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Abstract: Optimal Reactive Power Dispatch (ORPD) is the vital concern of network operators
in the planning and management of electrical systems to reduce the real and reactive losses
of the transmission and distribution system in order to augment the overall efficiency of the
electrical network. The principle objective of the ORPD problem is to explore the best setting
of decision variables such as rating of the shunt capacitors, output voltage of the generators and
tap setting of the transformers in order to diminish the line loss, and improve the voltage profile
index (VPI) and operating cost minimization of standard electrical systems while keeping the
variables within the allowable limits. This research study demonstrates a compelling transformative
approach for resolving ORPD problems faced by the operators through exploiting the strength of the
meta-heuristic optimization model based on a new fractional swarming strategy, namely fractional
order (FO)–particle swarm optimization (PSO), with consideration of the entropy metric in the
velocity update mechanism. To perceive ORPD for standard 30 and 57-bus networks, the complex
nonlinear objective functions, including minimization of the system, VPI improvement and operating
cost minimization, are constructed with emphasis on efficacy enhancement of the overall electrical
system. Assessment of the results show that the proposed FO-PSO with entropy metric performs
better than the other state of the art algorithms by means of improvement in VPI, operating cost and
line loss minimization. The statistical outcomes in terms of quantile–quantile illustrations, probability
plots, cumulative distribution function, box plots, histograms and minimum fitness evaluation in
a set of autonomous trials validate the capability of the proposed optimization scheme and exhibit
sufficiency and also vigor in resolving ORPD problems.

Keywords: optimization; fractional swarming; entropy metric; optimal power flow (OPF); reactive
power planning (RPD); shannon entropy

1. Introduction

The Reactive Power Dispatch (RPD) problem, due to its extreme significance in contemporary load
monitoring and management systems of power distribution companies, has been receiving mounting
attention from power system engineering scholars with the goal of refining the system voltage profile
index (VPI) and diminishing electrical system losses while keeping the constraints of system operation
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within allowed limits. RPD planning is an obligatory requirement for efficient and viable operation of
the electrical transmission (Tline) and distribution (Dline) systems. Presently, the existing Tline and Dline
systems are involuntary to operate at almost full capacity due to imbalance investment in transmission
and distribution sector as well as power generation sector. More often, due above prevailing situation
the heavy flows of current in entire system tend to incur losses as well as threatening stability of the
electrical system [1]. This ultimately creates unenviably augmented risk of electricity outages in entire
system of different severity levels. In this pertinent situation, there is a general consensus developed
amongst the network operators to reinforce the existing transmission (Tline) and distribution (Dline)

system by installation of new lines and power grid stations to make it efficient, smart, reliable and
fault tolerant [2]. To meet the highlighted challenges, there are two potential options available which
are normally exercised by different operators with certain allied merits and demerits. The first option
is associated to augmentation of the existing infrastructure of electrical power system through the
addition of new lines (i.e., LT and HT lines) and substations. The merits and demerits of this option
are provided in Table 1.

Table 1. Up-gradation of power system infrastructure.

Merits De-Merits

Enhanced Power Evacuation
Capacity Cost (Capex & Opex)

Improved Load Management
Site Clearance & Security Issues

Permits/Right of Way Issues

The second option is related to utilization of the existing electrical transmission and distribution
system by optimal setting of its performance parameters which resultantly improve the efficacy of
entire electrical system. This can be achieved by carrying out specialized technical study of electrical
system known as the optimal power flow (OPF). The merits and demerits of this option are provided
in Table 2.

Table 2. Optimization of existing power system.

Merits De-Merits

Minimize T&D losses

Marginal Improvement in System
Capacity

Improvement of Voltage Profile
Index (VPI)

Enhanced System Stability

Reduce Overall Cost of
Operation

The OPF model is employed in an interconnected electrical system to set the operating parameters
of power plants in such a way to efficiently meet the expected load dispatch demand of potential
consumers with minimum operating cost and power losses. The OPF model is further divided into
two sub problems in which first one is known as economic load dispatch and the other sub-problem
is known as ORPD. Both problems are applied in different scenarios based on the requirement of
operator subjected to get the desired objective functions. The sub problem of OPF are illustrated in
Figure 1.
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Figure 1. Sub problems of optimal power flow (OPF).

In this research proposal we have nominated the sub problem of OPF known as ORPD for
addressing the objective function of electrical system such as Ploss minimization, voltage profile index
(VPI) improvement and operating cost minimization [3–6]. The ultimate goal of ORPD is to reduce the
Tline and Dline losses and improve the voltage profile index (VPI) while keeping the decision variables of
electrical system such as shunt capacitor banks (QC), generator voltages (VG), and transformer taps (T)
setting within the limits in standard power systems. The objective functions of the ORPD such as power
loss minimization, VPI improvement and overall cost minimization are modeled as complex nonlinear
equations. The solution of these equations using deterministic techniques (such as RK method, Adams
method, shooting method and spectral analysis method etc.) is not possible. The problems of RPD have
widely been solved using stochastic methods [6]. To eliminate the RPD problems, various optimization
algorithms have been implemented over a period of time to achieve the optimal results. Some of the
known stochastic methods implemented for solution of RPD problem includes the linear programming
(LP) [7], interior point method (IPM) [8], quadratic programming (QP) [9], genetic algorithm (GA) [10],
particle swarm optimization (PSO) [11,12], multi-objective optimization particle swarm optimization
(MOPSO) algorithm [13], fractional Order PSO (FO-PSO) [6], harmony search algorithm (HSA) [14],
gaussian bare-bones water cycle algorithm (NGBWCA) [15], tabu search (TS) [16], comprehensive
learning particle swarm optimization [17], teaching learning based optimization (TLBO) [18], adaptive
GA (AGA) [19], seeker optimization algorithm (SOA) [20], jaya algorithm [21], differential evolution
(DE) [2,3,5,22–25], Artificial Bee Colony Algorithm [26], Hybrid Artificial Physics PSO [27], improved
antlion optimization algorithm [28], Chaotic Bat Algorithm [29], classification-based Multi-objective
evolutionary algorithm [30], evolution strategies (ES) [31], evolutionary programming (EP) [32],
firefly algorithm (FA) [33], gravitation search optimization algorithm (GSA) [34,35], bacteria foraging
optimization (BFO) [36], bio-geography-based optimization algorithm (BBO) [37] and grey wolf based
optimizer algorithm (GWO) [38]. In 2017, another advanced optimizer has also been applied to the
problems RPD known as gradient-based WCA (GWCA) [39,40] and results demonstrate the relevance
and productivity of optimizer. Furthermore, in order to solve the non-linear complex problems of
RPD in power system author Heidari et al. has proposed another state-of-the-art algorithm known as
chaotic WCA (CWCA) in his research proposal [41].

