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Abstract: Extreme multistability with coexisting infinite orbits has been reported in many continuous
memristor-based dynamical circuits and systems, but rarely in discrete dynamical systems. This paper
reports the finding of initial values-related coexisting infinite orbits in an area-preserving Lozi map
under specific parameter settings. We use the bifurcation diagram and phase orbit diagram to
disclose the coexisting infinite orbits that include period, quasi-period and chaos with different
types and topologies, and we employ the spectral entropy and sample entropy to depict the initial
values-related complexity. Finally, a microprocessor-based hardware platform is developed to acquire
four sets of four-channel voltage sequences by switching the initial values. The results show that the
area-preserving Lozi map displays coexisting infinite orbits with complicated complexity distributions,
which heavily rely on its initial values.
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1. Introduction

Chaotic systems have long been a subject of concern in academic and industrial fields [1,2]. Due to
the advantages of the ergodicity, unpredictability, pseudo-randomness and initial value sensitivity [3,4],
chaotic systems fit well to various chaos-based image encryptions [5,6] and secure communications [7].

The coexistence of self-excited attractors or hidden attractors has been found in various
kinds of continuous ordinary differential systems. These ordinary differential systems contain
the purely mathematical chaotic and hyperchaotic systems [8,9], memristor-based chaotic circuits
and systems [10,11], and Hopfield neural networks [12,13]. When the coexisting attractors reach an
infinite number, this phenomenon is defined as extreme multistability [14], which has been reported in
many memristor-based chaotic systems [15,16]. Similar to the continuous chaotic systems, the discrete
chaotic maps are taken as a class of important dynamical systems, which can also give rise to the
phenomenon of multistability. In the past decade, the coexistence of double or multiple attractors has
been found in the Hénon maps [17,18], the M-dimensional nonlinear hyperchaotic model [19] and
the multistage DC/DC switching converter [20]. Recently, two types of simple 2D hyperchaotic maps
with sine trigonometric nonlinearity and constant controllers were shown to generate initial-boosted
infinite attractors along a phase line [21,22]. Thereafter, a simple two-dimensional Sine map was
presented to obtain the initials-boosted infinitely many attractors along a phase plane [23]. These
newly presented discrete maps only exhibit the coexisting attractors with different positions. However,
the coexisting infinite attractors with different topologies and different positions in the discrete maps
are rarely reported.

Can a low-dimensional discrete map produce coexisting infinite attractors with different topologies
and different positions? This paper reports the finding of such coexisting infinite orbits in an
area-preserving Lozi map by numerical simulations. A Lozi map is a piecewise-linear map that
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was first reported in [24]. Under some typical control parameter settings, the Lozi map displays
a singular hyperbolic chaotic attractor [25,26]. However, when the specific parameter settings are
selected, the concerned Lozi map becomes a specific two-dimensional area-preserving map, and it
can generate initial values-related coexisting infinite orbits. As such, the finding of coexisting infinite
orbits in the area-preserving Lozi map is greatly significant.

The rest of this paper is organized as follows. Section 2 briefly reviews the Lozi map and then
focuses on the area-preserving Lozi map. Section 3 discloses the coexisting infinite orbits and displays
the initial values-switched iterative sequences. Section 4 calculates the complexity of the coexisting
infinite orbits. Section 5 develops a microcontroller-based hardware platform to acquire the coexisting
sequences. Finally, the paper gives a summary in Section 6.

2. Area-Preserving Lozi Map

This section briefly reviews the Lozi map and then focuses on the area-preserving Lozi map,
including the fixed point stability and quasi-periodic route to chaos.

