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Abstract: We study mechanisms leading to wealth condensation. As a natural starting point,
our model adopts a neoclassical point of view, i.e., we completely ignore work, production,
and productive relations, and focus only on bilateral link between two randomly selected agents.
We propose a simple matching process with deterministic trading rules and random selection of
trading agents. Furthermore, we also neglect the internal characteristic of traded goods and analyse
only the relative wealth changes of each agent. This is often the case in financial markets, where a
traded good is money itself in various forms and various maturities. We assume that agents trade
according to the rules of utility and decision theories. Agents possess incomplete knowledge about
market conditions, but the market is in equilibrium. We show that these relatively frugal assumptions
naturally lead to a wealth condensation. Moreover, we discuss the role of wealth redistribution in
such a model.
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1. Introduction

Study of wealth distribution among the population has been labelled as one of the key problems
in modern economic theory and is often described by a power-law function known as Pareto
distribution [1]. In this sense, research related to wealth distribution and wealth inequalities is
two-fold. The well-studied macro-perspective focuses on the issue of poverty arising from wealth
inequalities, its social and economic consequences, where it is typical that a small fraction of the
population owns most of the total wealth. This approach stems from macroeconomic theory and
general equilibrium (c.f. [2]) like the infinite-lived dynasty model [3] and overlapping generations
model [4]. Other concepts refer to asymmetric knowledge [5], a different number of connections or
opportunities to exchange or increase wealth [6] or only to luck or different competencies [7]. Most of
these models usually rely on representative agent paradigm, while completely ignoring immanent
aspects of human nature and psychological biases or even microstructural characteristics of trade
mechanism [8]. On the other hand, micro-foundations of wealth concentration arise from bilateral
trade or exchange of goods among two economic agents, where wealth typically is highly related
to the individual investment decision process. This observation led to several mathematical models
attempting to explain this phenomenon, i.e., so-called kinetic wealth exchange models that are based
on microeconomic interactions between economic actors who exchange wealth between them over
the trade cycle [9]. These include models introduced by Angle [10], Bennati [11], Chakraborti and
Chakrabarti [12], Dragulescu and Yakovenko [13] and recently also the approaches by Vallejos et al. [14]
and Lim and Min [15], which share some common features with our approach.
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1.1. Some Stylised Facts Related to Empirical Wealth Distribution

A well-known fact about wealth distribution in developed-economy states is that wealth is
highly concentrated and very unequally distributed. Data sets gathered over 30 years by Census
Survey of Consumer Finances confirm via, e.g., observation of historical trends that a degree of wealth
concentration in the United States is high, i.e., almost one-third of total wealth is kept by only 1%
of households, while the top 5% of the population holds more than one half of total wealth. At the
other edge, there is a large fraction of the community, who has pretty little wealth or no wealth at
all. These results are quite persistent over time, and substantial changes in net wealth are subject
to a boom-bust cycle of financial and economic crises [16]. Little work has, however, been done in
the area of understanding mechanisms leading to wealth concentration during economic upturns
and equalisation effects during recessions. We contribute to this field by introducing new kinetic
wealth exchange model with simplified assumptions, that can reproduce stylised facts observed in
the empirical distribution of wealth in the crisis and post-crisis times. As a starting point, we use a
real-life example of wealth distributions in the U.S. in the years 2010 (crisis) and 2018 (post-crisis).
We believe that our model can shed light into better recognition of patterns leading to changes in
wealth inequalities during the real business cycle.

Although in economics income is typically defined as the amount of money an economic agent
or household receives on regular basis and wealth is related to the length of time that a family could
maintain their current lifestyle without receiving compensation for performing additional work,
we treat these two categories as a whole. The primary source of our data on wealth in the U.S. for our
empirical examples is the U.S. Bureau of Census and Bureau of Labour Statistics Current Population
Survey for Household Income from the years 2010 and 2018. The survey has been conducted monthly
for over 50 years, with over 54,000 households selected based on an area of residence to represent the
nation as a whole, individual states, and other specified areas. Each family is interviewed once a month
for 4 consecutive months one year, and again for the corresponding period a year later. These data
are however available only in a binned or aggregated form, so the only available data include the
number of households in each bin, mean income, standard error and income limits assigned to each
bin. To estimate income or wealth probability density function, we use the entropy-based divergence
method and seek a probability density function, that is as close to the uniform distribution as the
data sample will permit [17,18] (see the Appendix A). Results of estimation are presented in Figure 1.
In Table 1, we have also gathered Gini coefficients and information criteria, for various distributions
from the Creesse and Read (C.R) family [19].
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Figure 1. The empirical distribution of wealth in the U.S. based on Census Data. The blue line
represents one of fitted generalised gamma distribution of the second kind.
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Table 1. Information criteria for fitted distributions.