These methods have their own merits and demerits in solving the problems of RPD, still certain
complications are persisted due to multi modal, nonlinear and discrete characteristic of power system
which needs to be catered in more appropriate manners. In addition, due to the complex non-linear
and non-differential nature of the RPD problems, a wider set of employed optimization methods
coverages towards sub optimal solutions. Presently many heuristic models have been applied under
circumstances where normal schemes cannot find a satisfactory result in case of discontinuous and
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non-differential function with large number of nonlinearly related parameters [14,15]; however,
the fractional dynamics of particle swarm optimization along with entropy diversity has not yet
been explored in energy and power sector, specifically in solving ORPD problems.

The concept of fractional PSO is based on incorporating the fractional derivative and underlying
theory inside the mathematical model of conventional PSO to improve the convergence rate while
the synergy of entropy metric improve the optimization characteristic of algorithm by avoiding
the suboptimal solution. In recent years, the fractional calculus based optimization mechanisms
have been effectively applied in domain of science and engineering such as feature selection [42],
image processing and segmentation [43,44], swarm robotics [45], fuzzy controllers [46], classification
of extreme learning machine [47], adaptive extended Kalman filtering [48], electromagnetics [49],
hyperspectral images [50], media-adventitia border detection [51], monitoring [52] and fractional
adaptive filters [53]. Similarly, the inclusion of entropy diversity inside the optimizer is found to be
effective in enhancing its performance by means of avoiding premature convergence [54–57]. Keeping
this in mind, in present study, a new algorithm, namely, fractional order particle swarm optimization
(FO-PSO) with entropy metric, is designed with synergy of both the fractional calculus and Shanon
entropy, to address RPD problem through assessment and proper tuning of decision variables including
VAR compensator (QC), setting of transformers tap (T) and generator voltage (VG) while meeting the
objectives of system operators (i.e., consumers load demand and minimal losses in power system).
The proposed optimization algorithm is tested on standard 30 and 57-bus systems. The single-line
diagram (SLD) of the standard 30 and 57-bus test system is illustrated in Figures 2 and 3.

The outcomes are compared with their counterpart algorithms to validate the capability of the
proposed optimization scheme and exhibit sufficiency besides, vigor to resolve ORPD problems.
The apotheosis of the contribution is stated below:

• Novel application of fractional evolutionary strategy with introduction of the velocity based
entropy diversity in internal solver of the optimization algorithm for solving RPD problems in
standard power systems.

• Effective application of designed scheme to improve the performance of power systems in terms
of power loss Ploss minimization, operating cost minimization and improving voltage profile
index (VPI) while fulfilling the system load demands and operational constraints.

• The endorsement of the algorithm performance through outcomes of statistical analysis in terms
of histogram studies, learning curves and probability charts which exhibit the accuracy, reliability,
strength and constancy of the proposed optimization strategy.

• Flexibility in degree of freedom is acquirable for solving the optimization assignments by using
the variants of FO-PSO based on fractional orders α = [0.1, 0.2, ..., 0.9].

• The brilliance of FC along with entropy is exploited in optimization scenarios to design a
substitute and feasible algorithm for problem in energy sector related to transmission and
distribution segment.

This presented research article is aligned as follows: In Section 2, the mathematical model for
ORPD is formulated. Section 3, describe the methodology of the designed optimization technique
known as FO-PSO with entropy metric, along with graphical abstract and pseudo-code of presented
optimizer. In Section 4, simulation outcomes and discussion is presented for the proposed technique
along with comparative analysis through statistics, while the last section of paper summarizes
the conclusions.
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Figure 2. Thirty-standard bus system single-line diagram (SLD).
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Figure 3. Fifty-seven-standard bus system SLD.

2. Problem Formulation

This section briefs the mathematical model of objectives functions including the Ploss minimization,
VPI improvement and overall cost minimization, as given below.

2.1. System Ploss Minimization

The system Ploss is calculated by means of the following expression [6,15,23].

A1 = PLoss =
ml
∑

h≥1
gh
[
V2

a − 2×VaVb cos (δa − δb) + V2
b
]

(1)

where ml represents the no. of transmission lines, Va, Vb and δa, δb represents magnitude and phase
angle of voltage at the end buses a and b of hth line and gh used to represent the conductance of the
hth line of standard bus system. Data for standard IEEE (100 MVA base) 30-bus system is given in
Tables 3–6 for reference.
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Table 3. Load data.

Bus #
Load Detail

(per unit) Bus #
Load Detail

(per unit)

Q P Q P

B1 0.0000 0.0000 B16 0.0180 0.0350

B2 0.1270 0.2170 B17 0.0580 0.0900

B3 0.0120 0.0240 B18 0.0090 0.0320

B4 0.0160 0.0760 B19 0.0340 0.0950

B5 0.1900 0.9420 B20 0.0070 0.0220

B6 0.0000 0.0000 B21 0.1120 0.1750

B7 0.1090 0.2280 B22 0.0000 0.0000

B8 0.3000 0.3000 B23 0.0160 0.0320

B9 0.0000 0.0000 B24 0.0670 0.0870

B10 0.0200 0.0580 B25 0.0000 0.0000

B11 0.0000 0.0000 B26 0.0230 0.0350

B12 0.0750 0.1120 B27 0.0000 0.0000

B13 0.0000 0.0000 B28 0.0000 0.0000

B14 0.0160 0.0620 B29 0.0090 0.0240

B15 0.0250 0.0820 B30 0.0190 0.1060

Table 4. Transmission line data.

Transmission Line #
Line Impedance

(per unit) To Bus From Bus

X R

L1 0.0575 0.0192 2 1

L2 0.1852 0.0452 3 1

L3 0.1737 0.0570 4 2

L4 0.0379 0.0132 4 3

L5 0.1983 0.0472 5 2

L6 0.1763 0.0581 6 2

L7 0.0414 0.0119 6 4

L8 0.1160 0.0460 7 5

L9 0.0820 0.0267 7 6

L10 0.0420 0.0120 8 6

L11 0.2080 0.0000 9 6

L12 0.5560 0.0000 10 6

L13 0.2080 0.0000 11 9

L14 0.1100 0.0000 10 9

L15 0.2560 0.0000 12 4
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Table 4. Cont.

Transmission Line #
Line Impedance

(per unit) To Bus From Bus

X R

L16 0.1400 0.0000 13 12

L17 0.2559 0.1231 14 12

L18 0.1304 0.0662 15 12

L19 0.1987 0.0945 16 12

L20 0.1997 0.2210 15 14

L21 0.1932 0.0824 17 16

L22 0.2185 0.1070 18 15

L23 0.1292 0.0639 19 18

L24 0.0680 0.0340 20 19

L25 0.2090 0.0936 20 10

L26 0.0845 0.0324 17 10

L27 0.0749 0.0348 21 10

L28 0.1499 0.0727 22 10

L29 0.0236 0.0116 22 21

L30 0.2020 0.1000 23 15

L31 0.1790 0.1150 24 22

L32 0.2700 0.1320 24 23

L33 0.3292 0.1885 25 24

L34 0.3800 0.2544 26 25

L35 0.2087 0.1093 27 25

L36 0.3960 0.0000 27 28

L37 0.4153 0.2198 29 27

L38 0.6027 0.3202 30 27

L39 0.4533 0.2399 30 29

L40 0.2000 0.6360 28 8

L41 0.0599 0.0169 28 6

Table 5. Generator bus data.

