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Mesoscale model parameters from molecular cluster calculations
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We present an efficient, systematic, and universal method to estimate the interaction parameters
used in mesoscale simulation methods such as dissipative particle dynamics and self-consistent field
methods from molecular cluster calculations. The method is based on a generalized Flory–Huggins
model in which molecules, or fragments thereof, are in contact with their van der Waals surface. We
sample the density of states of molecular clusters in the space spanned by the coarse-grained degrees
of freedom. From here, we calculate the sum over states and free energy of the cluster at a
temperature of interest by histogram reweighting. The method allows to calculate the energy and
entropy contributions to the cluster free energy explicitly. For two components, we then obtain the
excess free energy of mixing and the Flory–Huggins �-parameter, and their energetic and entropic
contributions. We present two applications of the method: a simple liquid mixture of hexane and
nitrobenzene, and a series of polymer blends. In the case of hexane/nitrobenzene, we compare to
alternative simulation methods; here we find that the energy of mixing alone is too high to explain
the critical point. By including the excess entropy of mixing, however, the predicted phase behavior
is in reasonable agreement with experiment. The tendency of calculations based on average energy
alone to overestimate the �-parameter is also apparent in the polymer blend calculations. © 2008
American Institute of Physics. �DOI: 10.1063/1.2943211�

I. INTRODUCTION

The advent of nanotechnology has induced an advance
in simulation science and computational modeling, tradition-
ally bound to the electronic, atomistic, or continuum scale. In
particular, the need to adjust the computer model and simu-
lation method to the phenomenological nanoscale has led to
the development of coarse- and fine-graining strategies, en-
abling seamless in silico multiscale modeling and simulation
workflows.1,2

A sketch of a multiscale modeling workflow starts with
electronic structure calculations to study quantum phenom-
ena and derive a classical force field. Molecular simulation
methods use the force field to study molecular phenomena
and to determine coarse-grained descriptors. These descrip-
tors in turn feed into mesoscale simulation methods to study
mesoscale phenomena and predict a morphology phase dia-
gram. Finally, macroscopic methods, such as finite-element
methods or computational fluid dynamics, can probe trans-
port and mechanical properties of the composite morphology
by solving continuum equations. Such workflows are ex-
tremely versatile and have been used in a wide variety of
cases, such as conductivity of nanotube dispersions,3 precipi-
tation membranes,4 protein fracture,5 hair mechanics,6 etc.

In multiscale workflows, mean-field models often play a
crucial role of levering coarse-grained descriptors to mesos-
cale morphology. An archetypal mean-field model is the
Flory–Huggins �FH� lattice model for binary mixtures, in
which all interactions are reduced to a single adjustable pa-
rameter �, specifying the relative affinity between two
components.7 More modern simulation approaches, such as

self-consistent field theory �SCF�8,9 and dynamic density-
functional theory,10 can be interpreted as generalizations of
FH. Also dissipative particle dynamics �DPD�, originally de-
veloped for simulating hydrodynamic flow,11 can be cast into
the FH structure,12 where particles experience nearest-
neighbor interactions, scaled by a single parameter �.

Despite its obvious importance in modeling, the calcula-
tion of � from first principles has remained a challenge. Part
of the problem is the ambiguity in defining �. Strictly speak-
ing, mean-field theory defines � as the parameter minimizing
the variational free energy, but such minimization is gener-
ally not feasible. Instead, � typically is left as a fitting pa-
rameter, used to make the model effective toward predicting
certain �experimental� properties. Since � measures the affin-
ity between two components, it is naturally derived from
properties of a system in which both components are present.
In the phase-separated state, properties of the interface13

�e.g., tension� or binodal concentrations12 can be used to fit
�. In the mixed state, the enthalpy of mixing is a candidate to
fit �.14 Alternatively, it is possible to consider the pure com-
ponents only and describe the interaction using an empirical
mixing rule �e.g., Berthelot�.15 Such mixing rules generally
lack a physical basis, however, which makes the prediction
of phase behavior of liquid mixtures cumbersome.16

The aim of this work is to investigate and assess ways to
calculate �-parameters from first principles. We take the
point of view that in mean-field models � is a measure for
the relative stability of a coordination shell. We thus focus on
ensembles of coordination shell realizations, or molecular
clusters, and consider the energy and entropy associated with
such ensembles. By treating different cluster compositions in
succession, we are able to obtain �-parameters with explicita�Electronic mail: reiniera@accelrys.com.
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account for excess entropy. We validate the method with ap-
plication to a liquid mixture and various polymer blends.
Calculation of other mesoscale parameters, such as bond and
angle descriptors, and simulation of the resulting mesoscale
model is beyond the scope of this work.

The paper is organized as follows. In Sec. II, and partly
in the Appendix, we derive the free energy as a function of
coarse-grained coordinates �Secs. II A and II B�. We then
formulate this free energy in terms of a cluster model, where
each bead contributes a cluster free energy �Sec. II C�. To
determine the cluster free energies, we consider an ensemble
of clusters, and calculate the energy and entropy �Sec. II D�
using the ensembles density of states �DOS� �Sec. II E�. After
generalization to mixtures, we arrive at an expression for the
�-parameter, which includes energy as well as excess en-
tropy terms �Sec. II F�. In Sec. III we apply the method to a
molecular mixture and to polymer blends, the results of
which are discussed in Sec. IV. Comparison with molecular
dynamics �MD� and quantitative structure-active relationship
�QSAR� calculations is made in selected cases �Sec. II G�.
The paper is concluded in Sec. V.

II. THEORY

A. Coarse graining

There are essentially two ways to arrive at a mesoscale
model, which may be termed “bottom up” and “top down.”
The top-down approach starts from a set of observables and
asks for a fine-grained representation of these data. For ex-
ample, one is given a diffraction pattern and asks to recon-
struct three-dimensional configurations of particles reproduc-
ing this pattern.17 Or one wishes to reverse engineer a system
that yields a desired phase diagram or rheology. These prob-
lems are reminiscent of so-called inverse problems.18

Alternatively, one may already have a fine-grained
model, but wishes to filter for data relevant to the properties
of interest, known as bottom up, ab initio, or coarse graining.
Of course, in practice, information may flow from either
side. In the following, we will focus on coarse graining. Two
stages can be identified in the process of coarse graining:
first, the selection of the degrees of freedom in the fine-
grained model relevant to the phenomena one wishes to
study, followed by the construction of the mesoscale model
in terms of the selected coordinates.

Let the system to be coarse grained be described by a
potential v. Let us denote the selected N coordinates by R.
The remaining n coordinates, rendered irrelevant, will be
called “bath,” denoted by r. With this division in place, it is
straightforward to show �see Appendix� that the function
U�R� given by

e−�U =� dr̃e−�v �1�

provides the best description of the coarse-grained system in
variational sense, where �=1 / �kBT� with kB the Boltzmann
constant and T the absolute temperature. We use a tilde to
express an infinitesimal in reduced units, i.e., dr̃=dr /�n,
where � is the resolution of r-space.

By “best description,” we mean that the difference be-
tween the free energy of the coarse-grained model �described
by U� and that of the microscopic model �described by v� is
minimal.19 In fact, for U defined in Eq. �1�, this difference is
a constant, and consequently all properties that depend only
on R in the microscopic system are recovered. Thus, Eq. �1�
provides a way to adjust the sampling space to the properties
of interest without losing predictability. The price paid is that
U depends not only on R but, unlike v, also on the thermo-
dynamic variables �, n, and V specifying the bath. The func-
tion U must thus be interpreted as a free energy and can
formally be separated in an energy function E�R� and an
entropy function −TS�R�.

