the output is yi = 0 for all i. Therefore, we have d1 = 1, d2 = 2, and d3 = 2n/2 − 1,
with frequencies N(d1, n) = 2n − 2n/2 − 1, N(d2, n) = 1, and N(d3, n) = 1, respectively.

From the trivial degeneracy distribution of these examples of graphs, i.e., fully connected and bipartite
fully connected, we see that the entropies approach trivial limits for large system sizes. Namely, for the
strong rule, while using Equations (1) and (2) for the output and degeneracy entropies, respectively, we see
the in both types of graphs H[y] and H[d] both approach 0, since the distribution is dominated by a single
degeneracy d ∼= 2n with N(d, n) = 1. With the weak rule,the entropy H[y]/n approaches ln 2 = 0.693. . .
and H[d] approaches 0. In general, we expect that the entropies approach these limits as we increase the
degree of the graphs that are generated by any model. Interestingly, this effect is already quite visible in
Tables 2 and A1, when we compare the values of the entropy for different degrees within each class of
graphs, even for degrees up to only 5.

4. Discussion

In Ref. [14], we introduced a simple filtering problem that produces a rich and complex distribution
of output degeneracies. The input is a cyclic sequence of zeroes and ones (a ring), and the process outputs
a one in any position where a particular short pattern occurs, and a zero otherwise. The tractability of the
problem means that we are able to give the complete degeneracy distribution, for the set of all possible
inputs, up to relatively large system sizes.
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In this paper, we have extended this problem to consider general graphs. The input is a digit 1 or 0
that is assigned to each node of the graph, and the output for each node is 1 if the state of the node and
those of its immediate neighbours match a given filter pattern, and 0 otherwise. We demonstrate this
process by calculating the full degeneracy distributions for various degree regular graphs with 30 or more
nodes, while using two example filter patterns. The weak (WR) pattern registers a 1 if the corresponding
node has state 1 and at least one of its neighbours has state 0. The strong (SR) pattern only registers 1 if
the node is in state 1 and all of its neighbours are in state 0. We found degeneracy distributions having
similar form and features to those seen in the simpler problem of filtering on a ring. We showed that three
key features of the degeneracy distribution: the largest degeneracy dD(n), the number of distinct outputs
M(n) and the number of outputs having degeneracy one, N(1, n) behave as zn

d , zn
g and zn

a , respectively,
where the three numbers zd, zg, and za take values from 1 to 2, depending on the graph and the filter.
We find precise values for these three numbers for all the graphs studied.

The two filter examples used give quite different results, and have different behaviour with respect
to graph degree. The key results are summarised by our main figure, Figure 6. The weak rule filter, WR,
is only weakly sensitive to the neighborhood of a node and, hence, the structure of the graph. For large
degree, it almost always produces an output matching the input. Thus, the WR filter produces large values
for the ouput entropy, called the resolution, and small values for the degeneracy entropy, the relevance.

The strong rule filter, SR, on the other hand, imposes a condition on all the neighbours of the
node where the filter is applied. This produces a much larger relevance (which is a measure of the
informativeness of the filtering process) in random graphs, but much lower resolution, as the number of
unique outputs is restricted. The relevance is the largest for the smallest graph degree not equal to two.
Deterministically constructed graphs do not demonstrate the same peak in relevance, underlining the
importance of this measure for detecting complexity. For a larger degree, the condition becomes more
restrictive, so the number of outputs is reduced. The resolution decreases with increasing q, but so does
the relevance. The reason that the q = 2 graphs do not give the maximum relevance is that these graphs
necessarily have a highly predictable structure. All of the nodes lie in one or at most a few rings. One may
observe that the degeneracy distributions and corresponding statistics are very similar for all families of
graphs studied when q = 2. The fact that the results are largely determined by degree indicates that it
should be possible to write a mean field theory for the degeneracy distribution.

Similar complexity is observed in various complex systems, particularly with regard to information
processing. In such systems, degeneracy distribution has been shown to be an important observation of the
system. The entropy of this distribution, called the relevance, was shown [11] to be the relevant measure
of complexity, and we showed that our simple problem reproduces many of the important qualitative
phenomena that are observed in such systems. Therefore, the filtering problem is a highly tractable problem
illuminating some of the key features of information processing in more complex systems. The extension
of this problem to arbitrary graphs, makes the interactions between nodes more complex, and the analogy
with the complex interactions of real complex systems more explicit.