Bus # Cost Coefficients
x y z

B1 0.0000 2.0000 0.003750

B2 0.0000 1.7500 0.017500

B5 0.0000 1.0000 0.062500

B8 0.0000 3.2500 0.008340

B11 0.0000 3.0000 0.025000

B13 0.0000 3.0000 0.025000
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Table 6. Minimum and maximum limits for the decision variables.

Decision Variables

Min Max Initial

T11 0.9000 1.1000 1.0780

T12 0.9000 1.1000 1.0690

T15 0.9000 1.1000 1.0320

T36 0.9000 1.1000 1.0680

P1 50.00 200.00 99.24

P2 20.00 80.00 80.00

P5 15.00 50.00 50.00

P8 10.00 35.00 20.00

P11 10.00 30.00 20.00

P13 12.00 40.00 20.00

V1 0.9500 1.1000 1.0500

V2 0.9500 1.1000 1.0400

V5 0.9500 1.1000 1.0100

V8 0.9500 1.1000 1.0100

V11 0.9500 1.1000 1.0500

V13 0.9500 1.1000 1.0500

Qx10 0.0000 5.0000 0.00

Qx12 0.0000 5.0000 0.00

Qx15 0.0000 5.0000 0.00

Qx17 0.0000 5.0000 0.0000

Qx20 0.0000 5.0000 0.0000

Qx21 0.0000 5.0000 0.0000

Qx23 0.0000 5.0000 0.0000

Qx24 0.0000 5.0000 0.0000

Qx29 0.0000 5.0000 0.0000

Power losses (MW) 5.8420

Voltage deviations (VPI) 1.16060

Lmax 0.21440

2.2. Improvement of Voltage Profile (VPI)

Voltage Profile Index (VPI) can be enhanced by limiting the load bus deviations from 1.0 per unit
system. Mathematically, the fitness function of VPI is stated as [6,23].

A2 = ∑
jε ML

∣∣Vj − 1.00
∣∣ (2)

where ML represents the no. of load buses.
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2.3. Operating Cost Minimization

This fitness function for operating cost minimization includes the cost due to energy loss in the
power systems which can be expressed as:

Ctotal = CEner = Ploss × 0.06× 1000× 24× 365 (3)

CEner = Ploss × 525, 600 (4)

where we can fix the following values. Installation cost of shunt capacitor as per market study
is approximately 1000 USD. Cost incurred in power system due to energy loss is approximately
0.067 USD/kWh. Furthermore, there is total 365 days in a year and 24 h in a single day.

2.4. System Constraints

System Constraints are divided into the following:

2.4.1. Equality Constraints

The P and Q power balance relationships are adopted as equality constraints in ORPD studies.
The mathematical representation of these expressions are formulated below:

−Va
KB
∑

b=1
Vb [Gab cos (δa − δb) + Bab sin (δa − δb)]− PDa + PGa = 0 (5)

−Va
KB
∑

b=1
Vb [Gab sin (δa − δb)− Bab cos (δa − δb)]−QDa + QGa = 0 (6)

where Gab and Bab denotes the standard bus system line conductance and susceptance between ath
and bth bus. Moreover, a = 1..., KB where KB represents the no. of system buses, QG denotes the
generator output Q, PG denotes the generated P, QD represents the demanded Q, PD represent the
demanded P.

2.4.2. Inequality Constraints

It includes the following:

• Shunt Capacitor (Qd) limits, which are restricted by boundaries as follows:

Qmi
dk ≤ Qdk ≤ Qmx

dk , k = 1, ..., Md (7)

• Transformer tap setting (Tk), which are restricted by boundaries as follows:

Tmi
k ≤ Tk ≤ Tmx

k , k = 1, ..., MT (8)

• Generator Voltages (VG) and output reactive power Q which are restricted by boundaries
as follows:

Vmi
Gk ≤ VGk ≤ Vmx

Gk , k = 1, ..., MG (9)

Qmi
Gk ≤ QGk ≤ Qmx

Gk , k = 1, ..., MG (10)

3. Methodology

The developed algorithm in the present study is based on FO-PSO with entropy metric to solve
the optimization problems during RPD in standard 30 and 57-bus networks. This section is divided
into two sub-sections; in first sub-section, a brief outline of proposed technique known as FO-PSO with
entropy metric and its mathematical derivation is presented. Then, in second sub-section, the work
flow of proposed optimization technique for solving ORPD problem along with pseudo-code and its
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allied clarifications are presented while the graphical abstract of the proposed scheme is shown as
depicted in Figure 4.

Figure 4. Overall design scheme for the proposed study.

3.1. Overview of FO-PSO with Entropy Metric

FO-PSO with entropy metric is a transformational stochastic model that extends PSO
scheme [55,58–61] exploiting the function of typical selection in practical application, was established
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to improve the PSO limit in order to escape the local optima [15]. The proposed scheme has the
capability to resolves variety of practical problems encountered by system operators in power systems
due to its high solution quality and superior convergence rate characteristics then traditional model.

3.1.1. Fractional PSO

Fractional calculus (FC) hypothesis is a useful tool for applied science [58,62–65] and has put
considerable effort into enhancing the performance several applied algorithms used for filtering,
identification, pattern recognition, reliability, controllability, observability and strength. In this research
proposal, another optimization algorithm called fractional-order PSO with entropy metric computation
is used to study the RPD problem.

In recent days the application of FC with stochastic function has opened new venues of research
in power and engineering sector for specialists, e.g., power sector, fluid mechanics, engineering,
and others. Mathematically, the FC can be derived in light of Grunewald-Letnikov definition which
dependent on idea of fractional differential equation with fractional coefficient β ∈ C of function f (t)
is stated as:

Xβ [ f (t)] = lim
J→0

[
1
Jβ

(
+∞

∑
m=0

(−1)m γ (β + 1) f (t−mJ)
γ (β−m + 1) γ (m + 1)

)]
(11)

where gamma function is denoted by γ [62]. The above stated equation possesses a significant
property which suggests a finite arrangement known as integer-order derivative. Along these lines,
whole number subsidiaries are “nearby” functions while fractional derivatives functions possess a
“memory” of every previous occasion. However, after the elapse of certain time period the influence of
past events diminishes. Based on Equation (11):

Xβ [ f (t)] =
1

Tβ
s

Z

∑
m=0

(−1)m γ (β + 1) f (t−mT)
γ (m + 1) γ (β−m + 1)

(12)

where sampling period of time is represented by Ts and Z denotes the truncation order of function.
This mathematical model is appropriate to depict phenomena of chaos and irreversibility because of
its in-built memory property function.

