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Abstract: It has been shown that, even in linear gravitation, the curvature of space-time can induce
ground state degeneracy in quantum systems, break the continuum symmetry of the vacuum
and give rise to condensation in a system of identical particles. Condensation takes the form of
a temperature-dependent correlation over distances, of momenta oscillations about an average
momentum, of vortical structures and of a positive gravitational susceptibility. In the interaction
with quantum matter and below a certain range, gravity is carried by an antisymmetric, second order
tensor that satisfies Maxwell-type equations. Some classical and quantum aspects of this type of
“gravitoelectromagnetism” were investigated. Gravitational analogues of the laws of Curie and Bloch
were found for a one-dimensional model. A critical temperature for a change in phase from unbound
to isolated vortices can be calculated using an XY-model.
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1. Introduction

It is known that, in certain approximations, Einstein equations can be written in the form of
Maxwell equations. In linearized gravity, for instance, the Riemann tensor is

Rµνστ =
1
2
(

ϕµσ,ντ + ϕντ,µσ − ϕµτ,νσ − ϕνσ,µτ

)
, (1)

which, except for the presence of second order derivatives instead of those of first order, bears
a similarity to the electromagnetic field tensor

Fµν = ϕν,µ − ϕµ,ν . (2)

The algebraic and differential identities that these tensors satisfy are also similar. For the
electromagnetic field we have

Fµν = −Fνµ ; Fµν,σ + Fνσ,µ + Fσµ,ν = 0 (3)

while for the Riemann tensor we find

Rµνστ = Rνµστ = −Rµντσ = Rστµν ; Rµνστ + Rνσµτ + Rσµντ = 0 ; Rµνστ,ρ + Rµντ,ρ + Rµνρσ,τ = 0 . (4)

The last equation of (4) goes under the name of Bianchi identities. The tensors Fµν and Rµνστ also
appear in the field equations and characterize the fields completely [1]. By separating the “electric”
and “magnetic” components according to

Ei = Fi0 ; Hi =
1
2

εijkFjk (5)
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and
Eij = Ri0j0 ; Hij

1
2

εikl Rklj0 (6)

and using (3) and (4), we can write the field equations

Fµν,ν = 0 ; Rµν − 1/2ηµνR = 0 , (7)

in the form of Maxwell equations [1]

∇ · E = 0 ; ∇× E + Ḣ = 0 ;∇ ·H = 0 ; ∇×H− Ė = 0 . (8)

In addition, the wave equations ∂2Fµν = 0 and ∂2Rµνστ = 0 are also satisfied.
The formal similarities just outlined refer to a vacuum. Other similarities and versions of

“gravitoelectromagnetism” (GEM) do, however, appear when the interaction of, say, a scalar particle
with gravity is considered. In the minimal coupling approximation, a scalar particle of mass m obeys
the covariant Klein–Gordon equation (

∇µ∇µ + m2
)

φ(x) = 0 , (9)

which, in the weak field approximation gµν ' ηµν + γµν where ηµν is the Minkowski metric, and on
applying the Lanczos–DeDonder condition

γ ν
αν, −

1
2

γσ
σ,α = Γµ

αµ = 0 , (10)

becomes O(γµν) (
∇µ∇µ + m2

)
φ(x) '

[
ηµν∂µ∂ν + m2 + γµν∂µ∂ν

]
φ(x) = 0 . (11)

Units h̄ = c = kB = 1 are used and the notation is as in [2]. In particular, partial derivatives with
respect to a variable xµ are interchangeably indicated by ∂µ, or by a comma followed by µ. ∇µ is
a covariant derivative. Indices are lowered and raised by means of the metric tensor gµµ = ηµν + γµν,
gµν = ηµν − γµν and gravitational contributions are kept only up to O(γµν).

Equation (11) has the exact solution [3–5]

φ(x) = (1− iΦG(x)) φ0(x) , (12)

where φ0(x) is a plane wave solution of the free Klein–Gordon equation,

ΦG(x) = −1
2

∫ x

P
dzλ

(
γαλ,β(z)− γβλ,α(z)

)
(xα − zα) kβ (13)

+
1
2

∫ x

P
dzλγαλ(z)kα =

∫ x

P
dzλKλ(z, x) ,

P is some fixed base event that may be omitted for simplicity in what follows and

Kλ(z, x) = −1
2
[(

γαλ,β(z)− γβλ,α(z)
)
(xα − zα)− γβλ(z)

]
kβ . (14)