5. Materials and Methods

5.1. Calculation of Degeneracy Distributions

The distributions that are shown in Figures 2–5, A1 and A2, and the numbers presented in
the Tables 1, 2, and A1 and plotted in Figure 6 were experimentally obtained by considering all 2n

configurations of the n input binary variables xi individually. For a specified filter, or rule, we obtain the
output variables yi corresponding to each input. From the frequency with which each output configuration
appears, we build the degeneracy distribution.
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For the sake of simplicity in the implementation of the computational experiments, we apply a basic
indexing system to the output configurations. We start by initializing an array with 2n positions populated
with zeros, representing the frequency of observation of each output. Subsequently, as we systematically
run through all of the possible inputs and calculate the corresponding outputs {yi}, we increment by 1
the value in position ∑i yi2i of the array, where i = 0, 1, . . . , n− 1. In the end of this process, each position
of the array contains the frequency of its corresponding output. This method is memory intensive and,
in some cases, uses much more memory than strictly necessary, since most of the positions of the frequency
array will remain unchanged after initialization (corresponding to non-realizable, or unobserved, outputs).
It is relatively simple to develop methods that do not require so much memory; however, they would
necessarily require more CPU resources and they have a larger time complexity. Notice that our method’s
time complexity is linear with the number of input configurations 2n. In the case of rings, a much more
efficient algorithm may be used, as described in Ref. [14].

5.2. Asymptotics of the Degeneracy Distribution on Rings

Here, we show how the asymptotic behaviour of the degeneracy distribution may be obtained.
We focus on the particular family of filter patterns consisting of a chain of 1s with a 0 at each end.
The shortest such pattern is 010. Each member of this set may be indexed by the length of the filter, w ≥ 3.
Each output consists of isolated ones that are separated by strings of zeroes of various lengths. The filter
pattern length w determines the minimum number of zeroes, w− 2, between each one.

For w = 3, chains of three or fewer zeroes in the output can only be produced in one way. Thus,
outputs only containing such chains of zeroes have degeneracy 1. Possible such output sequences can be
built up out of three kinds of building blocks, 01, 001, and 0001, put together in a ring of length n. Thus,
we can find the number of outputs of degeneracy 1, N (1, n), by counting all possible ways of building a
ring of length n out of these blocks. We can do this recursively. For every configuration of length n− 2,
we can obtain a valid configuration of length n by inserting the block 01 to the right, say, of a particular
position i in the ring. This gives all of the configurations of length n with the block 01 to the right of i.
Doing the same with configurations of length n− 3 and blocks 001, we get all the configurations with a
block 001 to the right of the block of i. Finally, repeating the procedure for configurations of length n− 4
and blocks 0001, gives all the configurations with a block 0001 to the right of the block of i. Because every
block must be 01, 001, or 0001, the union of these three sets is the full set of configurations of degeneracy 1
in rings of n digits. Thus, we can write

N (1, n) = N (1, n− 2) +N (1, n− 3) +N (1, n− 4). (4)

Starting from the first few values

N (1, 1)=0, N (1, 2)=2, N (1, 3)=3, N (1, 4)=6, (5)

we could build up the sequence and find N (1, n) for any n. However, it is not necessary to iterate through
all values of n.

The explicit solution of this linear difference Equation (4) can be written in terms of the roots, zi, of the
characteristic equation z4 = z2 + z + 1:

N (1, n) = z1
n + z2

n + z3
n + z4

n, (6)

where the coefficients of the powers of the roots zi, all equal to one, are found form the initial condition,
Equation (5). The root z1 ≡ za = 1.46557... determines the large n asymptotics of N (1, n).
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For w ≥ 4, it becomes possible for there to be chains of ones in the input that are shorter than that in
the filter pattern. This means that only sequences of w− 2 or w− 1 zeroes in the output are not degenerate.
Any sequence of w or more zeroes in the output can be produced in more than one way. Therefore, one
may extend an input of degeneracy 1 only by inserting blocks of length w− 1 and w. Hence, the recursion
for N (1, n) becomes

N (1, n) = N (1, n− w + 1) +N (1, n− w). (7)

The corresponding characteristic equation is

zw = z + 1. (8)

For large n, then,

N (1, n) ∼= zn
a (9)

where za corresponds to the dominant solution of Equation (8).
The total number of possible outputs may be derived in a similar way. The presence of a 1 at a

given position in the output uniquely corresponds to w fixed digits at the same position in the input.
Any degeneracy therefore arises in the parts of the input corresponding to strings of zeroes in the output.
The total number of possible outputs, M(n), is then the number of ways of arranging isolated ones in a
chain of length n, subject to this constraint. For every output of length n− 1, we can create an output of
length n by inserting an additional 0. However, the same is not true for the digit 1. Any 1 in the output must
be accompanied by a sequence of w− 2 zeroes. We can account for this condition precisely by inserting
the sequence 10w−2 into any valid output of length n− (w− 1) in a position immediately following a
sequence of w− 2 zeroes (at least one such sequence must exist). Thus M(n) = M(n− 1) + M(n−w + 1),
with initial conditions M(n = w) = 2, M(n < w) = 1. The elements of the sequence may be written in
terms of the roots of the characteristic equation [18–20]

zw−1 = zw−2 + 1. (10)

Subsequently, zg corresponds to the largest root of this equation. We list values for various filter lengths
(as well as for some other filter patterns) in Table 1.