Distribution
2010 2018

Gini Aic Bic Gini Aic Bic

Generalised Beta of the Second Kind 0.4504 825,368.9827 825,407.7613 0.4656 914,590.8355 914,629.8928
Generalised Gamma 0.4485 825,598.8432 825,627.9271 0.4526 915,341.0957 915,370.3886

Beta of the Second Kind 0.4545 825,501.8130 825,530.8969 0.4636 915,233.3365 915,262.6295
Dagum 1,258,915.0143 1,258,944.0982 0.4693 914,642.1348 914,671.4277

Singmad 0.4531 827,239.3961 827,268.4800 0.4600 914,833.1633 914,862.4562
Lognormal 0.5013 832,408.2444 832,427.6337 0.5206 924,094.3485 924,113.8772

Weibull 0.4432 827,065.1604 827,084.5496 0.4462 916,179.0877 916,198.6163
Gamma 0.4409 826,112.8345 826,132.2238 0.4467 915,559.4152 915,578.9439

Doubly lognormal 1,375,275.6949 1,375,295.0841 920,090.4281 920,109.9568
Pareto 0.5047 832,191.8408 832,211.2301 0.5061 920,845.1144 920,864.6431

Results presented in Tables 1 and 2 confirm that empirical distributions of wealth exhibit a Pareto
power-law tail

f (x) ∼ 1
x1+α

1 < α < 2, (1)

and the actual shape of distribution at intermediate values of wealth is well fitted by a generalised
gamma distribution of the second kind. So they can be reproduced by a simple kinetic wealth exchange
model with either homogeneous or heterogeneous agents [9]. Furthermore, as seen in Figure 1,
the post-crisis inequalities are larger than the crisis ones.

Table 2. Estimated distribution parameters: location µ, scale σ, skewness ν and kurtosis τ.

Distribution
2010 2018

µ σ ν τ µ σ ν τ

Generalised Beta of the Second Kind 108,564.1708 1.7786 0.7034 2.0083 113,253.3847 2.1917 0.5323 1.2229
Generalised Gamma 60,663.6500 0.9001 0.7612 81,899.1321 0.9057 0.8421

Beta of the Second Kind 283,044.3149 1.5608 7.5992 372,137.5280 1.4877 7.2873
Dagum 1,012,451,669.9591 0.9721 0.1021 105,486.1708 2.4436 0.4689

Singmad 1,012,451,669.9591 1.1348 53,697.3940 190,335.2758 1.3413 3.3841
Lognormal 10.6958 0.9900 10.9507 1.0373

Weibull 69,527.7650 1.1699 89,843.3170 1.1589
Gamma 6,5806.3882 0.8652 85,510.9515 0.8789

Doubly lognormal 1,012,451,669.9591 0.1514 60,235.5085 1.7064
Pareto 1,549,526.7678 24.2996

1.2. The General Structure of Kinetic Exchange Models

In this section, we will briefly review the basic features of kinetic wealth exchange models
following [9,14,15]. As usual, the economy is assumed to consist of N agents with wealth {ak ≥ 0}
(k = 1, 2, . . . , N). At each cycle, an agent i exchanges a quantity ∆a of wealth with another agent j.
Both agents are chosen randomly. The total wealth X = ∑i ai and the average wealth 〈a〉 = X/N are
constant. After the wealth exchange, ai and aj are updated according to the rule:

a′i = ai − ∆a ,

a′j = aj + ∆a , (2)

under the condition (a′i, a′j ≥ 0). The signs have been chosen without the loss of generality and
the function ∆a = ∆a(ai, aj) is responsible for the dynamics of the underlying wealth concentration
mechanism. Furthermore, agents can be parametrised by a maximum fraction of wealth ω ∈ (0, 1] that
enters each cycle or exchange process, which determine the time scale of the relaxation process and the
mean value 〈a〉 at equilibrium [9]. If the value of ω is identical for all agents, then models belong to a
homogeneous class that can reproduce the shape of the gamma wealth distribution. For ω < 1, models
converge toward a stable state with a wealth distribution with non-zero median, and for diversified
agents, a power-law tail behaviour can be recovered. If ωk is different for every agent, then models are
called heterogeneous.
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In the Angle model [10], changes of wealth between agents are determined by