Two-point functions such as (14) belong to the family of world-functions introduced into
Riemannian geometry by Ruse [6] and Synge [7] and are used in general relativity to study the
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curvature structure of space-time. Here they also introduce elements of the topology of space-time,
as can be seen by taking the derivatives with respect to z of the function Φg defined by

∂Φg(z)
∂zσ

= −1
2
[(

γασ,β(z)− γβσ,α(z)
)
(xα − zα)− γβσ(z)

]
kβ , (15)

which coincides with (14). One obtains

∂2Φg(z)
∂zτ∂zσ

−
∂2Φg(z)
∂zσ∂zτ

= Rαβστ (xα − zα) kβ ≡ [∂zτ , ∂zσ]Φg(z) = Kσ,τ(z, x)− Kτ,σ(z, x) = F̃τσ(z) , (16)

where Rαβστ is the linearized Riemann tensor (1). It follows from (16) that Φg is not single-valued,
and that after a gauge transformation, Kα satisfies the equations

∂zαKα = ∂αKα =
∂2Φg

∂zσ∂zσ
= 0 (17)

that

∂2
zKλ = − kβ

2

[(
∂2(γαλ,β)− ∂2(γβλ,α)

)
(xα − zα) + ∂2γβλ

]
≡ jλ (18)

identically, and that jλ,λ = 0 because of (17), while the equation[
∂zµ, ∂zν

]
∂zαΦg = −

(
F̃µν,α + F̃αµ,ν + F̃µα,ν

)
= 0 , (19)

holds everywhere. Therefore, Kα is regular everywhere, but Φg is singular because the double
derivatives of Φg do not commute. From (16) one gets ∂2

z∂µΦg = jµ that can be solved to yield ∂µΦg.
Notice also that

∂σ F̃τσ = −jτ (20)

and that again jτ ,τ = 0. Equations (19) and (20) are Maxwell-type equations, and (18) is similar to the
equation satisfied by the vector potential in electromagnetism. In essence, the scalar particle of mass m
“sees” a gravitational field that, under the circumstances discussed in Section 6, is vectorial, rather than
tensorial, and acquires a generalized momentum that generates the correct geometrical optics and
index of refraction, as shown below. The new quantities Kλ, F̃αβ, Pα contain the original particle
momentum kβ. They therefore acquire, upon quantization, the characteristics of “quasiparticles”.
This alternate procedure also brings to the fore the elusive “electromagnetic” character of gravity and
the “electromagnetic” properties so acquired persist at higher order in γµν. In fact, to any order n of
γµν, the solution of (9) can be written as

φ(x) = Σnφ(n)(x) = Σne−iΦ̂G φ(n−1) . (21)

where Φ̂G is the operator obtained from (13) by replacing kα with i∂α. In what follows,
the approximations are always carried out to O(γµν) for simplicity.

The fundamental reason for the appearance of gravitational quasiparticles resides in (12) and (13)
and has a geometrical explanation. Equations (12) and (13) represent a space-time transformation of
the vacuum that makes the ground state degenerate, breaks the continuous symmetry of the system
and leads to the phenomenon of condensation. This follows from the well-known fact that the original,
rotation-invariant system φ0, transported along a closed path Γ bounding a small surface d f βδ, changes,
because of the curvature of space-time, by

δφ = φ− φ0 '
i
4

∫
d f βδRµνδβ[Jµν, φ0] , (22)
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where Jµν is the angular momentum operator and

[Jµν, φ0] = i
{
(xµ − zµ)

∂φ0

∂xν
− (xν − zν)

∂φ0

∂xµ

}
. (23)

Equation (22) can be obtained by applying Stokes’ theorem to (12) and (13). The rotational
invariant system φ0 therefore acquires a privileged direction (that of rotation), on being translated along
the closed path Γ in curved space-time. The direction of rotation due to Jµν breaks the original symmetry.
The new space-time-dependent ground state (12) reflects the lack of symmetry under rotation. Thus the
topological singularity that appears in Φg is supplied by the geometry of space-time itself.

It is possible to construct more complex solutions of (11), such as a closed rectangular loop, or ring,
by combining two vortex-type solutions (12) and (13) with opposite directions, and in general, by linear
superposition of the solution found. In short, the curvature of space-time breaks the original symmetry
by introducing preferred directions.