Once U is known for a reference state R0, its value at
state R can, at least in principle, be constructed using any of
the free energy methods.20 A direct method to evaluate U�R�
is to measure the distribution � of R in the microscopic
system,21 from which U�R�=U�R0�− �1 /��ln���R� /��R0��.
Another approach to obtain U�R� is by integration22 of �RU;
as follows directly from Eq. �1� �see Appendix�, �RU at R
equals the average of the force �Rv evaluated at R. In other
words, U is the potential of the mean force ��Rv�R, such that
U�R�=U�R0�+�R0

R dR���Rv�R�.
It is clear, however, that as the dimensionality of R in-

creases, the aforementioned free energy methods are not fea-
sible if the coordinates R are strongly correlated. Moreover,
the outcome of such an undertaking will generally be a com-
plicated function of all R, and hence impractical for subse-
quent mesoscale simulations, for such simulations are only
efficient with pairwise additive potentials.

For this reason, U�R�, or at least the part responsible for
nonbonded interaction, is typically approximated by a pair-
wise summation of central potentials u2,

U�R� 	 

i=1

N−1



j=i+1

N

u2�Rij� , �2�

where the sum runs over all pairs of interaction sites �re-
ferred to as “beads”�, and Rij is the distance between beads i
and j. Using the same argument underlying Eq. �1�, one may
ask for the mean-field solution of Eq. �2�, by minimizing the
variational free energy. Such “mean-field pair potentials,”
however, are generally hard to obtain.19 Alternatively, “effec-
tive” pair potentials u2 can be constructed by matching cer-
tain properties of the exact potential of mean force U. For
example, by matching the force,23 structure,24 or heat of
vaporization25 of the microscopic system.

At this point, we should mention that although Eq. �1�
provides the exact solution to recover the thermodynamics
on the mesoscale, it is not sufficient to recover the exact
dynamics of the mesoscale system.22 The bath not only in-
troduces entropy into the conservative part of the equation of
motion but also acts as a thermostat to the remaining coor-
dinates. That is, the coordinates R will also experience fric-
tion and fluctuating forces, to account for the absence of the
bath coordinates. A method to calculate those contributions
was introduced earlier.22 In this study, however, we will fo-
cus on the thermodynamic part.
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B. Mean-field models

The aim of the current work is not to construct an effec-
tive pair potential function u2. Rather, we aim to link the
potential of mean force U to the mean-field models underly-
ing mesoscale simulations methods, such as DPD and SCF
methods.10,33 In the following, we shall use the DPD-
formulation of Warren.26

We assume that U can be written as a sum over all
beads,

U�R� 	 

i=1

N

a�zi� . �3�

The free energy associated with a bead, a, is a function of its
coordination, or “local density,” z�R�. To first order in z, we
have

a�z� = a�0� + a�1�z . �4�

We can read this expansion in terms of a cluster model: Each
bead interacts with a mean field of total energy Na�0�, plus its
coordination shell of z neighbors. When a bead enters the
coordination shell of the bead, it adds an additional a�1� to the
energy of this bead �in this convention, the total energy in-
creases by 2a�1��. The zeroth-order term a�0� sets the refer-
ence state and can be conveniently set to zero.

On a lattice, such as FH, z counts the number of neigh-
boring sites that are occupied. In a continuum model, such as
DPD, the coordination is defined using a weight function,

zi�R� = 

j=1�j�i

N

��Rij� . �5�

The weight function ��s� decreases with s to zero, and sets
the correlation length of the model. Several forms are in use
depending on the mean-field model, such as Gaussians
��s��exp�−�s2� �in certain density functional theories� and
truncated harmonic functions ��s �0�s�R�� �1−s /R�2 �in
DPD�.

In a mean-field model, the coordination z and the mean-
field neighbor interaction a�1� are independent; an additional
bead simply makes a mean-field contribution to the energy.
In a many-body system, such as DPD, this is generally not
the case. However, using truncated harmonic weight func-
tions, Groot and Warren found12 that the average coordina-
tion of a bead, �zi�, is to good approximation independent of
the energy scaling a�1�. Moreover, they found12 that the co-
ordination becomes constant as the density N /V increases.
Thus the DPD-model is expected to behave like a mean-field
model under those conditions. This is in contrast to hard-core
�e.g., Lennard–Jones� weight functions, which typically in-
troduce strong correlation, breaking down the mean-field ap-
proximation.

For completeness, we notice that the pair structure of the
weight function, Eq. �5�, guarantees a pairwise model of cen-
tral forces: The force derived from Eq. �3�, under the condi-
tion, Eqs. �4� and �5�, is equal to the force derived from Eq.
�2�, when u2�s�=a�1���s�. This makes Warren’s one-body
formulation26 equivalent to the original formulation of DPD
in terms of pair forces.11 The advantage of a one-body for-

mulation lies in the potential of extending the expansion, Eq.
�3�, to terms of higher order in z. This provides a way to
include many-body correlations and still use �now density-
dependent� pairwise forces,27 somewhat analogous to the use
of a “glue potential” in electron structure calculations.28

C. Cluster model

Our aim at this point is to provide an expression for the
“cluster free energy” a�z� in Eq. �4�, where a cluster corre-
sponds to a coordination shell of molecules �or fragments
thereof�. For this, we first need to define a cluster, analogous
to Eq. �5�. In line with the FH-model, we make the nearest-
neighbor approximation and define the coordination z of a
reference molecule as the number of molecules in direct con-
tact. Two molecules are said to be in contact if their van der
Waals surfaces “touch” �are tangent�, without overlapping
with any of the other molecules, as illustrated in Fig. 1.

A coordination pair can thus be constructed by drawing a
point on each molecular surface, aligning the associated nor-
mals, and translating along the normal direction until the
surfaces are tangent �plus an arbitrary rotation about the nor-
mal axis�. An n-body cluster is constructed by adding a mol-
ecule to a �n−1�-body cluster, using the condition that if
selected normals and rotation result in overlap with any of
the n−1 molecules present, the configuration is discarded.

Clearly, a cluster can be realized in a variety of ways.
The degrees of freedom �or bath coordinates� underlying this
degeneracy are the binding sites on the molecular surface
and the normal axis rotation. In addition, each molecule may
possess multiple conformations, with associated surfaces.
Since exp�−�a�z�� is the probability density for a cluster of z
neighbors in the ensemble of realizations, we associate a�z�
with the free energy of such an ensemble of clusters. The
calculation of a�z� thus requires enumeration of a represen-
tative part of clusters, from which the partition function for
this ensemble can be calculated.

To formalize the above definition of the cluster free en-
ergy a, let qi be the conformation of molecule i, where i=0
labels the reference molecule and i=1, . . . ,z the coordinating
molecules. Let Si�qi� be the surface area of molecule i in
conformation qi, and let Si denote a normal on this surface.
Since the contact point of molecule i follows from S0 and Si,

FIG. 1. Illustration of the cluster sampling algorithm in two dimensions; a
reference molecule is coordinated with molecules by drawing a random
binding site on the respective surfaces �left� and aligning the surface nor-
mals �middle�. In three dimensions an additional rotation about the normal is
carried out. Repeating the algorithm for multiple neighbors generates a mo-
lecular cluster configuration �right�.
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we write �half� the energy of contact molecule i as
vi�S0 ,Si ,	i�, where 	i is the rotation about the normal. The
cluster energy then follows as v=
i=1

z vi.
In analogy with Eq. �1�, the free energy associated with

a cluster a�z� can now be written down as a sum over states,

e−�a =� dq̃0� dS̃0

i=1

z � dq̃i� dS̃i� d	̃ie
−�v
 , �6�

where � selects the allowed states, i.e., ��S0 , �Si ,	i��=1 for
configurations without overlap, and 0 otherwise. As before, a
tilde denotes the infinitesimals in reduced units, such that Eq.
�6� equates two dimensionless quantities. The surface inte-
grals run over each point on the respective surfaces with
associated normal S.

