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Abstract: In a recent paper (A. Fring and T. Frith, Phys. Rev A 100, 101102 (2019)), a Dyson
scheme to deal with density matrix of non-Hermitian Hamiltonians has been used to investigate the
entanglement of states of a PT-symmetric bosonic system. They found that von Neumann entropy
can show a different behavior in the broken and unbroken regime. We show that their results can
be recast in terms of an abstract model of pseudo-Hermitian random matrices. It is found however
that although the formalism is practically the same, the entanglement is not of Fock states but of
Bell states.

Keywords: quantum information; von Neumann entropy; random matrix theory; pseudo-Hermitian
operators; PT-symmetry

1. Introduction

The importance of the authors’ findings of Ref. [1] lies in the consequences it has to the question
of time evolution of non-Hermitian Hamiltonians [2,3], or, more precisely, to the evolution of their
associated density matrices. It shows that by introducing an appropriate time-dependent metric,
the density matrix of a non-Hermitian Hamiltonian can be linked to one of a Hermitian one by a
similarity transformation. Therefore, both share the same von Neumamm entropy. From a practical
point of view, Dyson’s formula is an equation of motion that connects the metric and the Hamiltonians
that in principle, can be solved as shown in [1]. On the other hand, the identification in Ref. [1] of a
regime in which entanglement is preserved in the time evolution is an important result with potential
application in quantum computation.

The non-Hermiticity addressed in Refs. [1,4,5] is that related to the PT-symmetry. It can be shown
that a complex non-Hermitian Hamiltonian invariant under the combined parity (P) and time reversal
(T) transformations have eigenvalues which are real or complex conjugate. Assuming that an operator
is connected to its adjoint by a similarity transformation

A† = ηAη−1, (1)

in which η is a Hermitian operator, then its eigenvalues are real or complex conjugate.
Operators satisfying this condition have been defined as belonging to the class of pseudo-Hermitian
operators [6–8]. This follows from the fact that using the operator η as a metric, the internal product
can be redefined such that quantum mechanics relations can be extended to the case of PT symmetric
Hamiltonians [9–12].

Since the beginning of the studies of PT-symmetric systems there was an interest in investigating
random matrix ensemble to model properties of this kind of Hamiltonians. This comes naturally
as time reversal symmetry plays an important role in RMT. Several ensembles already have been
proposed [13–16] but here we focus on the recently introduced ensemble of pseudo-Hermitian random
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matrices [17–20]. However, the matrices in these references have elements which are Gaussian
distributed while constructing our model, naturally we were lead to the so-called Wishart matrices
in which elements are not Gaussian distributed. In the context of the application of random
matrix ensemble to entanglement, the Wishart ensemble has been used to model the Schmidt
eigenvalues [21–23] of bipartite systems. In our model, however, the Wishart ensemble enters in
a different way as is described below.

Another aspect of the model that we want to highlight is that its structure is analogous to that of
the well-established quantum gates [24]. In light of the recent interest in the application of random
matrices in entanglement phenomena [25–27], the task of finding Bell state [28,29] equivalents for the
matrices of this ensemble and studying their time evolution provides valuable insight into the physical
nature and potential applications of such ensembles.

Organizing the article, we decided to put the description of Dyson’s scheme in the Appendix A.
In Section 2, the four random matrices which are the basic ingredients of the model are introduced
and their properties are discussed. In Section 3, two pseudo-Hermitian Hamiltonians are defined,
their time evolutions are derived and the two regimes of the entanglement of their states are obtained.
Finally, in the conclusion section, the physical implications of the results are discussed.