There are consequences for the scalar particle and the gravitational field. Notwithstanding the
use of a quantum wave equation for φ, the fields γµν, Kλ and F̃αβ are classical. The transformation (12)
and (13) does not affect only the field φ0, but the other fields as well, as shown in Sections 2–5
where dispersion relations, geometrical optics, particle motion and the appearance of quasiparticles
are discussed. Initially the fields are represented by γµν which is classical, and by the field φ0,
which satisfies a quantum equation and has rotational symmetry. Finally, the gravitational field
is represented by Kλ which is classical and contains a topological singularity generated by the
curvature of space-time, while φ, which satisfies a quantum equation, is no longer rotational invariant.
This transformation is discussed at length in the following sections together with various aspects of the
interaction of Kλ with matter. In Section 6 we introduce a simple model Lagrangian that illustrates how
condensation affects the quantum system considered. Sections 7 and 8 are concerned with statistical
aspects of an ensemble of scalar particles in a gravitational background and the origin of a correlation
length and alignment per particle, together with analogues of Curie and Bloch laws and spin waves in
the ensemble. A summary and conclusions are contained in Section 9.

Solutions similar to (12) and (13) have also been found for particles with spin-2 [8], spin-1 [9] and
spin-1/2 [3]. We refer to the original papers for their derivations and discussions regarding minimal
coupling terms. The common feature of the solutions given in [3–8,10] is the presence of the term (23)
due to curved space-time.

We report, in particular, the results for spin-2 particles in the following section when discussing
geometrical optics.

2. Dispersion Relations, Geometrical Optics and Particle Motion

By using Schroedinger’s logarithmic transformation [11] φ = e−iS we can pass from the KG
Equation (9) to the quantum Hamilton–Jacobi equation. We find to first order in γµν

i(ηµν − γµν)∂µ∂νS− (ηµν − γµν)∂µS∂νS + m2 = 0 , (24)

where

S = kβ

{
xβ +

1
2

∫ x
dzλγβλ(z)−

1
2

∫ x
dzλ

(
γαλ,β(z)− γβλ,α(z)

)
(xα − zα)

}
(25)

≡ kαxα + A + B .

It is well-known that the Hamilton–Jacobi equation is equivalent to Fresnel’s wave equation in the
limit of large frequencies [11]. However, at smaller or moderate frequencies the complete Equation (24)
should be used. We follow this path. By substituting (12) into the first term of (24), we obtain

i(ηµν − γµν)∂µ∂νS = iηµν∂µ(kν + ΦG,ν)− iγµν∂µkν = iηµνΦG,µν = ikαηµνΓα
µν = 0 , (26)
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on account of (10). This part of (24) is usually neglected in the limit h̄ → 0. Here it vanishes as
a consequence of solution (12). The remaining terms of (24) yield the classical Hamilton–Jacobi
equation

(ηµν − γµν)∂µS∂νS−m2 = γµνkµkν − 2kµΦG,µ = 0 , (27)

because kµΦG,µ = 1/2γµνkµkν. Equation (12) is therefore a solution of the more general quantum
Equation (24). It also follows that the particle acquires the generalized “momentum”

Pµ = kµ + ΦG,µ = kµ +
1
2

γαµkα − 1
2

∫ x
dzλ

(
γµλ,β(z)− γβλ,µ(z)

)
kβ , (28)

that satisfies the dispersion relation

PµPµ ≡ m2
e = m2

(
1 + γαµ(x)uαuµ − 1

2

∫ x
dzλ

(
γµλ,β(z)− γβλ,µ(z)

)
uµuβ

)
. (29)

The integral in (29) vanishes because uµuβ is contracted on the antisymmetric tensor in round
brackets. The effective mass me is not in general constant. In this connection too we can speak of
quasiparticles. The medium in which the scalar particles propagate is here represented by space-time.

By differentiating with respect to xµ

ΦG,µ = Kµ(x, x) +
∫ x

dzλ∂µKλ(z, x) , (30)

and
ΦG,µν = Kµ,ν(x, x) + ∂ν

∫ x
dzλ∂µKλ(z, x) = kαΓα

µν , (31)

where Γα
µν are the Christoffel symbols, and by differentiating (28) we obtain the covariant derivative

of Pµ

DPµ

Ds
= m

[
duµ

ds
+

1
2
(
γαµ,ν − γµν,α + γαν,µ

)
uαuν

]
(32)

= m
(

duµ

ds
+ Γα,µνuαuν

)
=

Dkµ

Ds
.

This result is independent of any choice of field equations for γµν. We see from (32) that, if kµ

follows a geodesic, then DPµ

Ds = 0 and Dm2
e

Ds = 0. The classical equations of motion are therefore
contained in (32), but it would require the particle described by (9) to just choose a geodesic, among all
the paths allowed to a quantum particle.