For spherical surfaces, the free energy for a cluster of
two molecules, a�z=1�, according to Eq. �6�, is simply the
van der Waals energy at contact, v. In general, however, the
molecular surface is a conjunction of spherical surfaces,
complicating the evaluation of the surface integrals in Eq.
�6�. At the same time, the theory is not meant to model
strongly aspherical molecules, since the orientational degrees
of freedom are to be integrated out. This then motivates to
replace the exact surface integral in Eq. �6� by an integration
over a unit sphere around the center of mass of the molecule
�surface area Si=4��. This has the advantage that the nor-
mals can be drawn independent of the conformation. The
exact point of contact is then determined by translation about
the axis joining the centers of mass. Consequently, the dis-
tribution of binding sites over the surface will be nonuni-
form, but the bias on the resulting interaction parameters
should be small for typical subjects to coarse graining.

A bead may also correspond to part of a molecule, for
example, one or more repeat units in a polymer. This means
that docking near the connection points is restricted. In the
FH-model, this is resolved by reducing the lattice coordina-
tion z by 2. As a continuum generalization, we will use � to
exclude configurations in which molecules are in contact via
atoms near the connection point. This is accomplished by
first saturating the fragments with small end groups, and sub-
sequently excluding the atoms in those end groups from con-
tact. To obtain the interaction with a repeat unit in a �infi-
nitely long, linear� polymer, for example, exclusion groups
are added on both side of the fragment. For the same repeat
unit at the end, only one side would be restricted.

Finally, in some coarse-grained models, a bead corre-
sponds to more than one molecule. This case can be incor-
porated by letting qi represent the conformational degrees of
freedom of such small cluster of molecules. Alternatively
one may use a single molecule and apply a scaling relation in
the number of molecules, provided such scaling relation can
be found. This scenario, however, will not be part of this
study.

D. Free energy components

It is clear from Eq. �6� that a is a free energy, as it
incorporates all states of internal �bath� coordinates for
which the coarse-grained model no longer accounts explic-
itly. The free energy contains the average energy of contact

over all internal coordinates, as well as an entropy associated
with the distribution of energy over all internal coordinates.

To make the separation of a into energy and entropy
terms explicit, let us abbreviate all degrees of freedom, and
associated normalization, by the dimensionless variable r,
such that Eq. �6� reads

e−�a =� dre−�v�

=� d
e−�
�� dr��
 − v�r����
�� d
e−�
g � Z . �7�

The second line separates out the DOS g�
�, by adding an
integration over the accessible energy space. The DOS sim-
ply measures the number of allowed configurations corre-
sponding to a particular energy value 
. The DOS is normal-
ized such that �d
g is the fraction of phase space
corresponding to allowed states. The partition function Z is
seen to approach this value as temperature increases ��
→0�.

Let P�
 ;�� be the probability density for a cluster to
have an energy 
 at temperature �,

P =
e−�
g

Z
, �8�

which is normalized to unity at any � according to Eq. �7�. It
is now straightforward to write down the energy and entropy
contributions to the free energy,

a = −
1

�
ln Z =� d
P
 +

1

�
� d
P ln�P/g� � e − Ts , �9�

where s=−kB�d
P ln�P /g� defines the entropy associated
with the bath space. We can distinguish two entropy contri-
butions: a contribution related to � selecting the allowed
states, and a temperature-dependent contribution related to
the distribution of energy over the allowed states.

Further insight into Eq. �9� can be obtained by consider-
ing the special case of a Gaussian DOS with average � and
deviation �, i.e., g����exp�− 1

2 ��−��2 /�2�. From Eq. �9�, it
then follows that e=�−��2 and Ts=− 1

2��2 �hence a=�
− 1

2��2�. The “degeneracy” of the states � is thus directly
proportional to the entropy. For a nondegenerated ground
state �→0 and g���→���−��, the entropy is seen to van-
ish, along with the heat capacity CV=�Te=kB����2, as ex-
pected from thermodynamics.

E. Cluster sampling method

To sample the DOS g�
� in Eq. �7�, a large number of
random states, or cluster configurations, r are generated. The
clusters are built by packing molecules onto a base molecule,
as described in Sec. II C and Fig. 1. To each state the contact
condition is applied; if the condition is satisfied, the cluster
binding energy 
 is evaluated, defined as the energy of inter-
action of the reference molecule with all of its coordinating
neighbors �excluding the interaction energy between the
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neighbors�. The ensemble distribution of this binding energy
is the DOS, normalized by the fraction of allowed configu-
rations.

The energy distribution at a particular temperature,
P�
 ,��, is calculated from the DOS by reweighting, using
Eq. �8�. From the energy distribution P follows the average
energy e using Eq. �9�, and the sum over states Z as well as
the free energy a using Eq. �7�. The entropy then follows by
subtraction, s= �e−a� /T.

The cluster sampling can be carried out at constant co-
ordination number z or constant “chemical potential” �.
Strictly speaking the latter requires the introduction of a
Gibbs free energy through reweighting the sum over states of
all constant z ensembles with a Boltzmann factor exp�−��z�,
where � is the chemical potential of the bath surrounding the
base molecule. A more pragmatic way of fixing the number
of candidate coordinating molecules is chosen here. For each
candidate molecule, an attempt is made to coordinate the
reference molecule, under the contact condition, until the
reservoir of candidates is exhausted. In practice this also
leads to a distribution in the coordination number.

In terms of sampling methods, the above method of cal-
culating the DOS g is a “simple” sampling of phase space.20

Temperature does not play a role in the sampling, and is just
an a posteriori rescaling. Another approach would be “im-
portance” �e.g., Monte Carlo� sampling of P at some refer-
ence temperature, and reweighting to get g. Since the phase
space is relatively small, we prefer direct sampling of g,
which avoids having to choose a reference temperature. This
does mean that the bin width of the DOS histogram puts
numerical limits to the temperature at which the distribution
can reliably be reweighted. Assuming that kBT should be at
least larger than the bin width of the DOS, we estimate for
this study T�10 K.

F. Mixtures

The cluster model is readily generalized to more than
one component, which provides a way to predict the free
energy of mixing. This energy can be written in terms of a
single parameter, �, which then forms the bridge between the
cluster calculations and mesoscale models.