Let assume the sampling period Ts = 1 based on scientific work proposed in research article [58],
the following mathematical expression of the function can be defined:

Xβ
[
vm

t+1
]
= ρ1r1 (ğm

t − xm
t ) + ρ2r2 (x̆m

t − xm
t ) + ρ3r3 (n̆m

t − xm
t ) (13)

Comparable outcomes for r ≥ 4 are obtained while performing initial test on the scheme proposed
in the literature. Similarly, the mathematical prerequisites of the scheme proposed increment with r
linearly. Subsequently, for r = 4 order Equations (12) and (13) will be revised as Equation (14):

vm
t+1 = βvm

t +
(
0.5× βvm

t−1
)
+
(
0.1666× β (1− β) vm

t−2
)
+
(
0.04166× β (1− β) (2− β) vm

t−3
)

+ρ1r1 (ğm
t − xm

t ) + ρ2r2 (x̆m
t − xm

t ) + ρ3r3 (n̆m
t − xm

t )
(14)

The coefficients β, ρ1, ρ2 and ρ3 allocate weights to the proposed scheme inertial influence, pbest
and the gbest while updating the new velocity and position of the optimizer, respectively. Normally,
the value of inertial influence is close to 1 (slightly less than one in most cases). Based on the various
characteristics of the scheme and the application of the problem, optimal setting of these parameters
will improve the outcome of the proposed model. Furthermore, the parameters r1, r2 and r3 represents
the random vectors generally between 0 and 1.

From Equation (14), FO-PSO will be considered similar to a specific instance of the traditional
PSO when fractional coefficient β = 1 (without “memory”). Despite the fact that this new model joins
the idea of FC, the difficulty to comprehend the fractional coefficient β influence still remains. Defined
in literature [61,66], the behavior of the swarm can be separated in two exercises: First is related to
abuse and second is related to investigation. The highlighted first exercise is related to convergence
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of the scheme while permitting a decent transient exhibition. However, in the event when the level
of exploitation is excessively high, at that point the optimization model has the chance to get stuck
on local outcome. The subsequent one translates the diversification of the model, while permitting
the investigation of new solutions, resulting in the overall improvement of the scheme performance.
However, the optimization model FO-PSO will take too much time and effort during the processing to
find the best global result if the scheme level of exploration is excessively high.

The major trade-off between both the exploration and exploitation in traditional PSO has
ordinarily been taken care by altering the inertial weight of the associated swarm which is also
being exhibited by the Eberhart and Shi in his research article [67]. Furthermore, to enhance the activity
of exploration an enormous inertial weight can be used while for exploitation the inertial weight
should be minimal in order to get the best possible results. Since FO-PSO control and improve the
convergence rate of the swarm through integration of FC concept with traditional PSO. Therefore,
to get the best global outcome from the scheme significant level of the investigation has been carried
out to define the fractional coefficient β.

This stochastic scheme is not much explored in the field of power sector specially in case of
RPD problem. However, few researchers have employed this technique recently to RPD problem to
get promising results [6,23] but the concept of entropy metric utilized in the internal solver of the
model is not yet explored. So, we are going to propose this concept in order to get the advantage of
both the techniques by improve the convergence rate of scheme and also discourages the premature
convergence phenomenon encountered in some cases.

The concept of entropy with FO-PSO with entropy metric will be new domain for various
researcher in the field of power and applied engineering sector specifically to address RPD problem to
get the optimal results.

3.1.2. Entropy

Entropy is defined as quantitative measure of system transformation from ordered to disorder
state [68–70]. Various explanations have been proposed consistently for entropy over the years some of
which are state as freedom, chaos, measure of disorder, issue, mixing, tumult, spreading, opportunity
and information data [71]. This concept is widely utilized in field of statistical mechanics, engineering
and thermodynamics; however it describes the amount of data transmitted in a signal or activity
performed. An instinctive understanding of the entropy with pre-defined distribution of probability
relates to the amount of ambiguity about an event performed. In order to measure information loss in
any event or activity a renowned information hypothesis developed by Shannon has been adopted by
researchers as a reference in order to carry forward their investigation [55].

The essential depiction of entropy was proposed by Boltzmann to portray various transition of
systems states. The phenomenon of spreading was implemented by Guggenheim to exhibit scattering
imperativeness structure framework. Shannon portrayed H [72] as an extent of choice, and information:

H (J) = −Mc ∑
jεJ

pi (j) log pi (j) (15)

The parameter Mc is a positive constant which is normally equal to 1. Moreover, probability
distribution p(k) is termed as a discrete random variable {jεJ}. This can also be easily extended to
random multi variables. For two variables (j, k) ε (J, K) entropy is defined as:

H (J, K) = −Mc ∑
jεJ

∑
kεK

pi (j, k) log pi (j, k) (16)

The introduction of entropy concept in FO-PSO algorithm will improve the optimizer rate of
convergence as well as also avoiding premature convergence. In a second phase, the behavior of
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optimization technique FO-PSO is being influenced by the entropy signal, namely the updation of the
velocity as shown in Figure 5, along the implementation for improving its rate of convergence.

Figure 5. Fractional order (FO)–particle swarm optimization (PSO) with entropy with velocity
reinitialization [73].

Certainly, entropy exhibit the disorder of a employed system, i.e., a gauge of how speed up
particles are within a system. Keeping in view, it is considered the velocity vx of any swarm particle
and the velocity of best global particle. Each probability px, is given by the velocity of particle x to
the velocity of best global particle over the maximum possible velocity. Therefore, the probability is
expressed as:

px =
vx

vmx
(17)

where vmx denotes the maximum possible velocity for a particle. The Shannon particle diversity index,
for a n swarm size, is based in quantification process and can be represented as:

H (J) = −∑
j=1

pi (j) log pi (j) (18)

Entropy integrated with FO-PSO is proposed to promote the evaluation process of the model
towards the best possible global optima. Comparison with several schemes have been undertaken to
observe the performance of proposed model. The core motivation behind the use of entropy metric
with FO-PSO is to improve the velocity updating mechanism of traditional algorithm by enhancing
the convergence rate in order to attain the best possible optimal outcomes.