∆a = r ω [ηij ai − (1− ηij) aj] , (3)

where random variable r ∈ (0, 1) is distributed uniformly or with a certain probability distribution
g(r), and ηij is a random dichotomous variable responsible for the direction of the changes. The value
ηij = 1 produces a wealth transfer |∆a| = r ω ai from agent i to j, while the value ηij = 0 corresponds
to a wealth transfer |∆a| = r ω aj from j to i.

Another model is a One-Parameter Inequality Process model [20]

∆a = −ηijωai + (1− ηij)ωaj , (4)

where ηij = 0 or ηij = 1 are chosen randomly in each cycle. In these models, wealth distribution is best
described by a gamma distribution.

Bennati [11] proposed a model, where agent exchange constant amount of wealth ∆a0 and
transaction between agent i and j take place if and only if a′i, a′j ≥ 0, which leads to an exponential
distribution of wealth.

Chakraborti and Chakrabarti [12] introduced a model, where new wealth a′i (a′j) is expressed
as a sum of the saved fraction λa′i (λa′j) of the initial wealth and a random fraction r (r̄) of the total
remaining wealth, obtained summing the respective contributions of agents i and j.

∆a = ω(r̄ ai − r aj) = (1− λ)(r̄ ai − r aj) . (5)

Dragulescu and Yakovenko introduced another model [13] with dynamics described as:

∆a = r̄ ai − r aj , (6)

leading to an exponential model for wealth distribution.
Lim and Min [15] consider various kinetic exchange models in search for solidarity effects consider

multiple variants of the model introducing heterogeneous savings parameter λk and wealth dependent
trading rules

∆a = r min(ai, aj) (7)

with r being random variable uniformly distributed over [0, 1] and updated every transaction.
The common factor of all these models is the wealth conservation: ai + aj = a′i + a′j, which means

that while one agent gains money from a transaction, the other one has to lose some wealth. Therefore,
without any preference of richer agents over the poorer ones and due to random character of
interactions between agents, these kinetic exchange models can be characterised by a stationary wealth
distributions, which exhibit exponential tails. After reaching this distribution wealth, inequalities
do not increase anymore. It should be noted that there are also kinetics exchange models that
exhibit power-law wealth distribution as a stationary state [21,22]. These models often assume
some preferences of richer individuals; for example, individuals’ wealth is repeatedly multiplied by a
random factor, different for each individual.

Another type of agent model is one with a growing economy, where wealth is continuously
added to the system and divided among the agents. One such model has been used recently by
Vallejos et al. to study the growth of wealth inequalities in the U.S. [14]. There the assumption is,
however, that individuals with greater wealth get significantly more of this added wealth than poorer
agents. Namely, this wealth is divided into several equal parts, and each part is given to the agent i
with probability proportional to aβ

i . In this setup, Authors studied how the initial Pareto like wealth
distribution changes depending on β. For 0 < β < 1, the power of wealthier individuals is diminished
much more than the power of poorer individuals and wealth inequalities lowered over time. For β = 1,
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the model gives all individuals a proportional amount of power, and thus initial wealth distribution
does not change. For β > 1, the model provides a disproportionate amount of power to the wealthier
individuals in the market, and the wealth inequalities grew.

To sum up, the discussed agent models reaches a stationary state when wealth inequalities do not
increase any more or exhibit constant grow of wealth concentration under the assumption that richer
agents are disproportionately better treated than the poorer ones. In this study, we propose a model of
trading agents where inequalities grow incessantly, but the gain of each agent is at average proportional
to its wealth, which corresponds to the case of β = 1 in Vallejos et al. model [14], where inequalities do
not change.