For C components, a coordination shell is specified by C
coordination numbers �z1 , . . . ,zC�, as well as the type of the
coordinated particle. The potential of mean force Eq. �3�
generalizes as

U = 

c=1

C



i�c

ac�z1,i, . . . ,zC,i� , �10�

where ac is the free energy of a particle of component c. To
first order in the arguments

ac�z1, . . . ,zC� = ac
�0� + 


d=1

C

acd
�1�zd. �11�

Disregarding the reference terms ac
�0�, we can thus write the

total energy in terms of the interaction energy Ucd

�
i�cacd
�1�zd,i,

U = 

c=1

C



d=1

C

Ucd

= 

c=1

C−1



d=c+1

C �Ucd + Udc −
xd

xc
Ucc −

xc

xd
Udd� + 


c=1

C
Ucc

xc
,

�12�

where xc is the fraction of molecules of component c and
limxc→0 Ucc /xc=0 is understood. The second line separates
out a symmetric mixing term and a pure component term. To
reduce notation, it is convenient to express Eq. �12� in units
of kBT and per particle. Introducing u=�U /N and ucd

=�Ucd /N, we thus have

u = 

c=1

C−1



d=c+1

C �ucd + udc −
xd

xc
ucc −

xc

xd
udd� + 


c=1

C
ucc

xc
. �13�

If the components are ideally mixed, the coordination
shell will reflect the composition in the mixture, that is, on
average acd

�1�zd,i	xdacd, where acd the free energy associated
with a particle of component c, fully coordinated by particles
of type d. In this approximation, we thus have ucd

	xcxd�acd and substitution in Eq. �12� yields

u = 

c=1

C−1



d=c+1

C

xcxd�cd + 

c=1

C

xcuc
� , �14�

which introduces the �symmetric� interaction matrix with
components

�cd = ��acd + adc − acc − add� . �15�

In Eq. �14�, we have replaced �acc in the last term by uc
� , the

energy per particle in the pure component c, in units of kBT.
A circle is used to denote the pure components.

Each term in Eq. �15� can be evaluated using the cluster
method, Eq. �6�; for example, acd is the free energy of a
cluster of a molecule of component c coordinated by mol-
ecules of component d. Using the separation, Eq. �9�, of acd

in energy and entropy terms, the �-parameter can be sepa-
rated accordingly, into an energy term,

�e � ��ecd + edc − ecc − edd� �16�

and an entropy term,

�s �
1

kB
�scd + sdc − scc − sdd� , �17�

such that �=�e−�s. The sign of �e is determined by the
relative stability of the mixture compared to the pure state.
The sign of �s is determined by the relative disorder in the
mixture compared to the pure state. Mixing two dislike spe-
cies, we thus expect both �e and �s to be positive. All
�-parameters are dependent of the temperature. With the
cluster sampling method described below, this relation can
be evaluated explicitly. The knowledge of ��T� provides a
way to construct a phase diagram.

We note that Eq. �14� contains only the excess free en-
ergy. The total free energy is obtained by adding an ideal
contribution due to the fact that particles of different compo-
nents are distinguishable. This combinatorial term is calcu-
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lated from the number of permutations of components over
the number of particles, discounting indistinguishable ones,
i.e., �=N! /N1! / � /NC!. With Sid=kB ln � and Stirling’s ap-
proximation,

Sid = − kBN

c=1

C

xc ln xc.

The total free energy then follows as F=U−TSid.
Finally, the free energy of mixing is obtained by sub-

tracting the contribution of the pure components. For two
components A and B, the free energy of mixing �per particle
in units of kBT� is

�f = xA ln xA + xB ln xB + �exAxB + �sxAxB �18�

composed of two ideal terms, the energy of mixing and the
excess entropy of mixing. This is equivalent to the FH model
with an explicit excess entropy term that scales in the same
way as the energy for a regular mixture.

A summary of the coarse-graining workflow is sketched
in Fig. 2. A molecular system is divided into fragments
which are classified into various types according to their
chemical identity. The fragments correspond to beads in a
coarse-grained description. The mean-field model of the bead
system requires a �-parameter for each pair of bead types.
This parameter is obtained by generating a large number of
fragment clusters and calculating the energy of interaction of
each cluster as detailed above. The distribution of this energy
leads to the associated free energy. After collecting the free
energies for all combinations of components, the matrix of
�-parameters is calculated from Eq. �15�.

At this point, we should mention a related method re-
ported in 1992 by Fan et al.29 which applies their “Molecular
Silverware” algorithm to molecular pairs with the aim of
predicting phase diagrams and other thermodynamic proper-
ties of polymer blends and solutions directly from mean-field
theory. Whereas our aim is to estimate mesoscale model pa-
rameters, rather than directly invoking thermodynamic
theory, the approach taken has similarities and a discussion
of the differences is in place.

The current method differs from theirs in two important
ways: Fan et al. sampled the interaction energy of isolated
molecular pairs, whereas the current method samples the in-
teraction within the cluster environment. The current method

can thus account for potential correlation between the cluster
size and the interaction energy. For example, it is likely that
the binding energy decreases with cluster size, since at finite
temperature the most favorable binding sites will be satu-
rated first. Simply multiplying this favorable pair-interaction
energy with the cluster size would then overestimate the ac-
tual interaction energy in the cluster. If this correlation is not
symmetric in the permutation of components, this will affect
the value of �.

The second difference pertains to the calculation of the
�-parameter. Whereas Fan et al. calculated the �-parameter
using the average interaction energy, the current method uses
the integrated energy distribution to calculate the free energy,
a. The difference is the entropic contribution to the free en-
ergy, s. Upon mixing, this leads to the entropic interaction
parameter, �s. One of the aims of this work is to quantify the
entropic contribution and see if this can be safely neglected
or not.

G. Alternative methods to determine �

In this section, we briefly mention some related methods
that are used to estimate the mean-field interaction parameter
�. We will apply these methods to test and validate the pro-
posed cluster approach detailed above. We will only consider
energy-based methods and disregard theories relating � to,
for example, the interfacial tension.30

The first method follows from inverting Eq. �14�, ex-
pressing �cd in terms of the energy of mixing. For two com-
ponents, A and B, mixed in ratio xA :xB and neglecting all
excess entropy effects,

� =
u − xAuA

� − xBuB
�

xAxB
=

�umix

xAxB
, �19�

where �umix is the energy of mixing expressed in units of
kBT and per particle.

So far the theory has not explicitly considered the vol-
ume a molecule occupies. For components that differ in size,
a better approximation to acd

�1�zd,i in Eq. �11� would be ydacd,
where y is the volume fraction, rather than the mole fraction
x. Let v be the volume per particle and vc the volume asso-
ciated with component c, per particle of component c, then
yc=xcvc /v. Introducing the energy densities û=u /v, and ûc

�

=uc
� /vc, Eq. �13� gives

û =
1

v 

c=1

C−1



d=c+1

C

xcxd�cd� + 

c=1

C

xcûc
� , �20�

which introduces the interaction matrix as

�cd� = ��vd

v
acd +

vc

v
adc − acc − add� , �21�

which differs from Eq. �15� by a volume normalization of the
cross terms. Expressing �� in terms of the �cohesive� energy
densities for two components then gives

FIG. 2. �Color� Illustration of the parametrization method applied to a den-
drimer: A dendrimer molecule is divided in fragments at the resolution re-
quired �left�; Each pair combination of fragments is considered in turn
�middle�; For each pair, clusters are build for all four permutations; the free
energy of binding is calculated in each cluster �right�. Combining the cluster
free energies leads to the �-parameter associated with this pair of fragments.
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�� = v
û − xAûA

� − xBûB
�

xAxB
. �22�

The volume v in Eq. �22� is the volume per particle, which
may depend on the composition. The parameter �� applies to
a model in which the particle has a volume v.