3.2. Application of FO-PSO with Entropy Metric in ORPD

The key variation in proposed optimization technique known as FO-PSO with entropy from
traditional PSO is the utilization of fractional derivative component along with introduction of
entropy in the internal solver of algorithm to update swarm velocity. In the proposed mechanism,
the computational efficacy of FO-PSO with entropy metric is proved by solving the ORPD problems in
30 and 57 Bus networks by minimizing the power losses of system, improving the voltage profile index
(VPI) and minimizing the operating cost of power system. The application of FO-PSO with entropy
metric by means of process stages is illustrated in Algorithm 1.
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Algorithm 1 Pseudo-code for FO-PSO with entropy metric to solve Optimal Reactive Power Dispatch
(ORPD) problem.

1: procedure IN STEPS WITH INPUT AND OUTPUTS
2:
3: Inputs: Set swarm particles size, function iterations, bus, branch and generator data for IEEE

Standard Test Bus System i.e., 30 Bus system with 13 control variables and 57-Bus system with 25
control variables

4:
5: Objective Functions: The objective functions of this study are:

• Power Loss Minimization
• Improvement of Voltage Profile Index (VPI)
• Operating Cost Minimization

6: Output: Minimum loss of power as define in Equation (1), improved Voltage Profile Index(VPI) as
define in Equation (2) and minimum operating cost as defined in Equation (3)

7:
8: Start FO-PSO with Entropy Metric
9:

10: Step 1: Initialization: Randomly generated initial swarm A, known as particle in n-dimensional
search space:

A = [Tx1, Tx2, Tnt, Vx1, Vx2, . . . Vnv, Qx1, Qx2 . . . Qnq] (19)

• Each swarm particle comprises of equal entries as no. of decision variables in the IEEE
standard bus systems, which are to be optimized.

• Randomly initialize velocity Vk and position Xk
• The entry of swarm is based on random generation within the defined lower and upper limit

of independent decision variable of data set. Mathematically ith member of swarm is set as:

Ai,j(0) = (Av
j − Av

j )× rand(0, 1) + AL
j (20)

where, rand(0,1) demonstrates the pseudo-random real numbers between 0 and 1. Setting
parameters of proposed optimization algorithm is mentioned in Tables 7 and 8

11:
12: Step 2: Fitness evaluation: Evaluate the fitness of each particle (P) of the swarm using Equation (1)

for system Ploss minimization, Equation (2) for improvement of voltage profile (VPI) and
Equation (3) for operating cost minimization

13:
14: Step 3: Termination Criterion: Stopping criteria of the proposed algorithm is based on the

following factors:

• Tolerance limit attains, i.e., predefine difference between current and previous best attained
• On execution of Total number of set iterations i.e., i=1,2. . . , 100
• If the algorithm exceeds the predefine limits of control variables

Go to Step 5 if termination criteria is satisfied
15:
16: Step 4: Algorithm Updating Mechanism: FO-PSO with entropy metric algorithms is updated on

the basis of two mechanisms that are particle position using Equation (21) as:

x(n, j + 1) = x(n, j + 1) + x(n, j) (21)

and updating velocity using Equation (22) as:

vm
t+1 = βvm

t +
(
0.5× βvm

t−1
)
+
(
0.1666× β (1− β) vm

t−2
)
+
(
0.04166× β (1− β) (2− β) vm

t−3
)

+ρ1r1 (ğm
t − xm

t ) + ρ2r2 (x̆m
t − xm

t ) + ρ3r3 (n̆m
t − xm

t )
(22)

The coefficients β, ρ1, ρ2 and ρ3 allocate weights to the proposed scheme inertial influence, pbest
and the gbest while updating the new velocity and position of the optimizer, respectively. Update
global best and local best for each particle and go to Step 2

17:
18: Step 5: Storage: Store the parameter of gbest particle on the basis of objective functions
19:
20: Step 6: Analysis: Repeat Steps 1 to 5 for different value of fractional order α in the algorithm for

detailed statistical analysis of the results
21:
22: Step 7: Replication: Repeat the Steps 1 to 6 for 30 an 57 bus networks
23:
24: End of FO-PSO with Entropy Metric
25:
26: Step 8: Statistics: Repeat the algorithm from Steps 1 to 7 for several autonomous trials in order to

analyze detailed performance of FO-PSO with entropy metric for optimal RPD systems
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4. Simulation Results and Discussion

To validate the capability and efficacy of the proposed optimization technique known as FO-PSO
with entropy metric, it has been tried and tested for problem of ORPD in standard 30 and 57 Bus
networks with 13 and 25 variables. The FO-PSO with entropy metric method have been employed
in MATLAB R2017b and the simulations are being performed on a PC core i5 having 8 GB RAM.
The swarm size for the proposed technique is set to be 20 and 13 in case of standard 30 and 57 bus
networks, respectively. The parameter settings used during the execution of algorithm evolution for
30 and 57 bus networks are listed in Tables 7 and 8 accordingly.

Table 7. FO-PSO with entropy metric parameter settings of 30-bus system.

Parameters
Parameters Setting Value of Standard 30 Bus System

(13 Variables)

Minimization of Ploss Improvement of VPI Operating Cost Minimization

Fractional Order 0.3 0.4 0.7

Vmx 2.04 2.04 2.04

Factor of Local Acceleration 0.90–0.10 0.90–0.10 0.90–0.10

Factor of Global Acceleration 0.10–0.90 0.10–0.90 0.10–0.90

Inertia Weight 0.90–0.20 0.90–0.20 0.90–0.20

Particle Size or Decision Variables 13 13 13

Iterations During Statistics 60 30 80

Swarm Size 20 20 20

Table 8. FO-PSO with entropy metric parameter settings of 57-bus system.

Parameters
Parameters Setting Value of Standard 57 Bus System

(25 Variables)

Minimization of Ploss Improvement of VPI Operating Cost Minimization

Fractional Order 0.9 0.3 0.7

Vmx 2.04 2.04 2.04

Factor of Local Acceleration 0.90–0.10 0.90–0.10 0.90–0.10

Factor of Global Acceleration 0.10–0.90 0.10–0.90 0.10–0.90

Inertia Weight 0.90–0.20 0.90–0.20 0.90–0.20

Particle Size or Decision Variables 25 25 25

Iterations During Statistics 60 30 100

Swarm Size 13 13 5

The outcomes of the proposed optimizer technique is demonstrated in the relevant results tables
in order to depicts the strength, capabilities and reliability in comparison to other state of the art
techniques. The results obtained after implementation of FO-PSO with entropy metric technique in
case of 30 bus and 57 bus system are duly compared with other optimization techniques results that
have been directly taken from corresponding research publications of ORPD problems. Furthermore,
the lower and upper limits of control variables are duly listed in Table 9 .

4.1. ORPD for Standard 30-Bus System with 13 Variables

For contextual analysis, total 13 control variables of 30 bus system need to be optimized which
includes four tap changer transformers (T), three compensator devices (Qc), and six voltages of
generator (VG). To evaluate total actual losses incurred in power system, the proposed optimization
algorithm is employed for ORPD in standard 30 bus system with 13 variables. The single line
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diagram of the same system has been depicted as Figure 2. The obtained outcomes are then duly
compared and analyzed with similar problems reported outcomes of literature. The decision variables
reported in these research studies of ORPD problems are delineated into the similar mathematical
regime of MATPOWER [6,74] for a purpose to validate impartial comparison of the compared
optimization techniques.