2. Pauli-Like Random Matrices

Using as tools projector operators P and Q defined as [30]

P =
M

∑
i=1
|i〉 〈i| and Q =

N

∑
j=M+1

|j〉 〈j| (2)

such that P + Q = 1, a rectangular block of dimension M× (N −M) with N ≥ 2M can be singled out
from a Gaussian matrix H of the Random Matrix Theory to construct with it, the N × N matrix

W = PHQ =

(
0M×M HM×N−M

0N−M×M 0N−M×N−M

)
, (3)

where 0a×b is an order a × b rectangular matrix containing all zeros, and Ha×b is the order a × b
rectangular block from the matrix H. Combining then W with its adjoint, W† = QHP, three new
Hermitian traceless matrices R, S and T can be defined as

R = W + W†, S = −i(W −W†), and T = WW† −W†W. (4)

Furthermore, by adding to these matrices, the matrix

U = WW† + W†W, (5)

it is found that the commutation relations

[R, S] = 2iT, (6)

[S, T] = 2iRU (7)

and
[T, R] = 2iSU. (8)

are satisfied. As U commutes with the others and R2 + S2 + T2 = 2U + U2, we can say that it is a
generalized Casimir operator. It is notable that these matrices have the structure of typical quantum
gates [24,29]. Specifically, R, S and T have the structure of Pauli −X, −Y and −Z gates, respectively.



Entropy 2020, 22, 1109 3 of 13

As H have Gaussian elements, WW† and W†W are Wishart–Laguerre matrices of sizes M×M
and (N −M)× (N −M), respectively. Consequently, the eigenstates of U are made of the decoupled
eigenstates of its separated blocks. Let us denote by |xk〉 with k = 1, 2, ..., M and |yl〉 with l =

1, 2, ..., N −M the separated orthonormal eigenstates of this bipartite system; specifically, we have

U |xk〉 = WW† |xk〉 = xk |xk〉 (9)

and
U |yl〉 = W†W |yl〉 = yl |yl〉 (10)

with 〈yl |xk〉 = 0.
As a matter of fact, more can be said about these states. Indeed, by multiplying the eigenvalue

equation of |xk〉 by W†, that is

W†(WW†) |xk〉 = (W†W)W† |xk〉 = xkW† |xk〉 (11)

we find that W†|xk > is an eigenvector of W†W with the same eigenvalue. Moreover, as tr(U) =

tr(WW†) + tr(W†W) = 2tr(WW†), the fact that the two operators share the same set of M eigenvalues
implies that all the other eigenvalues of W†W are zero. For simplicity, we shall concern ourselves with
the case in which M ≤ N/2, but the results are easily extendable for the M > N/2 and quantitatively
analogous. We can, therefore, assume the first M normalized eigenvectors of the operator W†W to be
given by

|yl〉 =
W†
√

xl
|xl〉 with l = 1, ..., M (12)

Taking into account the above bases, we consider diagonalized and reduced operators given by

Û =
M

∑
k=1
|xk〉 xk 〈xk|+

M

∑
l=1
|yl〉 xl 〈yl | (13)

R̂ =
M

∑
k=1
|xk〉
√

xk 〈yk|+
M

∑
l=1
|yl〉
√

yl 〈xl | (14)

Ŝ = −i
M

∑
k=1
|xk〉 xk 〈yk|+ i

M

∑
l=1
|yl〉 xl 〈xl | (15)

T̂ =
M

∑
k=1
|xk〉 xk 〈xk| −

M

∑
l=1
|yl〉 xl 〈yl | (16)

that act in the space of dimension M2. We remark that this result is consistent with the Schmidt
decomposition of a bipartite system [31]. Accordingly, R̂, Ŝ and T̂ have eigenvalues ±√xk with
normalized eigenvectors ∣∣X±k 〉 = 1√

2
(|xk〉 ± |yk〉) , (17)

∣∣Y±k 〉 = 1√
2
(|xk〉 ± i |yk〉) (18)

and ∣∣Z+
k
〉
= |xk〉 and

∣∣Z−k 〉 = |yk〉 (19)

respectively.
This also implies that those interactions may be seen as analogues to the effect of quantum gates

on qu-dit states, where the digit is determined by M [32]. Specifically, the corresponding Bell state is
composed of two qu-Mits, corresponding to the dimension of the images of WW† and W†W.



