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1. Introduction 

Lifetime models have received great attention from statisticians, especially in the field of 

statistical inference. These models are of great importance in applications in many fields such as 

medicine, engineering, biological science, management, and public health. The Generalized Inverted 

Exponential (GIE) Distribution is one of these models as it is flexible to contain different forms of 

hazard function. It was proposed first by [1]. 

In recent years, researchers have proposed new families of distributions in the statistical 

literature by using different transformation techniques. A common technique is to introduce one or 

several additional tuning parameters to a standard probability distribution, with the aim to improve 

it, in the theoretical and practical sense. These distribution functions are more flexible to model real 

data, for example, the gamma-generated distribution by [2], Kumaraswamy-generated distribution 

by [3], McDonald-generated distribution by [4], and Weibull-generated distribution by [5], the 

Kumaraswamy-G family by [6] and the odd power Cauchy family by [7]. In 1955, [8] proposed a new 

continuous distribution that is attractive as a generator. It is known as: Topp-Leone distribution (TL). 

TL provides closed forms of the cumulative distribution function (cdf) and the probability 

distribution function (pdf). The TL distribution had not received much attention until [9] discovered 

it. Furthermore, there were many authors who were interested in this distribution. For example: See, 

[10–20]. In this year some authors study type II Topp-Leone, for example: see, [21,22]. 

So, in this paper we will introduce three parameter lifetime model called Topp-Leone 

Generalized Inverted Exponential Distribution. Our present study will contribute to modeling 

survival data. This new model was applied to three real life datasets. The first data set has to do with 

patients suffering from blood cancer (Leukemia) from one ministry of health hospital in Saudi Arabia. 

And the second data set has to do with the number of successive failures for the air conditioning 

system of each member in a fleet of 13 Boeing 720 jet airplanes. The third data has to do with the 
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waiting times (in seconds), between 65 successive eruptions of the Kiama Blowhole. The results 

showed that the new distribution provided better fit than other distributions presented. As such, it 

can be categorically said that the Topp Leone Generalized Inverted Exponential distribution is good 

distribution in modeling survival data.  

In Section 2, the pdf and cdf will be introduced. The main mathematical properties of the 

proposed model including, moments, survival function, hazard rate function, quantile function, 

mode and mean deviation will be discussed in Section 3. Moreover, Rényi entropy and fisher 

information will be derived in Section 4. In Section 5, we will determine the estimation of parameters. 

To analyze the flexibility of maximum likelihood estimators, we will provide simulation study in 

Section 6. Finally, three real data sets will be applied in Section 7 for illustrating purpose of this study. 

The probability density function (pdf) of a two-parameter Generalized Inverted Exponential 

(GIE) Distribution is given by [1] as: 

1

2
g ( ) exp 1 exp , 0, , 0,x x

x xx


   

 



      
           

      
 (1) 

and the cumulative distribution function (CDF) is given by 

( ) 1 1 exp , 0, , 0,G x x
x




 
  

       
  

 (2) 

where,   is the shape parameter and   is the scale parameter. 

Recently, [15] studied Top Leone (TL) family of distributions. The cdf of TL distribution is given 

by: 

2( ) [ (x) ] [ 2 (x) ] [1 ( (x) ) ] , 0F x G G G
TL G

       


 (3) 

The corresponding PDF of (3) is given by: 

1 1( ) 2 ( ) (x) [ (x) ] [ 2 (x) ] , 0TL Gf x g x G G G   

     (4) 

where 𝑔(𝑥) =  
𝑑𝐺(𝑥)

𝑑𝑥
 considers a pdf of baseline distribution and (x) 1 ( )G G x  . Now, we 

define a new lifetime model called the TLGIE distribution. 

2. The Topp-Leone Generalized Inverted Exponential Distribution 

In this section, we derive three parameter Topp-Leone generalized inverted exponential 

distribution. The cdf and pdf of TLGIE distribution with three parameters ( , , )    is obtained 

by inserting (1) and (2) in (3) and (4): 

2

( ) 1 1 exp , 0, , , 0,F x x
x
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


  
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 (5) 

and 

2 1 2
2
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          

 (6) 

where,   is a scale parameter and ,   are shape parameters. 