2. Model

In our model, an agent is a participant of a market game. An agent can be a company, an institution
as well as a single person. Agents can trade with themselves using their assets. It is worth noting that
for our study “assets” are not only goods or money that an agent has, but also widely understood
services he can make or even its skills that allows him to be more effective in a market. Agents can
interact with themselves, which affects their assets. In general, such interaction covers all possible
activities like, for example, buying or selling products, services, financial market instruments, etc.,
as well as making money at work or employee hiring. From our perspective, all activities mentioned
above are indistinguishable, so we will call each of them using the same word—a trade. As mentioned,
a simple example of trade is the buying of a product in a shop. Another example is hiring an employee
by a company. Trade is also when one agent exchanges his knowledge with another one.

In a further study, we have considered two assumptions:

(i) agents are equal in the sense that each of them has the same access to the market and the same
knowledge about it.

(ii) agent trade only when it is profitable from their perspective.

These assumptions are quite general. The first one reflects capabilities given by a modern
technology where at least virtual access to goods, financial markets and stock-exchanges is common.
Therefore the number of transaction that agent can make is limited only by the number of his assets.
The second assumption corresponds to decision and utility theories, which tell us that action will be
undertaken by the individual only when it causes maximisation of the individual utility [23,24]. It is
worth noting that typically utility and assets are not the same quantities. They are not even measured in
the same units. However, we think that they can be somehow compared to the money, which measures
assets, spent to increase utility. Therefore there is a relation between these two concepts, and in further
considerations, we will treat the utility as an asset.

The society consists of N = 105 individuals (agents). Each of them possesses some assets. Let ai
denotes a share of i-th agent assets in the whole population wealth. Thus

N

∑
i=1

ai = 1. (8)

Agents interact with themselves, which affects their wealth. As stated before a trade is a win-win
situation, i.e., both trading agents gain a profit from it. Because a market is in equilibrium and all agents
have comparable information about it, their profits from a single trade should also be comparable.
Here, we assume that profits from trade are equal for both agents and are given by a deterministic
gain function g(i, j) = g(j, i), where i and j are the trading agents. Thus, the trade changes the trading
agent’s assets as follows:

ai → ai + g(i, j)
aj → aj + g(j, i)

(9)

The above, fully deterministic, rules reflect the second condition made in the Introduction section.
The first condition about equal access to the market is fulfilled by a specific matching process between
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two bargaining agents. They are selected according to their wealth. Thus the probability that i-th
agent will be chosen for trading is equal to ai. It reflects the fact that wealthier agents have more
opportunities to trade, but on the other hand, it does not exclude poorer ones from the market.

Trades are grouped into cycles. A single cycle contains N/2 trades. The protocol used for choosing
agents involving in trade is as follows

1. The first agent i is chosen randomly with the probability equal to its wealth ai.
2. The second agent j is chosen randomly with the probability equal to its wealth aj.
3. If i = j or agent i has traded with agent j in this cycle, go to point 1. Otherwise, make the trade.

Each pair of agents can trade at most once during a single cycle. This prevents a situation that all
the trades are only between the richest individuals, and thus, increase the chance of gaining profits by
poorer agents. (Without this assumption, two richest agents may perform all the trades. However even
with this restriction, it may occur that

√
N number of agents will concentrate all the wealth and they

will trade with themselves only, but it is not possible to limit further the number of trading agents.)
After each cycle, individuals portfolios of assets are normalised to fulfil condition (8)

ai →
ai + ∑j g(i, j)
1 + ∑i,j g(i, j)

, (10)

where ∑j sums all profits made by the i-th agent, and ∑i,j sums all profits from all transactions within a
cycle. To fully specify the model, a particular gain function g(i, j) is needed. The simplest, symmetrical
functions of two variables is a constant function: g(i, j) = r/N, i.e., each agent receives a lump sum
of money during a single trade. Note that the number of trades depends on agents wealth—richer
individuals trades more because they split their wealth into a larger number of transaction. Thus,
each transaction in the model involves the same amount of assets, and therefore, a constant payoff is
justified. Although it might seem that such a mechanism is similar to preferential treatment of some
agents as in other models e.g., [25], we will show in the following section that it is not in the case of
this model. The payoff r was typically set to 0.1. Note that r is equal to the global income from all
trades within a cycle when the global wealth is equal to 1. Therefore the specific value of r determines
the speed of wealth distribution changes between cycles.