A common approximation is to replace the mixture by an
empirical mixing rule. In this case, only the pure components
have to be simulated. A well-known mixing rule is the Ber-
thelot rule, which approximates the interaction between two
components as acd

2 =accadd. Introducing the solubility param-
eter �c

� =�−ûc
� /�=�−acc /v, it follows from Eqs. �15� and

�14�

� = �v��A
� − �B

� �2. �23�

It is clear that � in Eq. �23� is always positive; consequently,
the energy of mixing, �xAxB, is positive, such that the Ber-
thelot rule, for example, cannot be used to model endo-
thermic mixing. Other empirical rules can be invented to
workaround this limitation, for example, to assume acd

2

=accadd�1−�cd�2; the physical meaning, e.g., temperature de-
pendency, of such “similarity parameter” �, however, re-
mains cumbersome.

Despite the fact that all mixing behavior is captured by a
simple rule, Eq. �23� often yields realistic phase behavior.
Moreover, only pure component properties �c

� have to be
considered. Motivated by this success, much effort has been
spent in the past to correlate the solubility parameters with
functional groups within a molecule.31 In such group-based
methods, the molecule is first separated into groups for
which correlations are available, and the solubility parameter
for the molecule is then obtained by summing the contribu-
tion associated with each group. The interaction parameter �
is subsequently obtained from the solubilities using Eq. �23�.
This is the essence of QSAR-methods like those developed
by van Krevelen and Fedors.31

To summarize this section, we have derived various ex-
pressions for the interaction parameter �. Equation �15� es-
timates � from the cluster free energies aij calculated from
the DOS, Eq. �6�. Equations �19� and �22� estimate � by
calculating the energy of mixing. Finally, Eq. �23� estimates
� from the solubility parameters under the Berthelot mixing
rule.

III. RESULTS

In this section, we present the results of the calculation
of � for two cases. We first consider a “regular” mixture of
liquids. The pure component contributions in Eq. �22� and
the solubilities in Eq. �23� are calculated from MD-
simulation of the pure components. The energy terms in Eqs.
�19� and �22� were calculated from MD-simulations of a
mixture over a range of compositions. Finally, the DOS, Eq.
�6�, was calculated from the cluster sampling method, from
which the �-parameters were abstracted using Eq. �15�.

The second case study consist of polymer blends, the
traditional subject of the mean-field theory of Flory and Hug-

gins. We calculate the DOS using cluster sampling. We com-
pare results with experimental data, as well as �-parameters
calculated from QSAR, using Eq. �23�.

Throughout this study we use the COMPASS force field in
atomistic calculations.32,33

COMPASS is a force field based on
ab initio calculations and optimized with empirical data of
the condensed state. Electrostatics is incorporated through
partial charges on the nuclei, calculated from bond incre-
ments. In the QSAR-calculations, we use both the methods
of Fedors and van Krevelen.31

A. Liquid mixture

The mixture of nitrobenzene and hexane provides a con-
venient starting point to study liquid-liquid phase behavior,
since the experimental phase diagram is reasonably symmet-
ric in the composition with a single critical point close to
room temperature34 �Tc=292.27 K at atmospheric pressure at
hexane fraction xh,c=0.416�.

The phase diagram according the FH-model can be ob-
tained from Eq. �18�; the binodal is symmetric in the com-
position, and reaches a critical point at xh,c=0.5, at which
�=2. Hence, assuming the FH-model is a good model for the
mixture of nitrobenzene and hexane, at room temperature we
thus expect the calculation to result in �c���Tc��2.

We first present the result of the MD-simulations and
QSAR-calculations used to calculate the input to Eqs. �19�,
�22�, and �23�. We then present the results of the cluster
sampling method. Results are discussed in Sec. IV A.

1. Molecular dynamics

We simulated condensed states of nitrobenzene and hex-
ane at various concentrations at a temperature of 298 K and
a pressure of 1 atm. All configurations contain 100 mol-
ecules of which a fraction x is hexane, where x varies from 0
to 1 in ten steps.

Systems were set up using the AMORPHOUS CELL con-
struction module,33 by packing the required number of mol-
ecules in a cubic box at a density equal to the weighted
average of the pure component densities. Energy minimiza-
tion and brief equilibration at constant volume and tempera-

TABLE I. Molecular volume, energy, and energy density of hexane/nitro-
benzene mixtures from simulations at atmospheric pressure and room tem-
perature �xh is the mole fraction hexane, v the volume per molecule, u the
intermolecular energy per molecule, and û the energy density�.

xh

�v�
�nm3�

�u�
�kJ/mol�

�û�
�MPa�

0 0.177 −46.4 −437
0.1 0.180 −44.2 −407
0.2 0.185 −41.2 −382
0.3 0.190 −38.8 −340
0.4 0.195 −36.8 −315
0.5 0.199 −34.6 −290
0.6 0.204 −32.5 −273
0.7 0.211 −30.4 −250
0.8 0.215 −28.9 −230
0.9 0.217 −28.2 −214
1 0.221 −27.4 −205
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ture were followed by 150 ps dynamics run with an Ander-
sen barostat and Nosé thermostat keeping pressure and
temperature at 1 atm and 298 K, respectively. All simula-
tions were carried out using the simulation module FORCITE

in MATERIALS STUDIO.33 Results were collected over the last
100 ps.

In the ensembles thus obtained, we measure the average
volume per molecule �v�, the average total intermolecular
energy per particle �u�, and the average energy density �û�.
All results are reported in Table I and discussed in Sec. IV A.

2. Cluster sampling method

We sampled the DOS of molecular clusters following the
procedure outlined in Sec. II E using Eqs. �7� and �6�. We
sample clusters under constant coordination number and con-
stant number of attempts per cluster.

We first consider the DOS of clusters, where the coordi-
nation number was fixed at z=1, i.e., molecular pairs. A total
of 106 pair structures were sampled. Results are shown in
Fig. 3 for all combinations.

The DOS was subsequently sampled “grand canoni-
cally” in which the coordination z was variable, and the num-
ber of candidate molecules for coordination was fixed at 20.
A total of 106 clusters were sampled. The DOS are shown in
Fig. 4. Figure 5 shows the probability density of the binding
energy at room temperature, calculated by reweighting to
room temperature according to Eq. �8�. The energy param-
eters calculated from Fig. 5 via Eq. �6� are reported in Table
III. Results are discussed in Sec. IV A.

B. Polymer blends

Six binary polymer blends where selected on the basis of
industrial relevance and available experimental data, as listed
in Table II. The blends together require seven different poly-
mers components: polystyrene �PS�, tetramethyl-bisphenol-
A-polycarbonate �TMPC�, poly�vinyl methylether� �PVME�,
polyisoprene �PI�, poly�2,6-dimethyl-1,4-phenylene oxide�
�PXE�, poly�ethyleneoxide� �PEO�, and poly�methyl-
methacrylate� �PMMA�.

Small oligomers of three repeat units each were con-
structed for all components. The COMPASS energy of the
structures was minimized, followed by a 1 ns
NVT-simulation in vacuum, using a Berendsen thermostat at
room temperature. Conformation were stored every 10 ps in
a trajectory. The resulting trajectories serve as the structure
input to the cluster model.

Next the DOS was sampled, by packing randomly se-
lected conformations from the trajectories. The atoms in the
terminal repeat units were marked as noncontact, indicating

FIG. 4. DOS as a function of the binding energy, for molecular clusters nnz,
nhz, hnz, and hhz, where h=hexane and n=nitrobenzene.

FIG. 5. Probability density at temperature 298 K as a function of the bind-
ing energy, for molecular clusters nnz, nhz, hnz, and hhz, where h=hexane
and n=nitrobenzene.