Some Ideal Sub Models as Special Cases from Our Proposed Distribution 

 For 1  , the proposed distribution in (5) converts to Topp-Leone Inverted Exponential 

(TLIE) distribution.  
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 For 1   and 1  , the proposed distribution reduces to Topp-Leone Standard Inverted 

Exponential (TLSIE) distribution.  

 For 1   and 
1

2
  , the proposed distribution reduces to Inverted Exponential (IE) 

distribution.  

 For 1  , the proposed distribution reduces to Topp-Leone Generalized Standard Inverted 

Exponential (TLGSIE) distribution.  

 If we replace 2   in Equation (5), we obtain: 

( ) 1 1 exp , 0, , , 0,F x x
x




       
   
   

    

 the cdf of Exponentiated Generalized 

Inverted Exponential (EGIE) distribution with three parameters ( , ,   ). 

We can rewrite the cdf & pdf of TLGIE distribution using following series representations of 

[23].  

For any real value of  , 

 
0

( 1)
1

! ( 1 )

j

i

y y
j j

 







 
 

  
 , 0  , R    

The TLGIE distribution in (5) and (6) can be written as infinite sum as follows: 

 
(7) 

 
(8) 

 
(9) 

 
(10) 

Figure 1 Plots (a-f) show different shapes of the probability density functions for various values 

of the parameters. For these plots, it is surely clear that Topp-Leone generalized inverted exponential 

distribution is unimodal, right skewed and semi symmetrical distribution for some values of 

parameters. Therefore, according to the figures above we can assume that TLGIE distribution can be 

helpful in numerous applications in many fields. 
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Figure 1. Plots of the pdf of TLGIE distribution for selected values of the parameters when (a, b) 𝛼 

increases, (c, d) 𝜃 increases and (e, f) 𝜆 increases. 

3. Properties of TLGIE Distribution 

3.1. Quantile and Median 

The 
thq  percentile of the distribution can be obtained by solving qx  for variable X. The 

thq  

percentile is obtained by solving 
1

( ) ( x )Q x F


  as: 

11
2

ln (1 (1 )

xq

q








 

 
(11) 

The Median of the TLGIE distribution can be defined at q  = 0.5. We can easily generate the 

random sample from (11) using q as uniform random number. 

3.2. Moments 

The moments of TLGIE distribution is computed using Equation (7) as following: 

𝜇𝑟
′ =

2𝜃𝜆𝛼

𝑥2
∑ ∑

(−1)𝑘+𝑗𝛤(𝛼)𝛤(2𝜃(1+𝑘))

𝑘𝑗𝛤(𝑘)𝛤(𝑗)𝛤(𝛼−𝑘)𝛤((2𝜃(1+𝑘)−𝑗)

∞
𝑗=0

∞
𝑘=0  × ∫ 𝑥𝑟−2

∞

0
𝑒𝑥𝑝 (−

𝜆

𝑥
(1 + 𝑗)) 𝑑𝑥, (12) 
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Making transformation as ( 1)y j
x


   in above expression, we obtain the moments of Topp-

Leone generalized inverted exponential distribution: 

1
( 1) ( ) (2 (1 )) (1 )

2
0 0 ( ) ( ) ( ) ((2 (1 ) )

( 1)
(1)

0 ( 1) !

k j r
k jr
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i i r i
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   

 

       
   

        

 
   

 

 
  
 

 (13) 

where (1)r  is the integration exponential function. 

We can compute the coefficient of variation (CV), coefficient of skewness (CS) and coefficient of 

kurtosis (CK) of TLGIE distribution using (13) in the following relations: 

2
1

1

CV



  . 

3
3 2

3 2 1 1
3
2( )

2 1

C S
   

 

 




. 

𝐶𝐾 =
𝜇4 − 4𝜇3𝜇1 + 6𝜇2𝜇1

2

(𝜇2 − 𝜇1
2)2

. 

 

CV, CS and CK are very important statistical measures for studying the behavior of the 

distribution. 