2.1. The Classical Lozi Map

A Lozi map [24,25] is two-dimensional and piecewise-linear, and is achieved by substituting the
quadratic nonlinearity in Hénon map [27] with an absolute value nonlinearity. Its mathematical model
can be rewritten as {

xn+1 = 1− a|xn|+ yn

yn+1 = bxn
(1)

where the control parameters a, b are two real constants (b , 0).
Usually, the typical control parameters in the Lozi map are set as a = 1.7 and b = 0.5. Figure 1

gives a chaotic attractor generated from the Lozi map. By changing the control parameters, the Lozi
map can display complex behaviors. This paper focuses on the finding of coexisting infinite orbits in
the area-preserving Lozi map under the specific parameter settings.
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2.2. Stability for the Fixed Points

The stability of the Lozi map model in (1) can be judged by its Jacobian matrix. The Jacobian
matrix can be written as

J =
[
−asign(x) 1

b 0

]
(2)

Obviously, the determinant of J is −b, i.e., det(J) = −b. Particularly, when b = −1, the Lozi map is
two-dimensional area-preserving [28].
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Define the fixed point as F = (x*, y*) for the map model. The fixed point can be obtained by
calculating the following equation set: {

x∗ = 1− a|x∗|+ y∗
y∗ = bx∗

(3)

Due to the absolute value nonlinearity, Equation (3) is discussed in two cases, i.e., x* > 0 and x*
< 0.

When x* > 0, the fixed point is expressed as F1 = (x1*, y1*). If 1 + a – b > 0, the first fixed point F1

is obtained by

F1 = (x1∗, y1∗) = (
1

1 + a− b
,

b
1 + a− b

) (4)

if not, the F1 is nonexistent.
Analogously, when x* < 0, the fixed point is defined as F2 = (x2*, y2*). If 1 − a – b < 0, the second

fixed point F2 is obtained by

F2 = (x2∗, y2∗) = (
1

1− a− b
,

b
1− a− b

) (5)

Otherwise, F2 has no solution.
Substituting F1 into (2), the Jacobian matrix at F1 is rewritten as

J =
[
−a 1
b 0

]
(6)

The characteristic polynomial is yielded from (6) as

P(λ) = λ2 + aλ− b (7)

and the eigenvalues are obtained as  λ1 = 0.5(−a +
√

a2 + 4b)
λ2 = 0.5(−a−

√
a2 + 4b)

(8)

In the same way, the eigenvalues of the Jacobian matrix at F2 are calculated as λ1 = 0.5(a +
√

a2 + 4b)
λ2 = 0.5(a−

√
a2 + 4b)

(9)

If |λ1,2| < 1, the fixed point is stable; if |λ1| > 1 or |λ2| > 1, the fixed point is unstable. The eigenvalues
λ1,2 are related to the two control parameters a and b. Thus, the stability distributions at the two fixed
points depend on these control parameters. Because the fixed points F1,2 are all in an unstable state
without new change when |a| > 4 and |b| > 4, we denote that both a and b vary within the interval [−4, 4].
Figure 2 displays the stability distributions at the two fixed points in the control parameter plane of a, b,
where the stable and unstable regions are marked in green and red, respectively. Meanwhile, Figure 2
also shows the variable regions of two control parameters.

From the aforementioned result, the Lozi map is two-dimensional area-preserving, as b = −1.
For this particular case, the stability distributions at the two fixed points can be solved via (8) and
(9). Based on (8), it can be found that when −2 ≤ a ≤ 2, the fixed point F1 is in a critical state, i.e.,
|λ1,2| = 1; when a > 2, F1 is unstable, i.e., |λ1| < 1 and |λ2| > 1. Similarly, it can be obtained from (9) that
when a > 2, the fixed point F2 is unstable, i.e., |λ1| > 1 and |λ2| < 1. The results indicate that when the
control parameter a is in the interval [−2, 2], the Lozi map has only the fixed point F1, and operates in a
critical state.
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Following the results in Figure 3, four phase diagrams of the area-preserving Lozi map for 
different parameter are obtained and shown in Figure4. Figure 4a,d show two chaotic orbits with 
different complex fractal structures, whereas Figure 4b,c display quasi-periodic orbits with 9 and 51 
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these moving orbits are entirely different from the chaotic attractor given by Figure 1. 
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2.3. Quasi-Periodic Route to Chaos

Using a bifurcation diagram, a finite-time Lyapunov exponent (LE) and a phase diagram, the
parameter-dependent bifurcation behaviors and moving orbits can be analyzed. Note that the
finite-time LE can be calculated by the Wolf’s Jacobian-based algorithm.