The entire degeneracy distribution may be built up by considering chains of zeroes of different lengths
in the output, and the number of different possible corresponding sections of the input. Let an output
with m ≥ 1 ones contain m strings of zeroes with lengths `1, `2, ..., `m. Subsequently, the degeneracy of this
output equals

d =
m

∏
i=1

d̃(`i). (11)

Here, d̃(`) is the number of input strings of length `, having the first and last digits 0, which generate an
output string of ` zeroes. This number plays an important role in our problem, similar to prime numbers
in number theory, so we call the d̃(`) prime degeneracies. Suppose that the output contains µ` strings of
zeroes of length `, ` = w− 2, w− 1, w, ..., where

m + ∑
`≥w−2

`µ` = n. (12)
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Subsequently, Equation (11) may be rewritten

d = ∏
`≥w−2

[d̃(`)] µ` (13)

for m ≥ 1.
The prime degeneracies d̃(`) can be recursively obtained by taking three points into account:
(i) Relevant input configurations of length ` are obtained by inserting 0 or 1 into each relevant

configuration of length `− 1 between the first and second positions of the sequence (recall that the first
and last positions of the input sequence are fixed to 0).

(ii) Input strings of length ` beginning and/or ending with 01w−20 are irrelevant, and so they should be
removed from the set generated at the previous step. These configurations can be obtained by inserting the
w− 1 digits 1w−20 into each relevant input string of length `−w + 1 between its first and second positions.

(iii) Finally, there exist input strings, compatible with the output string of ` zeroes, which cannot
be obtained by inserting a single digit into relevant input strings of length `− 1 between their first and
second positions. These are the input strings of length ` beginning with 01w−10 (i.e., a string of ones one
digit longer than in the filter). These inputs can be obtained by inserting 1w−10 into each relevant input
string of length `− w between their first and second positions.

Following these rules, the degeneracy of a string of ` zeroes at the output, prime degeneracy d̃(`),
can be recursively written as a linear difference equation:

d̃(`) = 2d̃(`− 1)− d̃(`− w + 1) + d̃(`− w) (14)

with the initial condition d̃(1) = d̃(2) = 1, d̃(`) = 2`−2 for 3 ≤ ` < w and d(w) = 2w−2 − 1. The solution
of Equation (14) may be explicitly expressed in terms of the complex roots of the characteristic equation

zw = 2zw−1 − z + 1. (15)

giving
d̃(`) = C1z1

` + C2z2
` + C3z3

` + ... + Cwzw
`. (16)

The largest real root of Equation (15), z1, say, dominates for large `, and we identify it as zd:

d̃(`) ∼= C1z`d. (17)

The case of the periodic output of length n with all digits 0 has to be separately considered. Consider
one digit of the input, at an arbitrary position. The number of input configurations where this digit is 0
and the resulting output has only zeroes is given by d̃(n + 1), because the periodicity of the input means
that this digit 0 plays the role of both first and last digit of the configurations of a string of n + 1 digits.
If the digit is 1, then the number of input configurations equals 1 + ∑i 6=w−2 id̃(n− i), where the sum over i
accounts for the configurations, where the digit is in a group of i consecutive ones whose length is not
w− 2, plus one configuration with all input digits equal to 1. Thus, the degeneracy of the output with all
zeroes is given by

dD(n) = 1 + d̃(n + 1) +
n−1

∑
i=1;i 6=w−2

id̃(n− i), (18)

which is the largest possible degeneracy of an output of a given length. Applying the recursion relation for
prime degeneracies d̃, Equation (14) to the terms on the right-hand side of Equation (18), we find that the
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largest degeneracy dD(n) satisfies the same difference equation as Equation (14) though with different
initial condition

dD(n) = 2dD(n− 1)− dD(n− w + 1) + dD(n− w) (19)

with the initial condition dD(n) = 2n for n < w, and dD(w) = 2w − w. For large n, the solution is
dominated by a single solution,

dD(n) ∼= zn
d . (20)
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Appendix A. Further Results for the Weak Rule Filter

Here we plot degeneracy distributions, cumulative distributions, and tabulate measures for the weak
rule filter, WR, for comparison with those given for the strong rule, SR, in the main body of the text above.
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Figure A1. Degeneracy distributions (left) and cumulative degeneracy distributions (right) for outputs of
the WR filter on selected deterministic graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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Figure A2. Degeneracy distributions and cumulative degeneracy distributions for outputs of the WR filter
on random regular graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).