3.3. Reliability Function 

The TLGIE distribution is used for describing a random lifetime in reliability analysis. The 

reliability function of the TLGIE distribution is denoted by ( )R x , also known as survival function 

and obtained as follows 

( ) 1 ( )R x F x  , (14) 

The survival function of TLGIE distribution is obtained by substituting (5) in (14) to deduce: 

2

( ) 1 1 1 expR x
x





    

   
   

    

, (15) 

Figure 2 shows that the reliability curves for different values of the parameters for TLGIE 

distribution is decreasing. Figure 3 shows that the hazard function for different values of the 

parameters for TLGIE is increasing at first then decreasing in shape i.e., it takes the upside-down 

bathtub shaped. The lifetime models that present first increase and then decrease shaped failure rates 

are very useful in survival analysis.  
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(c) (d) 

Figure 2. Plots of the reliability function of TLGIE distribution for selected values of the parameters 

when (a, d) 𝛼 increases, (b) 𝜆 increases and (c) 𝜃 increases. 

3.4. Hazard Rate Function 

It is another characteristic in reliability analysis. It is denoted by h(y). For TLGIE the hazard 

function is defined as follows 

2 1 2

2

2

2
exp 1 exp 1 1 exp

( )

1 1 1 exp

x x xx
h x

x


 




    
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          


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      
    

, (16) 
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(c) (d) 

Figure 3. Plots of the Hazard Function of TLGIE distribution for selected values of the parameters 

when (a, b) 𝛼 increases, (c) 𝜆 increases and (d) 𝜃 increases. 

3.5. Mode 

We consider the density function of TLGIE distribution given in (6) and take the first derivative 

with respect to x to obtain the mode of Topp-Leone generalized inverted exponential distribution as 

follows 

𝑑𝑓(𝑥)

𝑑𝑥
=
−2

𝑥
+
𝜆

𝑥2
− (2𝜃 − 1)

𝜆

𝑥2
𝑒𝑥𝑝 (−

𝜆

𝑥
) [1 − 𝑒𝑥𝑝 (−

𝜆

𝑥
)]
−1

 

+2𝜃(𝛼 − 1)
𝜆

𝑥2
𝑒𝑥𝑝 (−

𝜆

𝑥
) [1 − 𝑒𝑥𝑝 (−

𝜆

𝑥
)]
2𝜃−1

[1 − [1 − 𝑒𝑥𝑝 (−
𝜆

𝑥
)]
2𝜃

]
−1

,   
(17) 

By putting 
𝑑𝑓(𝑥)

𝑑𝑥
= 0, the maxima can be obtained by solving (17) iteratively using numerical 

methods as Newton- Raphson.  

The mode, median, mean, skewness and kurtosis of the TLGIE distribution for various values of 

,   and   shown in Tables 1 and 2. 

Table 1. The mode, median, mean, skewness and kurtosis of the TLGIE distribution for 

2 , {1,1.5, 2} {1,1.5, 2}and     . 

𝜶 Mode Median Mean Skewness Kurtosis 

𝜃 = 1, 𝜆 = 2 

1 0.883857 1.62873 2.77259 0.329501 1.01815 

1.5 1.21014 2.13383 3.53576 0.323435 0.998774 

2 1.49385 2.56696 4.18599 0.320047 0.988074 

𝜃 = 1.5, 𝜆 = 2 

1 0.813107 1.26708 1.72609 0.266825 0.783853 

1.5 1.06167 1.58027 2.10295 0.260112 0.764511 

2 1.26368 1.83326 2.40667 0.25654 0.754304 

𝜃 = 2, 𝜆 = 2 

1 0.763937 1.08802 1.35919 0.230164 0.66022 

1.5 0.96812 1.32112 1.6177 0.223727 0.642568 

2 1.12748 1.50317 1.81971 0.220472 0.63372 

Table 2. The mode, median, mean, skewness and kurtosis of the TLGIE distribution for 

2 , {1.5, 2, 2.5} {1,1.5, 2.5}and     . 