FIG. 3. DOS as a function of the binding energy, for molecular pairs nn1,
nh1, and hh1, where h=hexane and n=nitrobenzene. The curve for hn1 is
identical to nh1. The abscissa shows the binding energy per molecule.

TABLE II. Cluster free energy a, binding energy e, and excess entropy s at
298 K and coordination numbers z for a mixture of hexane �h� and nitroben-
zene �n�.

Cluster
�a�

�kJ/mol�
�e�

�kJ/mol�
�s�T

�kJ/mol� �z�

hhz −11.0 −12.0 −1.0 5.5
nnz −19.7 −25.4 −5.7 5.6
hnz −12.6 −14.0 −1.3 5.8
nhz −11.6 −12.9 −1.3 5.3
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that clusters in which the point of contact involves such at-
oms are rejected from the ensemble. Hence an allowed clus-
ter does only have van der Waals contact between atoms in
the central repeat unit. As before, the number of candidate
coordinating molecules was set to 20. This way we generated
an ensemble of 100 000 clusters.

In the ensemble of clusters, we measure the average co-
ordination number and the free energy as well as the energy
and entropy of binding �not shown�. Combining the results
using Eq. �15� leads to the �-parameter, with Eqs. �16� and
�17� providing a breakdown into energetic and entropic con-
tributions, as tabulated in Table III. Results are discussed in
Sec. IV B.

Single repeat units of all seven polymers were analyzed
using the QSAR-module SYNTHIA.33 The temperature was set
to 298 K. The calculated molar volume and the solubility
parameters using the methods of Fedors and van Krevelen
are reported in Table IV. The results are discussed in terms
of the � parameter in Sec. IV B.

IV. DISCUSSION

In this section, we discuss the results of the Sec. III.
Based on those results, we calculate the �-parameters ac-
cording to the various theories detailed in Sec. II. In selected
cases, we also calculate the temperature dependence of the
�-parameters. Where available we compare to experimental
data.

A. Liquid mixtures

We first compare the results of the MD-simulations of
the pure components �first and last row of Table I� to the
experimental data of hexane and nitrobenzene tabulated in
Table V. Calculating the molecular volume as vexp

=Mi
� /�i

� /Na �Na is Avogadro’s number�, we find 0.217 nm3

�hexane� and 0.170 nm3 �nitrobenzene�. This is slightly less
than, but within �3% of, the volumes obtained from MD-
simulation in Table I. Consequently, the mass densities in the
simulation are slightly underestimated.

The average intermolecular energy per molecule
�u� can be compared to the heat of vaporization, if
we neglect the intermolecular energy of the vapor as
well as neglect the difference in intramolecular
energy between the liquid and the vapor. Using
uexp	−�Hi

�Mi
�+RT gives −29.0�0.1 kJ /mol �hexane�, re-

spectively, −53.6�1.7 kJ /mol �nitrobenzene�, compared to
−27.4�0.5 and −46.4�0.9 kJ /mol in the simulations. The
simulation underestimates the cohesive energy, in particular,
for nitrobenzene. We speculate that the latter is mainly due to
the charge distribution. It should be noted, however, that
there is a substantial spread in the reported latent heat at
room temperature for nitrobenzene,35 presumably due to in-
accurate heat capacities used in integration from boiling to
room temperature.

Finally, the solubility parameters follow from the simu-
lation data in Table I as �=�−û. This results in 14.7 �MPa
�hexane�, respectively, and 20.9 �MPa �nitrobenzene�, which
is within 5% from experiment. Again the largest deviation
from experiment is found for nitrobenzene. We notice that
the correlation between energy and volume is negligible, and
explicit averaging the energy density is not needed in this
case.

We thus conclude that COMPASS predicts the pure com-
ponent properties reasonably well. This is not so surprising
given the fact that density and heat of vaporization are the
typical quantities used in parametrizing the COMPASS force
field. We will assume that COMPASS is also a good descrip-
tion of the mixtures under the same conditions. This assump-
tion is reasonable since charge transfer and polarization are
believed not to be dominant in the current systems.

�xhxn is plotted in Fig. 6 according to Eqs �19� and �22�,
using the data of Table I. The reference volume vref in Eq.
�22� is set to 1

2 �vh
� +vn

� �, as obtained from MD. To obtain the
�-parameter, we perform a least-squares fit of the data in Fig.
6 to the function �x�1−x�. The fit results in �=4.0 based on
Eq. �19� and �=5.5 based on Eq. �22�. The substantial scatter
in the data reflects that the energy of mixing is a small num-
ber, compared to the energy of the pure components. For
example, the maximum energy difference obtained at x= 1

2
equates to a few kJ/mol, which is only a small fraction of the
pure component energy. Hence the individual energies have
to be calculated more accurate than that.

TABLE III. Calculated interaction parameters for different polymer blends.
� is the computed value at 298 K with �e and �s the energetic and entropic
contributions.

c d � �e �s

PS PXE −0.03 0.04 0.07
PS PMMA 0.23 0.45 0.22
PS TMPC 0.83 2.06 1.23
PS PVME 0.04 0.21 0.17
PS PI 0.05 0.14 0.09
PEO PMMA 0.006 −0.06 −0.066

TABLE IV. Pure component properties of polymers at 298 K calculated
using QSAR.

c
v

�cm3 /mol�
�, Fedors
��MPa�

�, Van Krevelen
��MPa�

PEO 39.1 18.3 19.1
PI 76.6 16.9 17.2
PMMA 86.4 20.2 17.7
PS 97.0 20.1 19.5
PVME 55.4 17.7 18.3
PXE 110.8 19.5 20.5
TMPC 287.5 19.5 19.5

TABLE V. Experimental data �in SI units� at 298 K and 1 atm for pure
components hexane �h� and nitrobenzene �n�: Molar mass M°, mass density
�°, enthalpy of evaporation �Ref. 35�, �H° and solubility parameter �Ref.
36� �°.

c
M°

�kg/mol�
�°

�kg /m3�
�H°

�kg/mol�
�°

��MPa�

h 0.086 659 366�1 14.9
n 0.123 1199 456�14 22.1
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The explicit mixture routes are thus seen to overestimate
the expected mean-field value ��=2� by at least a factor 2.
Assuming COMPASS provides as good a model for the mix-
ture as for the pure components, this suggests that the energy
of mixing alone is not sufficient to describe the mixing pro-
cess. In deriving Eqs. �19� and �22�, the excess entropy of
mixing was neglected. If we assume that this entropy term is
positive, and scales in the same regular way ��xAxB�, a
smaller � is to be expected. A positive entropy of mixing
would indicate that the system looses �e.g., orientational� or-
der on mixing. This is not unreasonable if the species are
dissimilar. We will address this ansatz more quantitatively
below.

Calculating � from the simulated solubility parameters
and the mixing rule Eq. �23�, again using above reference
volume, yields �=1.8. The implicit mixture route is thus
seen to yield a much smaller value, closer to the mean-field
result. This tentatively suggests that the mixing rule might be
compensating for the neglect of excess entropy of mixing in
the explicit mixture route.

We now turn to the molecular cluster calculations of
hexane and nitrobenzene. We first consider the special case
in which the coordination z is fixed to 1. As shown in Fig. 3,
the DOS for hh and hn pairs is approximately Gaussian with
a vanishing probability of finding configurations with posi-
tive binding energy. This is expected as charge polarization
in hexane is very small �hydrogen atoms carry a charge of
0.053�, and van der Waals interaction is dominant, which is
attractive by construction. The DOS for nn pairs, on the other
hand, is much more asymmetric, with a notable long positive
tail. This tail represents the unfavorable electrostatic interac-
tion in configurations in which the oxygen atoms �charge
−0.428� are in close proximity.