The particular case of the Lozi map with b = −1 is considered. For the area-preserving Lozi map,
the initial values are determined as (x0, y0) = (0.5, 0.5), and the control parameter a varies in the interval
[−1.1, 1.2]. This parameter variation interval implies that the Lozi map has only the critical stable fixed
point F1. The bifurcation diagram and finite-time LEs are plotted in Figure 3. As can be seen, with an
increase in the control parameter a, the area-preserving Lozi map undergoes the quasi-periodic route
to chaos. Therefore, the concerned Lozi map has a striking bifurcation route. Besides this, as observed
from Figure 3b, LE1 is always non-negative and the sum of LEs equals zero, indicating the appearance
of chaos and the conservation of the Lozi map [29].
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Following the results in Figure 3, four phase diagrams of the area-preserving Lozi map for
different parameter are obtained and shown in Figure 4. Figure 4a,d show two chaotic orbits with
different complex fractal structures, whereas Figure 4b,c display quasi-periodic orbits with 9 and 51 tori.
Therefore, the area-preserving Lozi map can generate chaotic and quasi-periodic orbits, and these
moving orbits are entirely different from the chaotic attractor given by Figure 1.
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3. Initial Values-Related Coexisting Infinite Orbits

The coexistence of infinite attractors is also called the phenomenon of extreme multistability, which
has been reported in numerous memristor-based dynamical circuits and systems [14–16]. Mostly this
phenomenon occurs in continuous dynamical systems of at least four dimensions. Hence the finding
of coexisting infinite orbits in the area-preserving Lozi map is greatly significant.

3.1. Coexisting Chaotic and Quasi-Periodic Orbits

To explore the properties of the area-preserving Lozi map, we inspect its initial values-related
dynamical behaviors via the dynamical map, the bifurcation diagram and the phase diagram.
The control parameter a is fixed as 1.2. Note that the control parameter of b = −1 is kept unchanged to
make sure the Lozi map is area-preserving.

The largest LE (LLE) is a valuable indicator of chaos, and a colorful kinetic map can be plotted in
the initial value plane by computing the values of LLE of a discrete map. Figure 5 (middle) displays the
kinetic map of the area-preserving Lozi map with the initial value ranges of x0 ∈ [−9, 9] and y0 ∈ [−9, 9].
The initial value ranges emerging from the moving orbits with different values of LLE are labeled by
different colors. The magenta–red–yellow, labeled as positive, represents the chaos areas and the dark,
labeled as zero, represents the quasi-period and period areas. As can be observed, the kinetic map
possesses a complicated fractal structure and smooth boundaries.

In terms of determining an initial value and taking another initial value as a bifurcation parameter,
the initial value-related bifurcation diagrams of state x with respect to two initial values x0 and y0 are
displayed in Figure 5 (left and bottom). Figure 5 (left) shows the local bifurcation diagram for fixed x0

= 0.5 and variable y0 ∈ [−2.6, 2.2], whereas Figure 5 (bottom) shows the local bifurcation diagram for
fixed y0 = 0.5 and variable x0 ∈ [−2.8, 3.2]. The bifurcation diagrams intuitively manifest the dynamical
transition from the quasi-periodic route to chaos as the initial values x0 and y0 individually change,
resulting in the coexistence of infinite orbits.