𝜶 Mode Median Mean Skewness Kurtosis 

𝜃 = 2, 𝜆 = 1.5 

1 0.572953 0.816016 1.01939 0.230164 0.66022 

1.5 0.72609 0.990843 1.21328 0.223727 0.642568 

2.5 0.944791 1.24077 1.49067 0.218523 0.628463 
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𝜃 = 2, 𝜆 = 2 

1 0.763937 1.08802 1.35919 0.230164 0.66022 

1.5 0.96812 1.32112 1.6177 0.223727 0.642568 

2.5 1.25972 1.65436 1.98757 0.218523 0.628463 

𝜃 = 2, 𝜆 = 2.5 

1 0.954922 1.36003 1.69899 0.230164 0.66022 

1.5 1.21015 1.65141 2.02213 2.02213 0.642568 

2.5 1.57465 2.06794 2.48446 0.218523 0.628463 

From Tables 1 and 2, we can study the behavior of the TLGIE distribution by changing the 

parameter values. We can deduce that if 𝛼 increases, the mode, median and mean are increased but 

the skewness and kurtosis are decreased. If 𝜃 increases, the mode, median and mean are decreased, 

else the skewness and kurtosis are decrease. If 𝜆 increase, the mode, median and mean are decrease 

but the skewness and kurtosis remain the same. In any values of parameters, we observe that mode 

< median < mean, this means that the TLGIE distribution is always right skewed and unimodal. 

3.6. The Mean Deviation and the Median Deviation 

The mean deviation is a measure of dispersion derived by computing the mean of the absolute 

values of the differences between the observed values of a variable and the mean or median of the 

variable. Also, it is called average deviation. The mean deviation about the mean is defined by: 

0

0

0

0

( )

( )

( ) ( ) ( ) ( )

2 ( ) 2 ( )

2 ( ) ,

D x

x f x dx

x f x dx x f x dx

F x dF x

F x dx









 



 

 





  

 

   

 





 





 

(18) 

By substituting from Equation (9) in (18), we obtain the mean deviation about the mean as: 

0

2

( 1) ( 1) ( 2 1)
( ) 2

( 1) ( 1) ( 1) ( 2 1)0 0

exp

( 1) ( 1) ( 2 1) exp
2

( 1) ( 1) ( 1) ( 2 1)0 0

k j
k

D
k k j k jk j

j dx
x

k j
k j

j k k j k jk j



 


 




 



  

      
  

          

 
 
 

 
         

  
          


, 

(19) 

Next, the mean deviation about the median is obtained as: 

0

( )

2 ( )

m

D m x m

m F x dx

  

   
, (20) 

And for TLGIE, by substituting from Equation (9) in (20), we obtain the median deviation as: 



Entropy 2020, 22, 1144 9 of 16 

 

0

2

( 1) ( 1) ( 2 1)
( ) 2

( 1) ( 1) ( 1) ( 2 1)0 0

exp

( 1) ( 1) ( 2 1) exp
2

( 1) ( 1) ( 1) ( 2 1)0 0

m

k j
k

D m m
k k j k jk j

j dx
x

k j
k j

m m

j k k j k jk j

 


 




 

  

      
    

          

 
 
 

 
         

  
          

 , 
(21) 

4. Rényi Entropy of TLGIE 

In the present section, we provide an important measure, the Rényi entropy. It was introduced 

by [24]. It is one of the several generalizations of Shannon’s entropy, see [25]. The theory of entropy 

has been successfully used in a wide diversity of applications such as in information theory, 

engineering, and physics, see [26]. Entropy is defined in physics via the second law of 

thermodynamics. Thermodynamic system that is also usually considered to be a measure of the 

system’s disorder, that is a property of the system’s state, and that varies directly with any 

reversible change in heat in the system and inversely with the temperature of the system. In this 

paper, we interest in the statistical mechanics of entropy. The interpretation of entropy in statistical 

mechanics is the measure of uncertainty, which remains about a system after its observable 

macroscopic properties, such as temperature, pressure and volume, have been taken into account. 