3. Results and Discussion

3.1. Wealth Condensation

The model was tested numerically. The evolution of wealth distribution is presented in Figure 2
(See the software used for simulations and data analysis in Supplementary).

The plots differ in initial wealth distribution among agents. Here, we used the following
distributions.

(a) delta distribution—all agents started with the same amount of money;
(b) uniform distribution—the initial wealth of each agent was uniformly distributed on the interval

[0, 2/N);
(c) exponential distribution—the initial wealth was drawn according to the exponential distribution

of the unit mean and variance;
(d) Gaussian distribution—the initial wealth of each agent was an absolute value of a number drawn

according to the normal distribution of the zero mean value and unit variance;
(e) Cauchy distribution—the initial wealth of each agent was an absolute value of a number drawn

according to the following probability distribution function

p(x) =
1

π(x2 + 1)
; (11)

(f) 1% of richest agents possessed 100 times more money than the remaining 99% of poorer agents.
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After choosing initial wealth distribution, the assets of each agent were normalised to fulfil
condition (8).
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Figure 2. Histograms of agents assets after 0, 10, 100, and 1000 cycles. Different plots correspond
to the different initial distribution of wealth among the agents: ai is (a) equal to 1/N, (b) uniformly
distributed in the interval [0, 2/N), (c) exponentially distributed, (d) normally distributed, (e) Cauchy
distributed, (f) 1% of richest agents possess 100 times more than the rest 99% of agents.

In most of these cases, the final wealth distribution (after 1000 cycles) was almost the same.
Only in the last case we did not obtain purely exponential distribution after 1000 cycles, but here,
the wealth distribution also should converge to an exponential distribution with a growing number of
cycles. These results suggest that the wealth condensation was a feature of the model and not of the
specific initial wealth distribution among agents. The effect of wealth condensation was confirmed by
analysis of the Gini coefficient:

G =
2 ∑N

i=1 iai

N ∑N
i=1 ai

− N + 1
N

, (12)

as well as the wealth of the richest and the middle agent (see Figure 3).
For most of the studied cases, the Gini index grew monotonically with the evolution of the system.

The only exception was when initial wealth was drawn according to Cauchy distribution, which is
an example of power-law, long-tail distribution. Here, the Gini index started from a relatively high
value, as the condensation was an intrinsic property of power-laws. However, after the initial decrease
corresponding to recombination to exponential distribution preferred by the model, it started to grow
again. It is worth noting that the richest agent in this scenario lost most of its initial assets, but a rapid
decrease of the median asset in the population (see Figure 3 inset) shows that wealth condensation
occurred anyway. It should be stressed that the final state of these simulations was not stable in either
case. The wealth inequalities seemed to grow endlessly. After 1000 cycles the Gini coefficient was
above 0.89, and the richest agent owned approximately 5.3× 10−4 of the total wealth and the median
wealth several orders of magnitude smaller.

Next, we check if the population size affected condensation. It was done by studying systems
consisting of N = 104 up to 107 agents—see Figure 4.
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Figure 3. Gini index evolution for all studied agents initial wealth distributions. Inset shows the
evolution of the maximal and median wealth in the population of agents. Black line corresponds to
equal initial wealth of all agents, red—the uniform distribution of wealth on the interval [0, 2/N),
blue—the exponential wealth distribution, brown—Gaussian distribution, violet—Cauchy distribution,
green—1% of richest agents have 100 bigger assets than the rest 99% of the population.
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Figure 4. Histograms of agents assets after 1000 cycles for different size of the population. Because the
total wealth changes with population size, we rescaled agents wealth by multiplying it by the number
of agents N.

After 1000 cycles all populations exhibited a similar, exponential distribution of wealth.
At last we checked if the appearance of wealth condensation does not depend on model details.

Therefore, instead the g(i, j) = r/N we studied numerically other examples of payoff functions.
In particular we performed independent analysis of the model using the following different utility
functions, namely:

(i) linear preferences utility function: g(i, j) = r
ai+aj

2 —gains from individual transaction depend on
assets of both sides of trade process.