Table 9. Limits of control variables [38,75].

Control or Decision Variables Lower Limit Upper Limit

IEEE 30-Test Bus System

Shunt VAR Compensators (MVar) −12 36

Generator Voltages (p.u) 0.9 1.1

Setting of Transformer Tap Changer (p.u) 0.950 1.050

IEEE 57-Test Bus System

Shunt VAR Compensators (MVar) 0 20

Generator Voltages (p.u) 0.94 1.06

Setting of Transformer Tap Changer (p.u) 0.900 1.100

Attained actual value of power system losses after implementation of FO-PSO with entropy metric
algorithm is compiled in Table 10 along with reported values of power losses from other algorithms
including PSO [76], HSA [14], GA [17], IWO [18], SGA [77], ICA [78], MICA-IWO [78], DE [23,79],
R-DE [80], C-PSO [80], SFLA [81] and PSO-TVAC [82]. For effective assessment, all the compiled
outcomes of line losses in 30 bus system with 13 decision variables in Table 10 are being examined
using MATPOWER load flow.

It was observed that actual losses incurred by applying FO-PSO with entropy metric algorithm
in case of 30 bus system are 4.628 MW, found to be 18.28% curtailed than the initial value while in
contrast to the counterparts, the DE, HSA, GA, C-PSO, R-DE, GA, IWO, MICA-IWO, ICA, SFLA and
PSO-TVAC provides 13.68%, 9.78%, 17.35%, 17.58%, 13.87%, 13.12%, 14.42%, 14.37%, 17.25% and
18.23% respectively as shown in Table 11.

In this case the results obtained by implementing the proposed technique known as FO-PSO
with entropy metric stipulates preferable outcomes in tackling the ORPD problems and also remained
within their identified boundaries. The learning curves of 30 bus test system are plotted in Figures 6–8
showing the best, average and worst iterative updates of fitness function i.e., minimization of Power
Losses, Cost Function and Voltage Profile Index (VPI) during 100 independent trials for α = 0.1, ..., 0.9.
Moreover, efficacy of proposed optimization algorithm can be evaluated by observing the learning
power curves of fitness functions where the best results are obtained at fractional order α = 0.3 in case
of power loss, α = 0.4 in case of voltage profile index improvement and α = 0.7 in case of operating cost
minimization functions as shown in Figures 6–8.

The proposed technique is also tested for fitness function of voltage profile improvement of power
system and outcomes of simulation depicts that designed optimizer is considerably effective than
other methods. The results achieved by the FO-PSO with entropy metric technique and some other
state of the art algorithms such as SGA [77], PSO [77], NGBWCA [15], HSA [77], FA [33], BFOA [33],
GWO [77], MFO [77] and OGSA [15] have been tabulated in Table 12.



Entropy 2020, 22, 1112 18 of 31

 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

 
 Iteration  Iteration  Iteration 

(a)   𝛼 = 0.1 (d)   𝛼 = 0.4 (g)   𝛼 = 0.7 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

P
o

w
er

 L
o

ss
 (

M
W

) 

 

 
 Iteration  Iteration  Iteration 

(b)   𝛼 = 0.2 (e)   𝛼 = 0.5 (h)   𝛼 = 0.8 

P
o

w
er

 L
o

ss
 (

M
W

) 

 
 

P
o

w
er

 L
o

ss
 (

M
W

) 

 
P

o
w

er
 L

o
ss

 (
M

W
) 

 

 Iteration  Iteration  Iteration 

(c)   𝛼 = 0.3 (f)   𝛼 = 0.6 (i)   𝛼 = 0.9 

Figure 6. Thirty-bus system power loss (MW) minimization learning curves for (a) α = 0.1 (b) α = 0.2
(c) α = 0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.
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Figure 7. Thirty-bus system cost function minimization learning curves for (a) α = 0.1 (b) α = 0.2 (c) α =
0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.
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Figure 8. Thirty-bus system voltage profile index minimization learning curves for (a) α = 0.1 (b) α = 0.2
(c) α = 0.3 (d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.

Table 10. Comparison of optimized variable for 30-bus system with 13 decision variables.

Decision
Variables

Published Outcomes Present

PSO
[77]

HSA
[14]

GA
[17]

IWO
[18]

SGA
[77]

ICA
[78]

MICA-IWO
[78]

DE
[23,79]

R-DE
[80]

C-PSO
[80]

SFLA
[81]

PSO-
TVAC [82]

FO-PSO
with Entropy

Transformer Tap Ratio (T)

T6-9 0.970 1.010 1.022 1.050 0.950 1.080 1.030 1.018 1.050 0.990 0.984 0.975 1.022

T6-10 1.020 1.000 0.991 0.960 0.980 0.950 0.990 0.979 0.900 1.050 1.020 0.927 1.046

T4-12 1.010 0.990 0.996 0.970 1.040 1.000 1.000 0.977 1.000 0.990 0.987 0.999 1.015

T27-28 0.990 0.970 0.971 0.970 1.020 0.970 0.980 1.009 0.970 0.960 1.008 0.964 1.011

Generator Voltages (Vg)

V1 1.031 1.072 1.072 1.069 1.100 1.078 1.079 1.095 1.100 1.100 1.095 1.097 1.103

V2 1.011 1.062 1.063 1.060 1.042 1.069 1.070 1.085 1.094 1.100 1.091 1.087 1.101

V5 1.022 1.039 1.037 1.036 1.032 1.069 1.048 1.062 1.070 1.074 1.079 1.066 1.076

V8 1.003 1.042 1.044 1.038 0.981 1.047 1.048 1.065 1.073 1.086 1.070 1.070 1.080

V11 0.974 1.031 1.013 1.029 0.976 1.034 1.075 1.026 1.065 1.100 1.084 1.067 1.1083

V13 0.998 1.068 1.089 1.055 1.100 1.071 1.070 1.014 1.096 1.100 1.099 1.099 1.1076

Capacitor Banks (Qc)

Qc3 17 34 5.350 8 12 −6 −7 20.223 10 9 NP NP 4.7645

Qc10 13 12 36 35 −10 36 23 9.5843 0.26 0.30 3.965 1.0303 4.182

Qc24 23 10 12.417 11 30 11 12 13.029 0.12 8 4.205 4.653 11.458

Ploss 5.881 5.109 4.877 4.92 6.531 4.849 4.846 4.888 4.667 4.680 4.686 4.648 4.628

Note: NP stands for Not Provided.
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Table 11. % Power loss reduction in standard 30-bus system with 13 decision variables.