The entropy of a probability distribution can be interpreted not only as a measure of uncertainty but 

also as a measure of information. It has also been used for the characterization of numerous standard 

probability distributions. For the density function f (x), the Rényi entropy is defined by: 

1
( ) [ ( ) ]

1
R x Log J 





 (22) 

where 

0

( ) ( ) ; 1J f x dx 


   (23) 

By substituting from Equation (9) in (23), we obtain:  

 

   

 

( 1) 2 ( )
2

0

2 1

( ) 2 ( 1) exp (
0 0

2 2 1
( 1)

0 0( )

( 1) ( 1) ( 2 1)

( 1) ( 1) ( 1) ( 2 1)

k
k j

k j

k j

J x k dx
xk j

k jk

k j
k

k k j k j

    
 






   

  

 

 

 

  
 





       
         

     

  
   

 


    

         



, 
(24) 

Thus, the Rényi entropy for TLGIE distribution is 

   

 
2 1

2 2 1
( 1)

0 0( )1
( )

1
( 1) ( 1) ( 2 1)

( 1) ( 1) ( 1) ( 2 1)

k j

k jk
R x Log

k j
k

k k j k j







  

 


 

 





   
  

  
  

      
 

          

  

https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)
https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)
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5. Parameters Estimation 

5.1. Maximum Likelihood Estimation 

In this section, we derive the maximum likelihood estimates (MLEs) and inference for unknown 

parameters of Topp-Leone Generalized Inverted Exponential distribution. Let 1 2, ,..., nx x x  be a 

realization of a random sample of size n from TLGIE distribution then the likelihood function is 

written as follows 

𝐿 =∏𝑓(𝑦𝑖),

𝑛

𝑖=0

  

and the log-likelihood function is given as follows 

1 1 1

2

1

log ( ) 2 log ( ) 2 log ( ) ( 2 1) log (1 )

( 1) log 1 (1 )

i

i

n n n
xi

i

i i i

n
x

i

x
L n x e

n

e







  





  





      

 
    

 
 

  



, 
(25) 

Differentiating (25) with respect 𝛼, 𝜃, 𝜆, respectively, and equating them to 0, we have 

2

1

log 1 (1 ) 0i

n
x

i

n
e











 
    

 
 

 , (26) 

2
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1 (1 )

i i

i

i

x xn n
x

i i x

e en
e

e

 
 








 


 
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  , (27) 
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i i
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i i

i i ii x x

x e x e en

x
e e
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

 



  

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   


     

  

   , (28) 

The maximum likelihood estimates of ,   and   are obtained iteratively by solving (26), 

(27), and (28), simultaneously. 

5.2. Fisher Information 

The approximate variance covariance matrix of the (MLEs) for the parameters of TLGIE 

distribution with 𝛾 = (𝛼
∧
, 𝜃
∧

, 𝜆
∧

) is obtained by 

𝐼
∧

𝑛
−1(𝛾

∧
) =

(

 
 
𝑣𝑎𝑟( 𝛼)

∧

𝑐𝑜𝑣( 𝛼
∧
, 𝜃)
∧

𝑐𝑜𝑣( 𝛼
∧
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𝑐𝑜𝑣( 𝜃,
∧

𝛼)
∧
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𝑐𝑜𝑣( 𝜃
∧

, 𝜆)
∧

𝑐𝑜𝑣( 𝜆,
∧

𝛼)
∧

𝑐𝑜𝑣( 𝜆
∧

, 𝜃
∧

) 𝑣𝑎𝑟( 𝜆
∧

) )

 
 

 

𝐼
∧

𝑛
−1(𝛾

∧
) = (−(

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛾𝑖𝜕𝛾𝑗
))

𝛾=𝛾
∧

 

 

The elements of the observed Fisher information matrix, could be found by using the second 

partial derivatives of the maximum likelihood estimators as follows 

2

2 2

log L n

 


 


, (29) 
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2 2

1 2
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1 (1 )

i i

i

x xn

i x

L e e

e

 






 

 



  
 

 
 

 , (30) 

2 2 1

1
2

log (1 )
2

1 (1 )

i i

i

x xn

i
x

i

L e e

x e

 








 

 




 
 

   
  

 
 

 , 
(31) 

2 2 2

2 2 2
1

2

log (1 ) log (1 )
4(1 )

1 (1 )

i i

i

x xn

i
x

L e en

e

 








 

 

 

  
   

  
  

 
 

 ,  
(32) 

2 1 2

2

2
1

2

1

(1 ) 1 2 log (1 ) (1 )
log

2(1 )

1 (1 )