(ii) Cobb–Douglas utility function: g(i, j) = r√aiaj—similar as in the above case but gains were
much lower when agents assets differed significantly.

(iii) Koopmans and Leontieff utility function: g(i, j) = r min(ai, aj)—gains are determined by a
poorer trader.

Results are presented in Figure 5.
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Figure 5. Gini index evolution for different payoff function used in the model. The black line
corresponds to constant payoffs while the other ones correspond to payoffs depending on trading
agents assets: red—payoff proportional to average assets of trading agents, blue—payoff proportional
to geometrical mean of trading agents assets, brown—payoff proportional to poorer agent asset.
The parameter r = 0.01 and population size N = 105.

In all studied cases, we observed wealth condensation. It occurred even faster than for the constant
gain, as the above functions give additional profits from transactions between richer agents, which are
more probable within the studied model. Moreover, for Cobb–Douglas and Koopmans–Leontieff
functions, a small group of agents took all the assets, and thus, further evolution, according to model
rules, became impossible. The model rules assume that in a single cycle there were N/2 trades between
different pairs of agents. However, these agents were chosen with probability given by their assets,
and thus there was practically no opportunity to draw randomly one of the poor agents as their wealth
was negligibly small. Even if such trade occurred the assets of the poorer did not change significantly
due to properties of these utility functions.

Because the wealth condensation occurred for all studied cases of the initial wealth distribution,
we further focused on the case where all agents had an equal lump of money initially, and the
population size was 105. To get some insight into obtained results, we analysed a simpler model,
where an agent could trade with himself, and there was no restriction that each pair could trade at most
once during a cycle. Note that these rules were more generous for a richer agent than the ones used in
numerical simulations. We checked numerically that these restrictions had no qualitative influence on
the phenomenon of wealth concentration as well as the type of wealth distribution. In such a case,
each agent had N independent opportunities to trade, and each option was used with probability
equal to the agent’s wealth. Thus, the number k of i-th agent transactions during the cycle is given by
the binomial distribution:

pi(k) =

(
N
k

)
ak

i (1− ai)
N−k. (13)

The gain of i-th agent after the cycle is kr/N, and the total gain of all agents is r. Thus,
after normalisation (see Equation (10)) the wealth of the i-th agent will be

ai → ai + ∆ai, (14)

where

∆ai(k) =
r

1 + r

(
k
N
− ai

)
. (15)

The mean value of such binomial distribution is 〈k〉 = Nai, and the variance var(k) = Nai(1− ai).
Because ∆ai is a linear function of k, its mean value equals to
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〈∆ai〉 =
r

1 + r

(
Nai
N
− ai

)
≡ 0. (16)

This result depended neither on a particular value of ai or distribution of wealth among agents. It means
that in this model, share of wealth of each agent, at average, remained constant. It corresponds to the
case β = 1 in the Vallejos et al. model [14], where the initial wealth distribution was stable. Remembering
that the presented here model had additional restrictions limiting the number of transactions mainly for
the richest individuals, the observed concentration of wealth is therefore highly unexpected. To give
some explanation of this phenomenon, we studied the variance of ∆ai, which is equal to

var(∆ai) = 〈(∆ai)
2〉 =

(
r

1 + r

)2 ai(1− ai)

N
. (17)

The variance is a square function of the agent’s wealth ai and has a maximum for ai = 0.5. In our
model, the initial value of ai was typically much smaller than 0.5 due to a large number of agents,
so in that case, it was safe to assume that for poorer individuals the wealth would change slower
than for richer ones. In other words, if someone became poor, it would be tough for him to regain his
wealth. However, if a relatively small group of agents accumulated wealth that made the probability
significantly higher (for the whole group) than 0.5, that the wealth of this group, as a whole, would be
conserved due to decreasing variance for ai > 0.5. This may be the mechanism which stabilises
inequalities caused initially by random fluctuations.