Items Base Case DE
[23,79]

HSA
[14]

C-PSO
[80]

R-DE
[80]

GA
[17]

IWO
[18]

MICA-IWO
[78]

ICA
[78]

SFLA
[81]

PSO-TVAC
[82]

FO-PSO
with Entropy

Ploss (MW) 5.663 4.888 5.109 4.680 4.667 4.877 4.920 4.846 4.849 4.686 4.648 4.628

Loss reduction (%) - 13.680 9.780 17.350 17.580 13.870 13.120 14.420 14.370 17.250 18.23 18.280

Table 12. Comparison of voltage profile index (VPI) for standard 30-bus system with 13 decision variables.

Items

Published Outcomes Present

SGA
[77]

PSO
[77]

NGBWCA
[15]

HSA
[77]

FA
[33]

BFOA
[33]

GWO
[77]

MFO
[77]

OGSA
[15]

FO-PSO
with Entropy

VPI (p.u) 0.1501 0.1424 0.4773 0.1349 0.1157 0.1490 0.1260 0.1215 0.8085 0.1131

4.2. ORPD for Standard 57-Bus System Having 25 Variables

In this section, Standard 57-bus system with 25 decision variables system is being utilized to
evaluate the efficacy of proposed technique known as FO-PSO with entropy metric. This ORPD
problem will be handled as a search space of 25-dimension having 7 generator voltages (at buses B1, B2,
B3, B6, B8, B9 and B12), 3 reactive power sources (at buses B18, B25 and B53) and 15 transformer taps.
The single line diagram of the same system has been depicted as Figure 3. The optimization variables
are obtained implementation of proposed technique in case of 57 bus system and then outcomes are
collated with already established algorithms while keeping the Q and voltage constraints within the
allowed limits.

Moreover, all the constraints of Q and voltage are scrutinized and not being violated.
The corresponding outcomes obtained from simulations are recorded in Table 13 along with the
previously published outcomes of other techniques in case of ORPD.

The attained value of Ploss = 26.3956 MW after employment of proposed optimization algorithm
which is 5.268% lower than the initial value and demonstrates a good undertaking of ORPD problem
while in contrast to other counterparts such that PSO, ICA, ICA-PSO hybrid, FO-DPSO and DSA that
provides 0.077%, 2.651%, 2.399%, 4.248% and 0.587% respectively, as illustrated in Table 14. In this
case the results obtained by implementing the proposed technique stipulates preferable outcomes in
tackling the ORPD problems and also remained within their identified boundaries.

In this case the results obtained by implementing the proposed technique stipulates preferable
outcomes in tackling the ORPD problems and also remained within their identified boundaries.
Moreover, the results of the simulation performed suggests by observing the learning power curves of
fitness functions where the best results are obtained at fractional order α = 0.9 in case of power loss,
α = 0.3 in case of voltage profile index improvement and α = 0.7 in case of operating cost minimization
functions as shown in Figures 9–11. Hence, the efficacy and computational distinction of proposed
optimization scheme in case of undertaking the ORPD problem over the counterparts is clear from the
comparative analyses.
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Table 13. Comparison of optimized variable for 57-bus system with 25 decision variables.

Published Outcomes Present
Decision
Variables PSO

[75]
OGSA

[15]
WCA
[15]

ICA
[75]

Hybrid
[75]

NGBWCA
[15]

FO-DPSO
[6]

DSA
[83]

FO-PSO
with Entropy

Transformer Tap Ratio (T)

T4-18 0.97543 0.9833 1.0217 0.9584 0.9265 1.0185 0.9 0.9480 1.0459

T4-18 0.9716 0.9503 0.9614 0.9309 0.9532 0.9601 0.9209 1.0230 1.0252

T21-20 1.0286 0.9523 0.9496 1.0269 1.0165 0.9458 1.0268 1.0210 1.0230

T24-26 1.0183 1.0036 0.9901 1.0085 1.0071 0.9919 1.0075 0.9660 1.0231

T7-29 0.9401 0.9778 0.9986 0.9 0.9414 0.9951 0.9070 0.9270 1.0289

T34-32 0.94 0.9146 0.9000 0.9872 0.9555 0.9000 0.9871 0.9000 1.0415

T11-41 0.9761 0.9454 0.9634 0.9097 0.9032 0.9622 0.9010 0.9000 1.0100

T15-45 0.9211 0.9265 0.9063 0.9377 0.9356 0.9058 0.9 0.9770 1.0213

T14-46 0.9165 0.9960 0.9801 0.9166 0.9172 0.9764 0.9 0.9920 1.0283

T10-51 0.9044 1.0386 1.0631 0.9057 0.9337 1.0600 0.9165 0.9000 1.0094

T13-49 0.9118 0.9060 0.9131 0.9 0.9 0.9100 0.9 0.9530 1.0359

T11-43 0.92 0.9234 0.9294 0.9 0.9206 0.9302 0.9 0.9530 1.0302

T40-56 0.9891 0.9871 0.9782 0.9575 1.0042 0.9770 0.9980 1.0160 1.0315

T39-57 0.943 1.0132 1.0286 1.0476 1.0297 1.0271 0.9945 0.9000 1.0395

T9-55 0.9998 0.9372 0.9053 0.9 0.9294 0.9000 0.9 0.9800 1.0409

Generator Voltages (Vg)

V1 1.0284 1.0138 1.0242 1.06 1.0395 1.0151 1.04 1.0170 1.088

V2 1.0044 0.9608 0.9953 1.0388 1.0259 0.9810 1.0298 0.9500 1.0805

V3 0.9844 1.0173 1.0098 1.0078 1.0077 1.0002 1.0099 1.0600 1.0825

V6 0.9872 0.9898 1.0176 0.9688 0.9982 1.0039 0.9776 1.0340 1.0802

V8 1.0262 1.0362 1.0268 0.9715 1.0158 1.0198 0.9855 1.0140 1.0862

V9 0.9834 1.0241 1.0283 0.9556 0.985 1.0254 0.9676 1.0600 1.0799

V12 0.9844 1.0136 1.0125 0.9891 0.9966 1.0081 0.9081 1.0090 1.0824

Capacitor Banks (Qc)

Qc18 9 0.0463 0.0593 0 9.9846 0.0550 4 0.0063 4.8939

Qc25 7.0185 0.0590 0.0591 10 10 0.0590 15 0.1000 4.8324

Qc53 5.0387 0.0628 0.0382 9.5956 10 0.0381 11.678 0.0948 6.4528

Ploss 27.842 32.34 30.02 27.125 27.195 29.20 26.680 27.700 26.3956

Table 14. % Power loss reduction in standard 57-bus system with 25 decision variables.