2

(1 )

i i i i

i

i

i

x x x x

n

i
x

i

xn

i x

i

e e e e
L

x e

e

x e

   

 












 

   


 





 
     

 
  

  
   

  
 
 









, (33) 

2 12

2 2 2
1 12 2

2 2

(1 )log
( 2 1) 2 ( 1)

x (1 ) x 1 (1 )

i ii

i
i

x xxn n
i

i ix
x

i
i

e eL en

e e

 



 




  

 

 


  


     

  
   

 
 

 

, 

(34) 

where: 
2 1 2 11 (1 ) ( 2 1) (1 ) (1 )i i i i ix x x x x

i e e e e e

    

  
    

        
. 

6. Simulation Study 

In this section, we discuss some simulations for different sample size to determine the efficiency 

of MLEs. We can generate a random variable X from TLGIE using Mathematica (V.11.0). We generate 

samples of size n = 50; 100; 200; 500 and 1000 from TLGIE distribution for some selected combination 

of parameters. This process is repeated N = 1000 time to calculate mean estimate, means squared error 

and bias. Obtained results are given in following tables. 

From Table 3, we observed that when sample size increases the mean squared error (MSE) and 

bias (BIAS) decrease. Therefore, the maximum likelihood method works very well to estimate the 

parameters of TLGIE distribution. 

Table 3. Estimated Mean, MSEs and BIAS of TLGIE distribution. 

True Values: 1 1 1      

n  


 


 


 

50 MLE 1.64944 1.3656 1.63393 
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MSE 2.54294 0.935221 2.53382 

BIAS 0.649439 0.365595 0.633934 

100 

MLE 1.53764 1.2062 1.481 

MSE 2.04645 0.312122 1.76203 

BIAS 0.537636 0.2062 0.481003 

200 

MLE 1.48996 1.09878 1.28113 

MSE 1.72886 0.0987432 0.980768 

BIAS 0.489958 0.0987782 0.281133 

500 

MLE 1.28438 1.03796 1.11058 

MSE 0.888928 0.0282187 0.34375 

BIAS 0.284384 0.0379592 0.110576 

1000 

MLE 1.12872 1.02304 1.0703 

MSE 0.359509 0.0125671 0.168361 

BIAS 0.12872 0.0230431 0.0703043 

7. Applications 

In this section, we provide the application with real data sets to assess the flexibility of TLGIE 

distribution. The parameters are estimated using maximum likelihood method. 

Mathematica (V.11.0) is used for computation. We describe data sets to find the MLEs of the 

parameters. To assess the fitness of the real data for proposed distribution, we compared the fitness 

with Topp-Leone Inverted Exponential distribution (TLIE), Topp-Leone Standard Inverted 

Exponential distribution (TLSIE), Inverted Exponential distribution (IE) and Topp-Leone 

Generalized Standard Inverted Exponential distribution (TLGSIE). The required numerical 

evaluations are carried out using the Mathematica (V.11.0) software. In order to compare the four 

distribution models, we consider the criteria like AIC (Akaike information criterion), CAIC 

(consistent Akaike information criteria), see: [27], and HQIC (Hannan-Quinn information criterion), 

see: [28]. The better distribution corresponds to lesser AIC, CAIC and HQIC values. 

In the following, we considered three data sets: 

7.1. Data Set 1 

The first data set that we considered, see [29], represent 40 patients suffering from blood cancer 

(Leukemia) from one ministry of health hospital in Saudi Arabia. The ordered life time (in years) are 

given as follows: 0.315, 0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 2.211, 2.370, 2.532, 

2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 3.767, 3.751, 3.858, 3.986, 4.049, 

4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074, 4.381. 

7.2. Data Set 2 

The second data set consists of the number of successive failures for the air conditioning system 

of each member in a fleet of 13 Boeing 720 jet airplanes, see [30]. The actual data are: 194, 413, 90, 74, 

55, 23, 97, 50, 359, 50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 

48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 

22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 

71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 

106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 

31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 

34, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 7. 