From the DOS, we calculate for nitrobenzene an average
energy of −2.2 kJ /mol if coordinated by another nitroben-
zene, and −2.0 kJ /mol if coordinated by hexane. For hexane,
the self-interaction adds up to −1.8 kJ /mol. Whereas these
energies have no particular importance �they would corre-
spond to the binding energy at infinite temperature�, it al-
ready indicates that separating two n-h pairs will not involve
a severe energy penalty.

Compared to the DOS for molecular pairs, the DOS for

the clusters �Fig. 4� is more Gaussian, even for nitrobenzene,
which in part can be explained by the central limit theorem:
The unfavorable configurations that gave rise to a tail in Fig.
3 are partly compensated by more favorable binding else-
where in the cluster. The cluster treatment also introduces a
small asymmetry in the cross terms; the distribution for hex-
ane coordinated by nitrobenzene �hnz� has more nitroben-
zene character, whereas the other combination �nhz� has
more hexane character.

The distribution of the cluster binding energies at room
temperature is shown in Fig. 5 for the four permutations of
components. The shape is similar to the DOS, but the scale
of the x-axis is shifted to the lower energies. This is particu-
larly noticeable for the nitrobenzene clusters, where the ma-
jority of the samples are seen to not contribute much to the
ensemble at room temperature. This is a consequence of the
simple sampling method as opposed to importance sampling.
However, the number of samples is sufficiently large to ob-
tain converged distributions, even in the case of nitroben-
zene.

The average binding energy in the cluster environment
calculated from the distributions in Fig. 5 are tabulated as �e�
in Table II. This is �half� the average work required to re-
move the central molecule from the cluster. Substituting in
Eq. �16� results in �e=4.2. The energy-based parameter in
this case is thus too high. The overestimation of energy-
based parameters was also seen in the MD-simulations.

The coordination numbers �z� in Table II refer to average
number of neighboring molecules in the cluster ensemble, by
fixing the number of candidate molecules. Combined with
the results for molecular pairs �Fig. 3�, this provides a way to
investigate correlation between the coordination number and
the binding energy. For example, rescaling the DOS for pairs
at 298 K gives a binding energy of −3.7 kJ /mol for nitroben-
zene with nitrobenzene. As it is on average coordinated by
5.5 molecules of this type, the binding energy in a
cluster of independently coordinating molecules would be
−20.7 kJ /mol, compared to −20.1 kJ /mol in the cluster en-
semble. In general, neglecting correlation overestimates the
binding in the cluster environment. As correlation applies to
all permutations in roughly the same amount, however, the
net effect on the �-parameter is small: �e=4.0.

Finally, calculating the �-parameter from the free energy
of binding, tabulated as �a� in Table II, gives �=2.6. The
entropy contribution to � is thus seen to be �s=1.6. The
positive sign of �s indicates an increase in entropy on mix-
ing. In other words, the order associated with the bath de-
grees of freedom decreases on mixing. In the current case,
the bath degrees of freedom consist of the binding site on the
molecular surface and the rotation about this contact. The
“corrected” value of 2.6 is in reasonable agreement with the
expected value of 2, based on the experimental phase dia-
gram and FH-theory.

Whereas the above results apply to room temperature,
the DOS can be reweighted at any temperature, which pro-
vides a way to obtain the temperature dependency of the
�-parameter, as shown in Fig. 7. The energy contribution is
seen to decrease to zero monotonously, approximately recip-
rocally with temperature. An inverse temperature scaling is

FIG. 6. Mixing energies for hexane-nitrobenzene mixtures calculated from
Eqs. �19� and �22�. Lines correspond to fits to the form �x�1−x�.
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the classical result of Flory. The entropic contribution, on the
other hand, decreases to zero more slowly, and is fairly con-
stant in the interval of 200–400 K. Below 200 K, the en-
tropic contribution passes through a shallow maximum. Such
behavior can lead to nonmonotonous of the total
�-parameter, which in turn can give rise to a more complex
phase diagram. It is possible, for example, that the entropy
leads to multiple temperatures for which �-parameter as-
sumes the critical value; this would correspond to a phase
diagram with multiple critical points, associated with upper
and lower critical temperatures. In the current application,
however, the temperature at which � assumes its critical
value is unique, and the FH-theory predicts a single critical
point.

B. Polymer blends

The �-parameters for the polymer blend system calcu-
lated using the cluster method are shown in Table III. Using
the separation in energetic and entropic contributions, it is
clear that the entropy of mixing is positive in most cases,
indicating that the mixtures are more disordered compared to
the pure state. In the case of PS-PXE, this even causes a
change of sign in �, predicting that the two components are
miscible in any composition at this temperature. Only for
PEO/PMMA a slightly negative value for �s was found,
which cancels the small endothermic heat found in this case.

In Fig. 8, the �-parameters are compared to experimental
and QSAR values. The experimental values are all very close
to zero. Figure 8 also shows the energy contribution �e; in all
cases the entropy correction brings the �-parameter closer to
experiment. The interaction parameters of the cluster method
are of similar quality as those based on QSAR.

For the TMPC/PS blend, the current method is still far
from experiment, predicting a fairly large positive interac-
tion, as opposed to the negative value found experimentally.
Also the QSAR method is unable to predict this, since it is
based on the Berthelot mixing rule, which can only give
positive � values.

V. CONCLUSIONS

We have presented a simple method to estimate the in-
teraction parameters in coarse-grained mean-field models
such as the simulation method DPD and self-consistent field
methods. The method is based on calculating the free energy
associated with a cluster of molecules, or fragments thereof.
By combining these cluster free energies for all combinations
of components, a �-parameter is obtained that includes both
energy and entropy effects on mixing.

For a simple mixture of hexane and nitrobenzene around
the critical temperature, the method predicts a �-parameter
reasonably close to the value a mean-field theory assumes at
the critical point. A significantly higher value is obtained
when excess entropy effects are not incorporated. Strikingly,
a similar overestimation is also observed when calculating
the �-parameter from the energy of mixing obtained from
simulating many-body mixtures explicitly using molecular
dynamics. It would be interesting to establish whether this
holds more generally. A potential validation route might be to
evaluate free energy of mixing directly, e.g., by reversibly
converting a pure state into a �dilute� mixture using thermo-
dynamic integration. Based on the enthalpy difference in the
current case, we did not pursue this, but for more dissimilar
components such validation might become a feasible option.

Combining the MD-results of the pure components with
an implicit mixture model in the form of Berthelot’s mixing
rule leads to a �-parameter closer to the expected value. This
suggests that the mixing rule effectively compensates for
excess-entropy effects.

In the cases studied so far, the entropy is found to in-
crease on mixing. This is expected as the components natu-
rally have the best affinity in the pure state. It is conceivable,
on the other hand, that the entropy may decrease on mixing
if the two components have an exceptional affinity, such that
the pure states are more disordered than the mixed state.
When this entropy decrease is of the same order as the en-
ergy increase, this could lead to anomalous behavior, analo-
gous to inverse freezing and melting observed
experimentally.37 This apparent anomaly in the coarse-
grained space has been explained using the entropy associ-

FIG. 7. Temperature dependency of the �-parameter and its energy and
entropy components for hexane and nitrobenzene.