3.2. Income and Wealth Tax Influence on the Model

Other important aspects of wealth concentration are the redistribution effect and optimal taxation
problem [26,27]. To check how taxes influence the results of our exchange game model we analysed
two different approaches to trade taxation. One was based on a linear income tax, i.e., where tax was
collected within a single trade cycle, and the other on wealth tax, and affected total holdings of each
agent collected over multiple trading cycles. In both cases, the tax was collected from all the agents
and then was distributed equally among them. Thus the Equation (10) becomes:

ai →
(1− tW)ai + (1− tI)∑j

r
N + tW+tIr

N
1 + r

, (18)

where ∆ai = ∑j
r
N is an income of i-th agent during one cycle, and tI and tW are income and wealth

tax rates, respectively. Note that in the above relation we took into account that the global income was
equal to r while the total wealth was normalised to 1. Due to the latest opinions that only wealth tax
can lower wealth inequalities [27–29], we are particularly interested in comparing these taxes within
our model. Therefore we studied two different situations—pure income tax with tax rate set at 10%
(tI = 0.1 and tW = 0), and pure wealth tax with rate set at 1% (tI = 0 and tW = 0.01). For r = 0.1
such choice of rates causes redistribution of 1% of the global wealth per cycle in both cases. In general,
to get the same global income from the wealth tax and the income tax, the ratio of their rates should be
r. The comparison of both cases is presented in Figure 6.

In fact there was no significant difference between these two kinds of taxation. The detailed
analysis of the Gini coefficient (see Figure 7) suggests that the wealth tax followed to slightly larger
inequalities than the income tax. It is in contradiction with above-mentioned, well-established
opinions [27–29]. On the other hand, this effect is quite easy to explain. Existence of wealth
condensation meant that the relation of income to the wealth was effectively higher for richer
individuals. Thus, the linear income tax hit the rich more than the wealth tax. However, in a real
economy, it is easier to hide or reduce declared income than wealth. Therefore, in general, the wealth
tax can be more effective as easier to enforce.

Until now we have shown that within our model there were no significant differences between
income and wealth based redistribution when initially wealth was equally distributed among agents.
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However, in a real society, we never have equally distributed goods. Therefore, it is particularly
interesting how these two taxes affects the evolution of wealth in the case of high inequalities, such as,
for example, one presented in Figure 2 obtained after 1000 cycles. The evolution of wealth in this case
is presented in Figure 8.

0 2×10
-5

4×10
-5

6×10
-5

wealth

10
0

10
1

10
2

10
3

10
4

10
5

n
u

m
b

er
 o

f 
ag

en
ts n = 1000

n = 100
n = 10
n = 0

0 2×10
-5

4×10
-5

6×10
-5

wealth

10
0

10
1

10
2

10
3

10
4

10
5

n
u

m
b

er
 o

f 
ag

en
ts n = 1000

n = 100
n = 10
n = 0

Figure 6. Histograms of agents assets after 0, 10, 100, and 1000 cycles. In both plots, the wealth of
agents was initially equal (ai = 10−5). The left plot corresponds to income tax (tI = 0.1 and tW = 0),
and the right one corresponds to wealth tax (tI = 0 and tW = 0.01).
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Figure 7. Gini index evolution for pure wealth (solid black line) and income (dashed red line)
tax applied to the model. Initially, the wealth was distributed equally among agents (ai = 10−5).
Inset shows the evolution of the maximal and median wealth in the population of agents.
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Figure 8. Histograms of agents assets after 0, 10, 100, and 1000 cycles. In both plots the initial wealth of
agents was taken from the final state of simulation (1000 cycles) presented in a Figure 2. The left plot
corresponds to income tax (tI = 0.1 and tW = 0), and the right one corresponds to wealth tax (tI = 0
and tW = 0.01).
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Note that, in contrast to previous cases the wealth distribution shrank with time (growing number
of cycles). Again however, there was no significant difference between income and wealth based
redistribution. All these observations were confirmed by Gini coefficient evolution presented in
Figure 9.
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Figure 9. Gini index evolution for pure wealth (solid black line) and income (dashed red line) tax
applied to the model. The initial wealth of agents was taken from the final state of simulation
(1000 cycles) presented in Figure 2a. Inset shows the evolution of the maximal and median wealth in
the population of agents.