7.3. Data Set 3 

This data set consists of the waiting times (in seconds), between 65 successive eruptions of the 

Kiama Blowhole. These values were recorded with the aid of digital watch on 12 July 1998 by Jim 
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Irish and has been referenced by [31] and [16]. The actual data are: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 

18, 16, 29, 54, 91, 8, 17, 55, 10, 35, 47, 77,36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 

73, 69, 9, 37, 10, 82, 29,8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12. 

In Tables 4–6, the values of log-likelihood (LL), AIC, CAIC and HQIC are minimum and 

favorable of TLGIE distribution than other existing distributions, which indicates that the new model 

(TLGIE) is better. It is depicted from the results that our proposed model provides better than other 

sub models. It is be more reliable with these types of data.  

Table 4. Parameters Estimation for Various Distributions depending on data set 1. 

Model Parameters 

LL AIC CAIC HQIC 
 



 


 


 

TLGIE 0.418685 2.19025 7.26267 −82.2875 170.575 171.242 172.407 

TLIE 0.589171   4.55247 −85.5231 175.046 175.37 176.267 

TLSIE 4.55482   −90.3942 182.788 182.894 183.399 

IE   2.00825 −91.1589 184.318 184.423 184.929 

TLGSIE 3.2155 0.755551  −88.1251 180.25 180.575 181.472 

Table 5. Parameters Estimation for Various Distributions depending on data set 2. 

Model Parameters 

LL AIC CAIC HQIC 
 



 


 


 

TLGIE 8.84653 0.361313 1.11353 −1065.13 2136.25 2136.38 2140.18 

TLIE 1.20401  22.9514 −1164.41 2332.83 2332.89 2335.45 

TLSIE 106.161   −1379.43 2762.86 2762.9229106658436 2765.4 

IE   19.9992 −1082.51 2167.01 2167.03 2168.32 

Table 6. Parameters Estimation for Various Distributions depending on data set 3. 

Model Parameters 

LL AIC CAIC HQIC 
 



 


 


 

TLGIE 2.06861 0.77448 14.7643 −295.07 596.14 596.54 598.691 

TLSIE 283.888   −304.914 611.828 611.893 612.679 

IE   20.4134 −299.175 600.351 600.415 601.201 

It is also clear from Figures 4–6, that the TLGIE distribution provides the best fit as compare to 

TLIE, TLSIE, IE and TLGSIE for given three data sets. So, the TLGIE model could be chosen as the 

best model. 

 

Figure 4. Plots of the Goodness of Fit of TLGIE distribution using data set 1. 
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Figure 5. Plots of the Goodness of Fit of TLGIE distribution using data set 2. 

 

Figure 6. Plots of the Goodness of Fit of TLGIE distribution using data set 3. 

8. Conclusions 

We derived a three parameter Topp-Leone generalized inverted exponential distribution. Some 

of desirable properties are computed. The parameters are estimated by method of maximum 

likelihood. Performance of MLE’s are tested through simulation study. Finally, three real data 

applications are analyzed to assess the flexibility of new model over existing distribution. It is 

significantly observed that the proposed model provides better result than derived models. 
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Abbreviations 

TLGIE Topp-Leon Generalized Inverted Exponential 

GIE Generalized Inverted Exponential 

TL Topp-Leone 

cdf cumulative distribution function 

pdf probability distribution function 

TLIE Topp-Leone Inverted Exponential 

TLSIE Topp-Leone Standard Inverted Exponential  

IE Inverted Exponential 
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TLGSIE Topp-Leone Generalized Standard Inverted Exponential 

EGIE Generalized Inverted Exponential 

(1)r  the integration exponential function 

CV coefficient of variation  

CS coefficient of skewness 

CK coefficient of kurtosis  

MLE maximum likelihood estimate 

MSE mean squared error 

AIC Akaike information criterion 

CAIC consistent Akaike information criterion 

HQIC Hannan-Quinn information criterion 

MLEs the maximum likelihood estimates 

L The likelihood function 

 the log-likelihood function 

BIAS bias 

LL log-likelihood 

g( )x  pdf of GIE 

( )G x  Cdf of GIE 

( )F x
TL G

 Cdf of TL distribution 

( )f x
TL G  Pdf of TL distribution 

R (x) The reliability or survival function  

h(y) The hazard function 

( )D   The mean deviation 

( )D m  The median deviation 
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