Entropy 2020, 22, 1109 4 of 13

Moreover, as Û is positive, it can be used to perform the polar decomposition [31] of our matrices
such that a vector operator can be defined as g = (Û−1/2R̂, Û−1/2Ŝ, Û−1T̂). In terms of the components
of the operator g, the above commutation relations can be expressed as

[gi, gj] = 2iεijkgk, (20)

which together with the anti-commutation relations

{gi, gj} = 2δij1, (21)

where 1 is the identity matrix, confirm that the set of unitary matrices gi have the same structure of the
Pauli matrices. They are therefore a SU(2) representation. In fact, for M = 1 and N = 2, the three gi
matrices indeed coincide with the Pauli matrices. For M > 1, the gi are extensions of the Pauli matrices
in which the zeros and the ones have dimension M, namely they are 0M×M and 1M×M. We also notice
that the Baker–Campbell–Hausdorff formula provides the useful expansion

exp(agi)gj exp(−agi) = gj cosh(2a) +
1
2
[gi, gj] sinh(2a) with i 6= j. (22)

Using the Bloch vector u = (sin θ cos φ, sin θ sin φ, cos θ), the operator

1 + u · g
2

= Û−1
(

Û + T̂
2

cos2 θ

2
+

Û − T̂
2

sin2 θ

2

)
+
√

Û
−1
(

R̂ + iŜ
2

sin θ

2
e−iφ +

R̂− iŜ
2

sin θ

2
e+iφ

) (23)

is constructed that has eigenvalue one and eigenvectors

cos
θ

2
|xk〉+ sin

θ

2
eiφ |yk〉 (24)

and
sin

θ

2
|yl〉+ cos

θ

2
e−iφ |xl〉 . (25)

Therefore, it is a projector and the eigenvectors are pure states in the Bloch sphere.
The above operator is a Hermitian linear combination of the generators. By making imaginary one

of the coefficients, non-Hermitian linear combination of these matrices can be introduced. Once this is
done, Dyson’s formula can then be used to eliminate the non-Hermitian term in such a way that an
associated Hermitian Hamiltonian is produced. In the next section, this procedure is applied to two
non-Hermitian Hamiltonians.

3. The Pseudo-Hermitian Hamiltonians

By linearly superposing the operators Û, R̂, Ŝ and Û, T̂, Ŝ, two Hamiltonians are constructed in
which the matrix Ŝ plays the role of the non-Hermitian term. We show how, in both cases, the time
evolution leads to entanglement of, respectively, the chiral states of R̂ in the first Hamiltonian and the
bipartite states of T̂ in the second one.

3.1. Entanglement of Chiral States

We start considering the case of the Hamiltonian

A1 = Û + bR̂ + icŜ (26)
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where b and c are real non-negative coefficients. After some straightforward algebra, it can be verified
that A1 has eigenvalues

xk ±
√

b2 − c2√xk with k = 1, 2, ..., M (27)

with eigenvectors

|xk〉 ±
√

b− c
b + c

|yk〉 . (28)

As the eigenvalues are real, if b ≥ c, and complex conjugate, if b < c, A1 is pseudo-Hermitian
Hamiltonian. Inspired by Ref. [1], we make the ansatz

µ = exp(βŜ) exp(αT̂) (29)

that replaced in Equation (28) allow us to derive, with the help of the above relations that

h = Û +

[
R cosh(2β

√
Û)− iT̂√

Û
sinh(2β

√
Û)

] [
b cosh(2αÛ) + c sinh(2αÛ)

]
+ iS

[
b sinh(2αÛ) + c cosh(2αÛ)

]
− iβ̇Ŝ

+

[
R̂ sinh(2β

√
Û)− iT̂√

Û
cosh(2β

√
Û)

]√
Ûα̇.