Table A1. Important values for the degeneracy distribution resulting from applying the weak rule
(WR) filter to various graphs. The numbers n√M(n), n√dD(n) and n√N(1, n) approximate zg, zd and
za respectively. We also give the relevance per node H[d]/n and the resolution per node H[y]/n. Numbers
for RRG(q) and SW(q) were obtained by averaging over 10 random realizations.

Graph n n
√

M(n) n
√

dD(n) n
√

N(1, n) H[d]/n H[y]/n

Apollonian 2 7 1.95461 1.21901 1.91660 0.11519 0.66045
Apollonian 3 16 1.94788 1.43435 1.91189 0.09594 0.64711

(3,5)-cage 10 1.91202 1.21481 1.84295 0.13705 0.62974
(3,6)-cage 14 1.91394 1.34590 1.83757 0.12271 0.63149
(3,7)-cage 24 1.91348 1.25055 1.83511 0.11462 0.63259
(3,8)-cage 30 1.91330 1.34897 1.83337 0.10559 0.63275
(4,5)-cage 19 1.95248 1.21101 1.91027 0.08217 0.65878
(4,6)-cage 26 1.95322 1.37995 1.91085 0.07188 0.65902
(5,5)-cage 1 30 1.97461 1.16392 1.95220 0.04494 0.67453
(5,5)-cage 2 30 1.97461 1.18854 1.95219 0.04495 0.67453
(5,5)-cage 3 30 1.97461 1.21540 1.95220 0.04496 0.67453
(5,5)-cage 4 30 1.97461 1.17585 1.95220 0.04495 0.67453

torus 3×3 9 1.95698 1.16653 1.92324 0.10088 0.66192
torus 4×4 16 1.95546 1.38485 1.92191 0.09024 0.65777
torus 5×5 25 1.95475 1.21993 1.91904 0.08076 0.65828
torus 6×5 30 1.95475 1.28517 1.91898 0.07568 0.65831
torus 10×3 30 1.95626 1.22522 1.91924 0.07072 0.66127
torus 8×4 32 1.95510 1.38392 1.91932 0.07475 0.65813
torus 6×6 36 1.95475 1.38400 1.91883 0.07034 0.65833
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Table A1. Cont.

Graph n n
√

M(n) n
√

dD(n) n
√

N(1, n) H[d]/n H[y]/n

SWB(3) 10 1.91492 1.35588 1.85212 0.14568 0.62873
SWB(3) 20 1.91523 1.30100 1.84849 0.12731 0.62956
SWB(3) 30 1.91523 1.35620 1.84851 0.11281 0.62956
SWB(4) 12 1.95603 1.17605 1.91983 0.09152 0.66087
SWB(4) 21 1.95626 1.21231 1.91923 0.08079 0.66127
SWB(4) 30 1.95626 1.20790 1.91924 0.07071 0.66127
SWB(5) 12 1.97929 1.17605 1.96131 0.05848 0.67803
SWB(5) 20 1.97927 1.16442 1.96025 0.04881 0.67840
SWB(5) 32 1.97927 1.14893 1.96021 0.04144 0.67842

RRG(2) 10 1.76075 1.33214 1.62827 0.16029 0.53010
RRG(2) 20 1.81141 1.29593 1.65746 0.14345 0.56553
RRG(2) 30 1.83115 1.27447 1.67090 0.11728 0.58305
RRG(3) 10 1.86350 1.31014 1.73760 0.18497 0.59914
RRG(3) 20 1.88987 1.28690 1.78608 0.13766 0.61721
RRG(3) 30 1.89895 1.27941 1.80483 0.11537 0.62310
RRG(4) 10 1.92754 1.24293 1.86647 0.13602 0.64106
RRG(4) 20 1.93917 1.25076 1.88272 0.09610 0.65019
RRG(4) 30 1.94507 1.25247 1.89654 0.07819 0.65347
RRG(5) 10 1.93764 1.26982 1.88340 0.12318 0.64808
RRG(5) 20 1.95952 1.23790 1.92369 0.07520 0.66371
RRG(5) 30 1.96616 1.22872 1.93641 0.05720 0.66839

SW(3) 10 1.90692 1.25638 1.82855 0.15381 0.62737
SW(3) 20 1.90025 1.27244 1.80865 0.13264 0.62404
SW(3) 30 1.91093 1.27260 1.82941 0.10905 0.63105
SW(4) 10 1.91972 1.26865 1.85154 0.14500 0.63556
SW(4) 20 1.93992 1.25544 1.88853 0.09904 0.64926
SW(4) 30 1.94584 1.26608 1.89776 0.07874 0.65403
SW(5) 10 1.94942 1.23419 1.90650 0.11008 0.65650
SW(5) 20 1.96150 1.23542 1.92709 0.07365 0.66525
SW(5) 30 1.96889 1.23140 1.94184 0.05471 0.67024
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