The phase diagram can reflect the moving orbits with different topologies, which is suitable
to reveal the coexisting behaviors. With the bifurcation diagram given in Figure 5 (left), the phase
diagrams under several different initial values y0 are depicted in Figure 6a, from which seven different
chaotic and quasi-periodic orbits can be observed. In the same way, with the bifurcation diagram
given in Figure 5 (bottom), the phase diagrams under several different initial values x0 are depicted in
Figure 6b, from which seven different chaotic and quasi-periodic orbits can also be observed. Note that
the chaotic orbit behaves like a chaotic sea, distributed in a determined region, and the quasi-periodic
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orbit appears as a closed torus. Therefore, the coexistence of a chaotic orbit with a fractal pattern and
vast quasi-periodic orbits with different topologies can be disclosed in the area-preserving Lozi map.
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values of LLE with respect to (x0, y0) ∈ [−9, 9] × [−9, 9]; local bifurcation diagram (left) for fixed x0 = 0.5
and variable y0 ∈ [−2.6, 2.2]; and local bifurcation diagram (bottom) for fixed y0 = 0.5 and variable
x0 ∈ [−2.8, 3.2].
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3.2. Coexisting Chaotic and Periodic Orbits

To further demonstrate the coexisting infinite orbits, the control parameter is set as a = 1 for the
area-preserving Lozi map. Similar to the results in Figure 5, Figure 7 (middle) plots the kinetic map of
the area-preserving Lozi map with the initial value ranges of x0 ∈ [−9, 9] and y0 ∈ [−9, 9]. The colorful
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areas in the initial value planes denote the same moving orbits as those used in Figure 5. As can be
seen, the kinetic map in Figure 7 (middle) has a fractal structure different from that of Figure 5.
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Figure 7. For fixed a = 1, b = −1, the colorful kinetic map (middle) determined by computing the values
of LLE with respect to (x0, y0) ∈ [−9, 9] × [−9, 9]; local bifurcation diagram (left) for fixed x0 = 0.5
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For this case, when fixing an initial value and taking another initial value as a bifurcation parameter,
the initial value-related bifurcation diagrams of state x with respect to two initial values x0 and y0 are
displayed in Figure 7 (left and bottom). Figure 7 (left) shows the local bifurcation diagram for fixed x0

= 0.5 and variable y0 ∈ [−7.5, 7], whereas Figure 7 (bottom) shows the local bifurcation diagram for
fixed y0 = 0.5 and variable x0 ∈ [−5.4, 6]. Different from the bifurcation diagrams in Figure 5 (left and
bottom), the bifurcation diagrams embody the dynamical transition from the periodic route to chaos as
the initial values x0 and y0 individually change.

Based on the bifurcation diagrams given in Figure 7, the phase diagrams initiated by different
initial values are shown in Figure 8. Figure 8a gives eight kinds of coexisting orbits under a different
initial value y0 with x0 = 0.5, and Figure 8b shows seven kinds of coexisting orbits under a different
initial value x0 with y0 = 0.5. Therefore, the coexistence of chaotic and periodic orbits with different
types and topologies can be disclosed in the area-preserving Lozi map as well. It is stressed that the
periodic orbit given in Figure 8 only manifests as some discrete points, whereas the quasi-periodic
orbit appears as a closed torus, shown in Figure 6.

Consequently, when the Lozi map is area-preserving, its moving orbits are extremely dependent
on its initial values and present period, quasi-period and chaos, with different types and topologies.
In other words, the emergence of extreme multistability appears in the area-preserving Lozi map.
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3.3. Initial Values-Switched Iterative Sequences

Corresponding to the results in Figures 6 and 8, the initial value-related iterative sequences can
be obtained from the area-preserving Lozi map. For fixed a = 1.2, four sets of initial values, (0.5, 0.5),
(0.5, 0.6), (0.4, 0.5) and (0.6, 0.5), are selected. Meanwhile, for determined a = 1, another four sets of
initial values, (0.5, 0.3), (0.5, 0.4), (0.4, 0.5) and (0.6, 0.5), are chosen. For these sets of initial values,
all the iterative sequences are chaotic, and they can be depicted in Figure 9 by numerical simulations.
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Except for the chaotic sequences, the area-preserving Lozi map can also produce quasi-periodic
and periodic sequences. For fixed a = 1.2, the initial values are set to (0.5, 1.8), (0.5, 1.9), (1.8, 0.5), and
(2.2, 0.5), respectively. In these cases, four sets of quasi-periodic sequences are generated and shown in
Figure 10a. Thereafter, for fixed a = 1, the initial values are assigned as (0.5, 3.1), (0.5, 3.2), (2.2, 0.5),
and (4.6, 0.5), respectively. In these cases, four sets of periodic sequences are generated and shown in
Figure 10b.
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4. Initial Values-Related Complexity