(30)

By imposing that the parameters α and β satisfy the differential equations

α̇ = − tanh(2β
√

Û)√
Û

[
b cosh(2αÛ) + c sinh(2αÛ)

]
(31)

and
β̇ = b sinh(2αÛ) + c cosh(2αÛ), (32)

the non-Hermitian terms are removed and the Hermitian matrix

h = Û +
b cosh(2αÛ) + c sinh(2αÛ)

cosh(2β
√

Û)
R̂ = Û + ν(t)R̂. (33)

is obtained.
Although these equations show great similarity to those of [1], an important difference lies

in the fact that for them α and β are numbers while for us they are matrices that are functions of
Û. Nevertheless, relying in the commutativity of U with the other matrices, we assume that U
can be treated as a number, such that our equations can be solved following the same steps. Thus,
by inverting (32) we obtain

tanh(2αÛ) =
−bc + β̇

√
b2 − c2 + β̇2

b2 + β̇2
. (34)

Next, to decouple Equations (31) and (32), we first combine them to get

α̇ = − 1√
Û

tanh(2β
√

Û)
√

b2 + β̇2 − c2, (35)

then, by taking the derivative of (32), we obtain

β̈ = −2
√

Û tanh(2β
√

Û)(β̇2 + b2 − c2) (36)
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such that if a new variable σ = sinh(2β
√

Û) is defined, it is found that it satisfies a harmonic oscillator
equation that can be solved as

sinh(2β
√

Û) =
C1√

b2 − c2
sin
[

2
√

Û(b2 − c2)(t + C2)

]
. (37)

Once, the dependence with time of the parameter β is obtained, we can replace it in Equation (35)
to have √

Ûα̇ = −

√
(b2 − c2)(C2

1 + b2 − c2)C1 sin
[

2
√

Û(b2 − c2)(t + C2)

]
b2 − c2 + C2

1 sin2
[

2
√

Û(b2 − c2)(t + C2)

] (38)

that can be solved as

2Ûα = atanh

C1 cos
[

2
√

Û(b2 − c2)(t + C2)

]
√

C2
1 + b2 − c2

+ B, (39)

where B is an integration constant which with the value B = −atanh(c/b) yields the same expression

exp(4αÛ) =

(
b− c
b + c

) √C2
1 + b2 − c2 + C1 cos

[
2
√

Û(b2 − c2)(t + C2)

]
√

C2
1 + b2 − c2 − C1 cos

[
2
√

Û(b2 − c2)(t + C2)

] , (40)

in [1] (we remark that the above value of the integration constant is necessary to Equation (34) be
satisfied). From it, we obtain

ν(t) =
(b2 − c2)

√
C2

1 + b2 − c2

C2
1 + b2 − c2 − C2

1 cos2
[

2
√

Û(b2 − c2)(t + C2)

] . (41)

and

νI =
∫ t

ν(t′)dt′ =
1

2
√

U
arctan


√

C2
1 + b2 − c2

√
b2 − c2

tan[2
√

Û(b2 − c2)(t + C2)]

 =
γ(Û)√

Û
. (42)

such that we now have the unitary operator exp
(
−iÛt− iγ(Û) R̂√

Û

)
to make the time evolution of

initial states.
Let us start evolving just the single state given by Equation (24). Applying the term exp

(
−iÛ

)
it

just produces an overall phase and, for the other term, we have

γ(Û)
R̂√
Û

=
M

∑
k=1
|xm〉 γ(xm) 〈yk|+

M

∑
l=1
|yl〉 γ(yl) 〈xl | (43)

such that after some algebra, we obtain

e−iÛ−i γ(Û)R√
Û

(
cos

θ

2
|xk〉+ eiφ sin

θ

2
|yk〉

)
= e−ixkt

[
cos(

θ

2
− γk) |xk〉+ eiφ sin(

θ

2
− γk) |yk〉

]
. (44)
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The above equation shows that the generator produces a rotation and the evolved density matrix
is then