Item Base Case PSO
[75]

ICA
[75]

ICA-PSO
Hybrid [75]

FO-DPSO
[6]

DSA
[83]

FO-PSO
with Entropy

Ploss (MW) 27.8637 27.842 27.125 27.195 26.680 27.700 26.395

Loss reduction (%) - 0.077 2.651 2.399 4.248 0.587 5.268

The proposed technique is also tested for fitness function of voltage profile improvement of power
system and outcomes of simulation depicts that proposed optimizer is more promising than other
techniques which is duly stated in Table 15.

Table 15. Comparison of VPI for standard 57-bus system with 25 decision variables.

Item

Published Outcomes Present

NGBWCA
[15]

WCA
[15]

OGSA
[15]

FO-PSO
with Entropy

VPI (p.u) 1.2710 1.3852 1.1907 1.1844
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Figure 9. Fifty-seven-bus system Power Loss (MW) curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3 (d) α = 0.4
(e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.
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Figure 10. Fifty-seven-bus system cost function curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3 (d) α = 0.4
(e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.
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Figure 11. Fifty-seven-bus system voltage profile index curves for (a) α = 0.1 (b) α = 0.2 (c) α = 0.3
(d) α = 0.4 (e) α = 0.5 (f) α = 0.6 (g) α = 0.7 (h) α = 0.8 (i) α = 0.9.

4.3. Comparative Study through Statistics

The demonstration of statistical illustrations are provided in this section to endorse consistent
optimization inferences on account of designed optimization algorithm known as FO-PSO with entropy
metric for optimal RPD problems. Therefore, the proposed optimization algorithm is executed for
Hundred independent runs considering the best α for 30 and 57 Bus standard networks. The outcomes
of statistical analysis, by means of minimum fitness evaluation function, probability charts of CDF,
histogram studies, box plots, probability plot illustrations and quantile–quantile plot illustrations are
presented in Figures 12–17 for ORPD in standard electric networks.

In all case studies of optimal RPD presented in Figures 12a, 13a, 14a, 15a, 16a and 17a show
the minor distinction and also established reasonable accuracy and efficacy of FO-PSO with entropy
metric optimization algorithm in each independent run. Furthermore, in Figures 12b, 13b, 14b, 15b,
16b and 17b, probability charts demonstrate an ideal normal distribution of fitness values for all
the cases which prove the precise optimization of the FO-PSO with entropy metric. The histogram
illustrations presented in Figures 12c, 13c, 14c, 15c, 16c and 17c for all ORPD scenarios illustrates that
majority of the independent run of FO-PSO with entropy metric provide minimum gauges of Ploss.
As provided in Figures 12d, 13d, 14d, 15d, 16d and 17d the probability plots for CDF shows that 80% of
the independent runs of proposed algorithm gives Ploss inferior to 5.2 MW and 26.9 MW 30 and 57 bus
networks, respectively. The outcomes of box plots in Figures 12e, 13e, 14e, 15e, 16e and 17e for all cases
of ORPD demonstrates that median of Ploss is approximately 4.98 MW & 26.8 MW for 30 and 57 bus
networks, respectively while the data spread is very close. The quantile–quantile plot presented in
Figures 12f, 13f, 14f, 15f, 16f and 17f show the ideal behavior of fitness versus the quantiles of a normal
distribution for all cases of ORPD. All the above mentioned graphical illustrations of the statistical
analysis carried for different ORPD scenarios demonstrate the efficacy, stability and robustness of
proposed FO-PSO with entropy metric.
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Figure 12. Statistical analysis of 30-bus system for power loss minimization with α = 0.3 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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Figure 13. Statistical analysis of 30-bus system for voltage profile improvement with α = 0.4 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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Figure 14. Statistical analysis of 30-bus system for operating cost minimization with α = 0.7 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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Figure 15. Statistical analysis of 57-bus system for power loss minimization with α = 0.9 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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Figure 16. Statistical analysis of 57-bus system for voltage profile improvement with α = 0.3 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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Figure 17. Statistical analysis of 57-bus system for operating cost minimization with α = 0.7 based
on (a) fitness comparison (b) probability plot (c) histogram analysis (d) CFD analysis (e) box plot
representation (f) QQ plot.
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5. Conclusions

This paper proposed a new fractional swarm computing mechanism, namely, FO-PSO with
entropy metric for the solution of ORPD problems for tuning the operational variables to reduce Ploss,
overall cost while improving the VPI and meeting the consumer’s power demand. The designed
strategy is viably tested on standard electric networks including IEEE 30 and 57 bus. The yielded
outcomes from the FO-PSO with entropy metric are compared with the results reported in literature
by the other well established algorithms where in all the given scenarios the proposed method
demonstrate best performance by mean of evaluating least Ploss, overall cost and VPI in benchmark
networks. Variants of FO-PSO with entropy metric are developed by adopting different fractional
coefficients α = [0.1, 0.2, ..., 0.9] and tested on both standard systems with considerable precision;
however, the best performance of FO-PSO with entropy metric is achieved at α = 0.3 for fitness
function of power loss minimization, α = 0.4 for voltage profile improvement and α = 0.7 for
operating cost minimization in case of 30-bus system. Similarly, in case of 57-bus system the best
results of fitness functions are obtained at α = 0.9, α = 0.3 and α = 0.7 for power loss minimization,
voltage profile improvement and operating cost minimization, respectively. The efficacy of developed
algorithms is endorsed through outcomes of statistics by means of the iterative updates depictions,
cumulative distribution, histograms charts and quantile–quantile probability illustrations based on
sixty independent trials of proposed algorithm adopting α = 0.3 for all test systems which demonstrate
the stable, robust and consistent nature of FO-PSO with entropy metric as an alternate, precise and
promising computational technique. In the adopted scenarios, the developed algorithm has computed
minimum losses, voltage deviation index, and overall cost in comparison with existing methods while
adopting the same standard test system. In fact, fractional calculus has appeared as a mathematical
tool to improve the performance of traditional PSO algorithm pertaining the main reason for its
improved performance.

It should be noted that the better performance of the proposed FO-PSO with entropy metric is
achieved for particular/selected cases of ORPD in terms of computing minimum value of objective
functions compared to those, yielded/reported by other algorithms; however, there may be some
situations in which other methods perform comparably or even marginally better. Indeed, theoretical
analysis for a proper justification of the improved performance is always difficult, stiff, challenging,
and complex task. Therefore, a stochastic process is adopted in the presented study for performance
evaluation by means of statistical assessments based on Monte Carlo simulations, so, one should also
investigate to provide theoretical analysis with proper mathematical justification. There are some
situations with fractional orders α in [0-1] where the other methods perform comparably or even
better; however, in the present study we have documented those situations with fractional orders only
where the algorithm performs better than other algorithms in terms of computing minimum fitness
evaluation function and suggested a solution for the readers and system operators.

In future one may design new variants of canonical algorithms based on synergy the of both the
entropy and fractional calculus to improve the optimization characteristics and apply them to other
problems of the energy sector.
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