The spectral entropy(SE) and sample entropy (SampEn) are two useful measures of chaos,
which can be used to quantitatively calculate the complexity of the coexisting infinite orbits.

4.1. SE-Based Complexity

The SE indicates the disorder of time sequences using an algorithm to measure complexity based
on the Fourier transformation [30]. The higher the SE is, the higher the complexity of the time sequences
will be.

For a set of time sequences {xn, n = 0, 1, 2, . . . , N−1} with a length of N, a new discrete number of
length N is obtained by subtracting the mean of this dataset from each datum, which is described as

xn = xn −

∑N−1
n=0 xn

N
(10)

Denote Xk as the discrete Fourier transform of xn. This yields

Xk =
∑N−1

n=0
xne−j2πnk/N (11)

in which k = 0, 1, 2, . . . , N − 1 and j is the unit imaginary. The probability of the power spectrum is
defined by

Pk =
|Xk|

2∑N/2−1
k=0 |Xk|

2
(12)

Therefore, the normalization spectral entropy can be obtained as

SE =

∑N/2−1
k=0

∣∣∣Pk ln(Pk)
∣∣∣

ln(N/2)
(13)

where Pk = 0 needs to be removed, or let PklnPk = 0 when Pk = 0. According to the definition of
SE, the SE-based complexity can be obtained when the time sequences of state x are selected for the
area-preserving Lozi map.

Following the kinetic map in Figure 5, the initial value ranges for the area-preserving Lozi map
are also considered as x0 ∈ [−9, 9] and y0 ∈ [−9, 9]. The SE-based complexity distributed in the initial
value plane is shown in Figure 11. It is not difficult to find that the SE-based complexity distribution is
consistent with the kinetic map in Figure 5 (middle).
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4.2. SampEn-Based Complexity

The sample entropy (SampEn) is proposed by reference to the approximate entropy and can reflect
the regularity of time sequences [31]. When evaluating sequence complexity, a larger SampEn indicates
lower regularity, i.e., greater complexity.

In the same way, consider a set of time sequences {xn, n = 1, 2, 3, . . . , N} with a length of N. This set
of time sequences constructs the (N − m + 1) m-dimensional vectors Xm(i), where Xm(i) = {xi, xi+1, . . . ,
xi+m–1}, 1 ≤ i ≤ N − m + 1. The distance between two vectors Xm(i) and Xm(j) is defined as the absolute
value of the maximum difference in the corresponding element, i.e., d[Xm(i), Xm(j)] = max{|x(i + k) − x(j
+ k)|}, where 0 ≤ k ≤ m − 1. The Bi is the number of d[Xm(i), Xm(j)] < r (1 ≤ j ≤ N – m, i , j). Define (N −
m + 1)−1 times Bi as

Bm
i (r) =

1
N −m− 1

Bi (14)

and define the probability B(m)(r) that two sequences will match for m points as

B(m)(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (15)

Similarly, Xm+1(i) is (m +1)-dimensional vectors and Ai is the number of d[Xm+1(i), Xm+1(j)] <

r. The (N − m + 1)−1 times Ai and the probability, A(m)(r), that two sequences will match for m +1
points are

Am
i (r) =

1
N −m− 1

Ai (16)

A(m)(r) =
1

N −m

N−m∑
i=1

Am
i (r) (17)

Then, when N is finite, the sample entropy can be calculated by

SampEn = − ln
[

Am(r)
Bm(r)