ρ = cos2(
θ

2
− γk) |xk〉 〈xk|+ sin2(

θ

2
− γk) |yk〉 〈yk|

+ cos(
θ

2
− γk) sin(

θ

2
− γk)

(
eiφ |xk〉 〈yk| − e−φ |yk〉 〈yk|

)
,

(45)

which is a pure state. If the partial trace is taken or, in physical terms, if the interference terms are
removed, the states become mixed in which cos2( θ

2 − γk) and sin2( θ
2 − γk) are the probabilities of

finding, in a measurement, the system to be in PHQHP or in QHPHQ parts, respectively. In this case,
if b > c, the probabilities oscillate, while for b < c, asymptotically, when t goes to infinity, γk goes to

γ∞ = 1
2 arctan

√
C2

1+b2−c2

c2−b2 and the probabilities reach fixed values.

Turning now to entanglement, one would expect to be natural to study the bipartite division
PHQHP and QHPHQ, but, taking into account that the eigenstates of our matrices are qubits, we work
with them instead. Considering the present case of the generator R̂, Equation (19), we use pairs (m, n)
of its eigenstates to construct the Bell states

∣∣Φ±R (0)〉 = 1√
2

(∣∣X+
m
〉 ∣∣X+

n
〉
±
∣∣X−m〉 ∣∣X−n 〉) , (46)

with which an initial state

|χ(0)〉 = cos
θ

2

∣∣Φ+
R (0)

〉
+ sin

θ

2

∣∣Φ−R (0)〉 , (47)

is defined. In terms of the qubit states, this initial state can be spanned as

|χ(0)〉 = Λ11
∣∣X+

m
〉 ∣∣X+

n
〉
+ Λ12

∣∣X+
m
〉 ∣∣X−n 〉+ Λ21

∣∣X−m〉 ∣∣X+
n
〉
+ Λ22

∣∣X−m〉 ∣∣X−n 〉 (48)

and a density matrix ρij;kl = ΛijΛkl where

Λ(0) =
1√
2

(
cos θ

2 + sin θ
2 0

0 cos θ
2 − sin θ

2

)
(49)

follows. Then, by taking partial trace, the n-states are removed and the reduced matrix density

ρm
ik(0) =

2

∑
l=1

ΛilΛkl =
1
2

(
1 + sin θ 0

0 1− sin θ

)
(50)

is obtained. We observe that for θ equal to zero or π, as the initial state turns out to be one of the Bell
states, the entanglement is maximum. On the other hand, for θ = π

2 , the initial state is a pure state.
Evolving now the above initial state, we observe that as

γ(Û)R̂√
Û

∣∣Φ±R (0)〉 = (γm + γn)
∣∣Φ∓R (0)〉 , (51)

it is deduced that

e−i γ(Û)R√
Û
∣∣Φ±R 〉 = ∣∣Φ±mn(t)

〉
= cos ∆

∣∣Φ±R (0)〉− i sin ∆
∣∣Φ∓R (0)〉 , (52)

where ∆ = γm + γn. From this result, it follows that

|χ(t)〉 = (cos
θ

2
cos ∆− i sin

θ

2
sin ∆)

∣∣Φ+
R (t)

〉
+ (sin

θ

2
cos ∆− i cos

θ

2
sin ∆)

∣∣Φ−R (t)〉 , (53)
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or, in terms of the eigenstates,

|χ(t)〉 = 1√
2
[(cos

θ

2
+ sin

θ

2
) cos ∆− i(sin

θ

2
+ cos

θ

2
) sin ∆]

∣∣X+
m
〉 ∣∣X+

n
〉

+
1√
2
[(cos

θ

2
− sin

θ

2
) cos ∆− i(sin

θ

2
− cos

θ

2
) sin ∆]

∣∣X−m〉 ∣∣X−n 〉 . (54)