In the beginning, wealth inequalities and the Gini coefficient was high, but wealth redistribution
quickly tamed them. As previously, the income tax was slightly more effective. What is also important,
the final state reached after 1000 cycles was similar to one with obtained for equal wealth distribution
at the beginning of simulations—note the horizontal scale difference between Figure 2 and Figure 8.
It allows trusting, that this final state was universal and did not depend on initial conditions. In both
cases, the median wealth increased by several orders of magnitude. For example, for income tax based
redistribution, the median raised from 2.1× 10−33 to 8.7× 10−6 at the cost of richest agent wealth,
which decreased from 5.9× 10−4 down to 6.2× 10−5, and the 90% of total wealth was owned by 74%
of richest agents. What is even more spectacular, only 10 cycles were needed to raise the median to
6.1× 10−7 at a cost of the richest agents wealth decreasing down to 4.7× 10−4.

To ultimately prove that within presented model redistribution based on the income and wealth
taxes gives similar effects we analysed the dependence of Gini coefficient after 1000 cycles on
redistributed amount of wealth, for high wealth inequalities at the beginning of simulations. Results
are presented in Figure 10.

As expected, inequalities dropped down with growing redistribution. Moreover, the final value of
Gini coefficient, the richest agent wealth and median of wealth in the society depended on the amount
of redistributed wealth but they almost did not depend on a type of applied tax.
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Figure 10. Gini index after 1000 cycles for wealth (solid black line) and income (dashed red line) tax
based redistribution. The initial wealth of agents was taken from the final state of simulation (1000 cycles)
presented in Figure 2. Inset shows final maximal and median wealth in the population of agents.

4. Conclusions

We proposed a simple mechanism owing utility theory, in which an individual with more assets
has more opportunities to interact with others, but, at average, the gain from these interactions is
proportional to individual’s wealth. Despite this, using agent-based modelling, we showed that this
mechanism causes wealth condensation independently on details of the studied model as well as
its initial condition. The observation has been also supported by analytic arguments. In contrast to
kinetic exchange models e.g., [10–13,15], here, the wealth inequalities grow for a large range of initial
conditions and this growth is not limited by a specific distribution with exponential tails. In contrast to
other models with growing economy [14], no disproportionately better treatment of wealthier agents
is required to fuel the growth of wealth inequalities.

It suggests that the phenomenon of wealth condensation can be much more fundamental than
expected, as it may appear even in the absence of any form of disproportionately preferential treatment
of some groups of individuals.

We also studied the influence of wealth redistribution based on income and wealth taxes within
the model. It occurs that while the level of inequalities depends on the amount of redistributed wealth,
it almost does not depend on the type of applied tax.
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Appendix A

To find estimation and inference measures that will enable linking the model to a family of
possible likelihood functions related to income data, we use a single parameter family of entropic
function-power divergence measures given by [17]:

I(p, q, γ) =
1

γ(γ + 1)

n

∑
i=1

pi

[(
pi
qi

)γ

− 1
]

, (A1)

with γ being a parameter indexing Creesse and Read (C.R.)-entropy family of divergence
measures-distributions, pi are probabilities that need to be estimated, and qi are reference probabilities
from a uniform distribution.

Estimation of income distribution from a sample of real data is then equivalent to the solution of
the optimisation problem [18]:

p̂ = arg min
p

[
I(p, q, γ)

n

∑
j=1

pjdj

]
;

n

∑
j=1

pj = 1; pj ≥ 0 , (A2)

where dj is a discrete random income variable, representing mean income with j-th bin. In the limit
criterion γ→ 0, the problem further converges to:

max
p

[
−

K

∑
j=1

pj log pj

K

∑
j=1

pjdj

]
, (A3)

which can be solved by via Lagrange multiplier λ̂ leading to

p̂j =
exp(−djλ̂)

∑K
j=1 exp(−djλ̂)

. (A4)

This procedure is part of a statistical generalised additive model for location, scale and shape.
In principle, a parametric distribution, which might be heavy-tailed and positively skewed, is assumed
for target variable and distribution can vary according to explanatory variables using smooth functions.
This distribution is characterised by location µ, scale σ and remaining parameters are shape parameters,
i.e., skewness ν and kurtosis τ [19]. To select a proper parametrisation M for wealth distribution,
we apply Akaike (aic) and Bayes (bic) information criteria.

bic(M) = k log(n)− 2logL aic(M) = 2k− 2logL (A5)

with k equal to the number of model parameters, n being a sample size, and L being the maximised
likelihood function and look for a distribution model M with minimal values of either bic or aic.
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