]
(18)

where m = 2 and r = 0.2 times the standard deviation in our experiment based on previous studies [32].
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The time sequences of state x generated by the area-preserving Lozi map are presumed to be
the measurable sequences. According to the kinetic map in Figure 5, the initial value ranges are also
considered as x0 ∈ [−9, 9] and y0 ∈ [−9, 9]. The SampEn-based complexity distributed in the initial value
plane is plotted in Figure 12. Comparing the results in Figures 11 and 12, the SE-based complexity and
SampEn-based complexity have the same distribution in the initial value plane.
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5. Hardware Experiment

To physically implement the simple area-preserving Lozi map, a digital microcontroller-based
hardware platform is developed. It mainly includes the microcontroller STM32F407VET6 (ARM
32-bit Cortex™-M4 CPU), a D/A converter TLV5618 (12-bit) and a unipolar/bipolar conversion circuit
consisting of operational amplifier and resistor. The STM32F4 series chip with flexible pin configuration
is easy to weld, which allows us to design a feature-rich printed circuit board (PCB) by matching
different peripheral circuits for multiple engineering applications. Of course, in order to achieve more
complex chaos-based applications, the raspberry pi board with superior performance can be used to
complete the physical implementation by referring to [33].

The model equations, control parameters and initial values are written using C language, and the
program is downloaded to the microcontroller. For convenience, Algorithm 1 lists the pseudocode of
the microcontroller-based main program [34]. Then, the time-domain waveforms generated by the
hardware platform can be clearly observed in the oscilloscope. The screenshot of the four-channel
waveforms obtained by the oscilloscope and experimental hardware are shown in Figure 13.
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Algorithm 1 The microcontroller-based main program

Initialize the microcontroller and configure the output pins;
Set the length N of sequences, the Number M of interpolation;
Set intermediate variables step1,2,3,4, temp1,2,3,4 and value1,2,3,4;
while true
Set four sets of (ai, bi, xi,0, yi,0) (i = 1,2,3,4);
for i = 1 to N
//system equation
x1,i+1 = 1 − a1|x1,i| + y1,i; y1,i+1 = b1×1,i;
. . .

x4,i+1 = 1 − a4|x4,i| + y4,i; y4,i+1 = b4×4,i;
//interpolation
step1 = (x1,i+1 − x1,i)/M; . . . step4 = (x4,i+1 − x4,i)/M;
for j = 0 to M − 1
temp1 = x1,i + j·step1; value1 = (temp1 + 15)*4096/30;
. . .

temp4 = x4,i + j·step4; value4 = (temp4 + 15)*4096/30;
Transfer the value1,2,3,4 to TLV5618;
end
end

With the digital hardware platform, the discrete iterative sequences for two concerned cases are
measured experimentally. Corresponding to the numerical results in Figures 9 and 10, the initial
values-related time-domain waveforms generated from the hardware platform are displayed in
Figure 14. The experimental results demonstrate that the chaotic, quasi-periodic and periodic
waveforms for fixed a = 1 and 1.2 can be captured by the oscilloscope. Because the sequence
sampling is random, the initial values-related time-domain waveforms obtained in the experiments
are slightly different from the numerically simulated time-domain waveforms. Ignoring these tiny
errors, the experimental results are consistent with the numerical results.
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6. Conclusions

In order to explore the initial values-related coexisting infinite orbits in a discrete dynamical
system, this paper studied the two-dimensional area-preserving Lozi map under specific parameter
settings. Within the control parameter of interest, the area-preserving Lozi map has only a fixed point
and operates in a critical state. Since the critical fixed point is extremely sensitive to the initial values,
the area-preserving Lozi map can easily generate the initial values-related coexisting infinite orbits,
i.e., extreme multistability, including periodic, quasi-periodic and chaotic orbits with different types
and topologies. The SE- and SampEn-based complexity distributions were employed to evaluate the
dynamical performance of the sequences generated from different initial values. By switching the
initial values, the iterative sequences were acquired from the developed hardware experiment platform.
Of course, the initial values-switched chaotic iterative sequences are worthy of further study in some
practical applications.
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