Taking then the partial trace, the time-dependent reduced density matrix

ρm
ik(t) =

1
2

(
1 + sin θ cos 2∆ 0

0 1− sin θ cos 2∆

)
(55)

is obtained and the von Neumann entropy

S = −λ1 log λ1 − λ2 log λ2 (56)

is calculated with
λ1 =

1
2
(1 + sin θ cos 2∆) (57)

and
λ2 =

1
2
(1− sin θ cos 2∆) . (58)

We remark that the entangled qubits are chiral states of the matrix R and of the pseudo-Hermitian
matrix A1. Their entanglement is done in a ++ and −− way such that if the state m is in the positive
(negative) state then the n is in the positive (negative).

In Figures 1 and 2, it is shown the time evolution of the von Neumann entropy in the regimes of
real, b > c, and complex conjugate eigenvalues, b < c, respectively. In both cases, N = 6 and M = 2
such that there are only the ground state and the first excited state; moreover, as θ = π

2 , the initial
is a pure state. In Figure 1, the calculation is performed with two sample matrices and the effect of
the randomness of the eigenvalues is exhibited. This randomness is also present in the fact that the
oscillations do not show a constant period. As a matter of fact, for larger matrices, that is N � M the
randomness is suppressed.

In Figure 2, the “eternal life of the entropy” effect, as the authors of Ref. [1] called it, is shown.
Starting from its value at the pure state, the entropy reaches the value of maximum entanglement and
then decays to a constant value.

0 2 4 6 8 10

t

0

0.2

0.4

0.6

0.8

en
tr

o
p

y

b > c

Figure 1. With θ = π
2 , von Neumann entropy in function of time for two random matrices with the

values C1 = 2, b = 1.2 and c = 1.
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Figure 2. With θ = π
2 , von Neumann entropy in function of time for two random matrices with the

values C1 = 2, b = 1.0 and c = 1.2.

3.2. Entanglement of Bipartite States

We now consider the matrix

A2 = Û + b
T̂√
Û
− icŜ, (59)

in which as before, b and c real non-negative coefficients. It can be again verified that A2 has eigenvalues

xk ±
√

b2 − c2√xk with k = 1, 2, ..., M (60)

with unnormalized eigenvectors (
b±

√
b2 − c2

)
|xk〉+ c |yk〉 . (61)

The eigenvalues are real, if b ≥ c, and complex conjugate, if b < c, A2 is pseudo-Hermitian with
respect to the metric P−Q.

Replacing the ansatz
µ = exp(ζŜ) exp(−δT̂) (62)

in Equation (28) we find that if the time-dependent parameters ζ and δ satisfy the differential equations

δ̇ = − tanh(2ζ
√

U)√
Û

[
b cosh(2δ

√
Û) + c sinh(2δ

√
Û)
]

(63)

and
ζ̇ = b sinh(2δ

√
Û) + c cosh(2δ

√
U), (64)

then, following the same steps employed in the A1 Hamiltonian, the non-Hermitian terms are removed
and the Hermitian matrix

h = Û +
b cosh(2δ

√
Û) + c sinh(2δ

√
Û)

cosh(2ζ
√

Û)
R̂ = Û + ξ(t)

T√
U

. (65)

is obtained.
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Evolving first just the single state given by Equation (24) with ξ I(t) equal to νI(t), Equation (42),
we find the evolved state

|χ(t)〉 = exp
(
−iU − iγ

T̂
Û

)(
cos

θ

2
|xk〉+ sin

θ

2
eiφ |yk〉

)
= exp(−ixk)

(
e−iγk cos

θ

2
|xk〉+ eiγk+iφ sin

θ

2
|yk〉

)
.

(66)

and the evolved density matrix

ρ = |χ(t)〉 〈χ(t)| = cos2 θ

2
|xk〉 〈xk|+ sin2 θ

2
|yk〉 〈yk|

+ cos
θ

2
sin

θ

2

(
e−2iγk−iφ |xk〉 〈y|+ e2iγk+iφ |yk〉 〈yk|

)
,

(67)

which is a pure state. The evolution produces a phase and, consequently, the quantum measurement is
not modified.