FIG. 8. Comparison of the �-parameters: experimental, QSAR, energy, and
free energy values.
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ated with the bath degrees of freedom �or “hidden vari-
ables”�, similar to the reasoning in this work.37

The method fits a systematic coarse-graining workflow,
as sketched in Fig. 2. In such a workflow, a molecule is
divided in beads of various types and the �-parameter for
each pair combination of types is calculated. We have not
discussed the important question as to how this selection on
coarse-graining should take place. The resolution of the
model is to some extent free, albeit that the choice of bath
variables puts limitations to this. For example, as the orien-
tation is integrated out, the theory is not suitable for strong
disparities in size and shape. We have also not discussed the
parametrization of interaction between beads composed of
more than one molecule. It is common, for example, to rep-
resent a few water molecules by a single bead. How the
adsorption of a single water molecule and its environment
relates to that of a water cluster, in particular if a scaling
relation applies, deserves further study.

Whereas it is demonstrated that the method is efficient,
systematic, and universal, it is clear that quantitative agree-
ment with experiment cannot be universally expected. Rather
we see this method as a starting point to obtain a first esti-
mate to the interactions in coarse-grained models. Where
more data are available, the resulting models can then be
further fine-tuned. In particular, for strongly polarized sys-
tems, deviations are to be expected. In the current method, it
is assumed that electrostatic interaction does not perturb the
structure. For a system dominated by electrostatics, the inter-
action parameters in this situation may be better based on the
van der Waals energy only, incorporating electrostatics in the
mesoscale simulation using a Poisson–Boltzmann, or equiva-
lent, model. Further study is required to validate this ansatz.
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APPENDIX: STATISTICAL MECHANICS OF COARSE
GRAINING

In this Appendix, we will formalize the coarse graining
of a microscopic system and show how, and under which
conditions, this leads to a potential of mean force in Eq. �1�.
We only consider statistical thermodynamics; coarse-grained
dynamics along similar lines was reported earlier.38 We shall
use a matrix notation, where vectors are column vectors,
transposed to row vectors by T. Differential operators �or
vectors thereof� are written as �x.

Consider a d-dimensional system of � /d particles with
Cartesian positions �, conjugated momenta �, and associated
masses as entries in the diagonal matrix �, moving in a po-
tential energy field v���. The Hamiltonian ��� ,�� of the sys-
tem is

� = v + 1
2�T�−1� . �A1�

The free energy of the system, A, is defined via

e−�A =� d�̃d�̃e−�� �A2�

with d�̃d�̃=d�d� /h� a dimensionless volume element in
phase space reduced by Planck’s constant h. The free energy
depends on the temperature T via �=1 / �kBT� �kB is Boltz-
mann’s constant�, the number of degrees of freedom �, and
the volume over which the positions � are integrated. Using
Eq. �A2�, the average of any property B�� ,�� for �� ,V ,�� is
calculated as

��B�� =� d�̃d�̃Be��A−��. �A3�

The double bracket notation is motivated below.
Often one is interested in properties B that are sensitive

to only part �N��� of the degrees of freedom, �R , P�, called
here “mesoscale” coordinates. The integration over full
phase space in Eqs. �A2� and �A3� seems therefore unneces-
sary, and so we ask for a reduced description of the system in
terms of R and P only. We can formally derive this coarse-
grained model, by introducing a transformation of phase
space �� ,��� �R , P ,r , p� and subsequently projecting on the
�R , P� subspace. The n=�−N degrees of freedom �r , p� for
which we no longer wish to account explicitly will be called
bath coordinates.

In principle, R, r, P, and p can be any function of the
coordinates �� ,��. However, for �P , p� to be the canonical
momenta conjugated to �R ,r�, the transformation must be
canonical. This has the advantage that d�d�=dRdPdrdp and
that � is also the Hamiltonian with respect to �R , P ,r , p�.
Consequently, the free energy, Eq. �A2�, for such choice of
coordinates can be written as

e−�A =� dR̃dP̃�� dr̃dp̃e−��� �� dR̃dP̃e−�H. �A4�

As before, the tilde on the infinitesimals dRdP and drdp
denote reduction by h raised to the number of degrees of
freedom �N and n, respectively�. The last line defines the
energy H�R , P ;� ,n ,V�, which is parametrized by the ther-
modynamic state of the bath �inverse temperature �, particle
number n, and volume V�. With increasing level of coarse
graining, the energy H is seen to interpolate between the
Hamiltonian � �n=0� and the free energy A �n=��.

We can now write the average, Eq. �A3�, as

��B�� =� dR̃dP̃�B�e��A−H�, �A5�

where

�B� =� dr̃dp̃Be��H−��. �A6�

Single brackets refer to an average over the bath only;
double brackets also average out the mesoscale coordinates.
For properties that are not sensitive to �r , p�, �B�	B. For
such properties, one expects the calculation of ��B�� from
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Eq. �A5� to be more efficient than Eq. �A3�, since we have
restricted the sampling to the part of phase space relevant
to B.

Using the single bracket notation we have from Eqs.
�A4� and �A6�, �RH= ��R�� and �PH= ��P��. Since for a ca-

nonical transformation, �R�=−Ṗ and �P�= Ṙ, we obtain the
well-known result that the force/velocity derived from H cor-
responds to the force/velocity derived from �, on average
over the bath.

We have used general canonical transformations to em-
phasize the general structure of coarse graining; in practice,
however, one is interested in point transformations �� �R ,r�
only; in other words, the coordinates �R ,r� are certain func-
tions of the microscopic positions �, but not of the micro-
scopic momenta �. In this case, the microscopic momenta �
are a linear combination of the mesoscale and bath momenta

� = ���RT�P + ���rT�p � JRP + Jrp .

Substituting in Eq. �A1� leads to

� = v + 1
2 PTJR

T�−1JRP + PTJR
T�−1Jrp + 1

2 pTJr
T�−1Jrp

� v + 1
2 PTXP + PTYp + 1

2 pTZp ,

where the last line defines the metric matrices X, Y, and Z.
Substituting in Eq. �A4� and integrating over the bath

momenta lead to

e−�H =� dr̃e−��v+1/2PTXP� � dp̃e−��PTYp+1/2pTZp�

=� dr̃e−��v+1/2PTWP�, �A7�

where W=X+YZ−1YT. We have used the positive definity of
�Z. The infinitesimal dr is reduced by the length unit �

=h�Z�1/n /�2� /�, which may depend on r through Z.
The energy H in Eq. �A7� has not yet the structure of the

Hamiltonian � in Eq. �A1�, where the kinetic and potential
energy terms are clearly separated. It is clear, however, that if
Y =0, and X nor Z depends on the bath positions r, Eq. �A7�
factorizes as

H = −
1

�
ln�� dr̃e−�v� +

1

2
PTXP � U +

1

2
PTXP , �A8�

which does have the same structure as Eq. �A1�, but differs
in the meaning of the potential part: The potential v repre-
sents an energy as a function of the positions � only. The
potential U in Eqs. �A8� and �1� represents a free energy as a
function of the positions R as well as the thermodynamic
state of the bath. Since the R dependence of H is contained in
U, the potential U is the potential of the mean force −��Rv�,
where the average is over the bath positions r.

The condition that X and Z, and hence JR and Jr, are
independent of r, means that the transformations are linear,

which is typically the case. For example, where R stands for
the center-of-mass positions of molecules, and r are the par-
ticle positions relative to the center-of-mass. Moreover, as
has been shown,39 it is possible to construct r such that Y
=0.
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