Turning now to entanglement, we use the eigenstates of the operator T̂, Equation (19),
to constructing the Bell states

∣∣Φ±T (0)〉 = 1√
2
(|xm〉 |xn〉 ± |ym〉 |yn〉) (68)

and define the initial state

|χ(0)〉 = cos
θ

2

∣∣Φ+
T (0)

〉
+ sin

θ

2

∣∣Φ−T (0)〉 . (69)

Using alternatively tensor product we have

∣∣Φ±T (t)〉 = e−iγ(Û) T̂
Û ⊗ e−iγ(Û) T̂

Û
∣∣Φ±T (0)〉 = cos ∆

∣∣Φ±T (0)〉− i sin ∆
∣∣Φ∓T (0)〉 , (70)

and, after taking the partial trace, the same time-dependent reduced density matrix

ρm
ik(t) =

1
2

(
1 + sin θ cos 2∆ 0

0 1− sin θ cos 2∆

)
. (71)

is obtained. We have, therefore, ended up with the same von Neumann entropy of the previous case,
but with a different underlying physics. Here the qubits are the eigenstates of the matrix T and also of
the pseudo-Hermitian A2. The entanglement here is such that the positive and the negative values
correspond to the bipartite PHQHP and QHPHQ parts of the system. If the m-qubit is +, both states
are in the first part while if it is −, both are in second part.

4. Conclusions

The transition from an oscillatory regime, Figure 1, to a regime in which the oscillations are
damped, Figure 2, is, of course, a consequence of moving from real to complex conjugate eigenvalues.
The new feature, however, is that when eigenvalues are complex, as they are conjugate, although the
system is open there is a balance between gains and losses that leads, in the time evolution, to an
asymptotically stationary situation. This is a generic aspect of the evolution of PT-symmetric or,
in more general terms, of pseudo-Hermitian Hamiltonians as recent investigations of squeezed states
show [33,34]. With respect to entanglement, as to avoid decoherence is a necessary constraint in any
quantum computer project, the periodic vanishing of the entropy, the so-called “sudden death” [35,36]
makes the real eigenvalues regime unpractical. This explains the importance of the “eternal life of the
entropy” effect present in the time evolution of the complex conjugate eigenvalue regime. The fact
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that we were able to construct an abstract random matrix model suggests the universality of the effect.
Moreover, as the model ended up being made of objects, i.e., Pauli-like matrices, qubits, Bell states,
which are at the core of quantum information theory and experiment, makes us believe that our work
enhances the potential practical application of the effect.
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Appendix A. Dyson’s Formula

In this appendix, we review the derivation of Dyson’s formula [37,38]. The Schröedinger equations
for h is

iδt (µ |Ψ〉) = h (µ |Ψ〉) (A1)

and the evolution equation for its density matrix is

iδtρh = [h, ρh]. (A2)

Expressing in this equation ρh in terms of ρA, we have

iδt

(
µρAµ−1

)
= [h, µρAµ−1]. (A3)

that leads to
iδt(µ)ρAµ−1 + µρAiδt(µ

−1) + µiδt(ρA)µ
−1 = [h, µρAµ−1]. (A4)

Multiplying from left by µ−1 and by µ from the right

iµ−1δt(µ)ρA + ρAiδt(µ
−1)µ + iδtρA = µ−1[h, µρAµ−1]µ. (A5)

and using that iµ−1δt(µ) = −iδt(µ−1)µ we obtain

iδtρA =
[
µ−1hµ− iµ−1δt(µ), ρA

]
(A6)

such that in order to ρA to satisfy an evolution equation of the form iδtρA = [A, ρA] the
differential equation

h = µAµ−1 + iδt(µ)µ
−1 (A7)

must be satisfied.
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