We also obtain, from (24),
√
(∂iS)2 = ±

√
−m2 + (∂0S)2 − γµν∂µS∂νS, which, in the absence of

gravity, gives k2
i =

√
−m2 + k2

0, as expected. Remarkably, (28) is an exact integral of (32) which can
itself be integrated exactly to give the particle’s motion

Xµ = xµ +
1
2

∫ x
dzλ

{
γµλ −

(
γαλ,µ − γµλ,α

)
(xα − zα)

}
. (33)

Higher order approximations to the solution of (9) can be obtained by using (21), which plays
a dynamical role akin to Feynman’s path integral formula [10]. In (21), however, it is the solution itself
that is varied by successive approximations, rather than the particle’s path.

In order to gain some insight into the formalism, we derive the geometrical optics approximation
for a spin-2 particle. The covariant wave equation for spin-2 particles is

∇α∇αΦµν + m2Φµν = 0, (34)
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The first order in γµν, (34) can be written in the form(
ηαβ − γαβ

)
∂α∂βΦµν + RσµΦσ

ν + RσνΦσ
µ − 2Γσ

µα∂αΦνσ − 2Γσ
να∂αΦµσ + m2Φµν = 0, (35)

where Rµβ = −(1/2)∂α∂αγµβ is the linearized Ricci tensor of the background metric and Γσµ,α =

1/2
(
γασ,µ + γαµ,σ − γσµ,α

)
is the corresponding Christoffel symbol of the first kind. The solution is

Φµν (x) = φµν (x) + 1
2

∫ x
P dzλγαλ (z) ∂αφµν (x)− 1

2

∫ x
P dzλ

(
γαλ,β (z)− γβλ,α (z)

) [
(xα − zα) ∂β + iSαβ

]
φµν (x)

− i
2

∫ x
P dzλγβσ,λ (z) Tβσφµν (x) ,

(36)

where

Sαβφµν ≡ i
2

(
δα

σδ
β
µδτ

ν − δ
β
σ δα

µδτ
ν + δα

σδ
β
ν δτ

µ − δ
β
σ δα

ν δτ
µ

)
φσ

τ (37)

Tβσφµν ≡ i
(

δ
β
µδτ

ν + δ
β
ν δτ

µ

)
φσ

τ .

From Sαβ one constructs the rotation matrices Si = −2iεijkSjk that satisfy the commutation
relations [Si, Sj] = iεijkSk. The spin-gravity interaction is therefore contained in the term

Φ′µν ≡ − i
2

∫ x
P dzλ

(
γαλ,β − γβλ,α

)
Sαβφµν (x) = 1

2

∫ x
P dzλ

[(
γσλ,µ − γµλ,σ

)
φσ

ν + (γσλ,ν − γνλ,σ) φσ
µ

]
. (38)

The solution (36) is invariant under the gauge transformations γµν → γµν − ξµ,ν − ξν,µ, where ξµ

are small quantities of the first order. If, in fact, we choose a closed integration path Γ, Stokes’ theorem
transforms the first three integrals of (36) into 1/4

∫
Σ dσλκ Rλκαβ

(
Lαβ + Sαβ

)
φµν, where Σ is the surface

bound by Γ, Jαβ = Lαβ + Sαβ is the total angular momentum of the particle and Rλκαβ is the linearized
Riemann tensor (1). For the same path Γ the integral involving Tβσ in (36) behaves like a gauge term
and may therefore be dropped. For the same closed paths, (36) gives

Φµν ' (1− iξ) φµν =

(
1− i

4

∫
Σ

dσλκ Rλκαβ Jαβ

)
φµν , (39)

which obviously is covariant and gauge invariant, and where φµν satisfies the field-free equation.
Neglecting spin effects [12,13], we get from (36)

Φ0
µν = φµν (x) + 1

2

∫ x
P dzλγαλ (z) ∂αφµν (x)− 1

2

∫ x
P dzλ

(
γαλ,β (z)− γβλ,α (z)

) [
(xα − zα) ∂β

]
φµν (x) . (40)

The general relativistic deflection of a spin-2 particle in a gravitational field follows immediately
from Φ0

µν. By assuming, for simplicity, that the spin-2 particles are massless and propagate along the
z-direction, so that kα ' (k, 0, 0, k), and ds2 = 0 or dt = dz, using plane waves for φµν and writing

χ = kσxσ − 1
4

∫ x

P
dzλ(γαλ,β(z)− γβλ,α(z))[(xα − zα)kβ − (xβ − zβ)kα] +

1
2

∫ x

P
dzλγαλ(z)kα , (41)

the particle momentum is

k̃σ =
∂χ

∂xσ
≡ χ,σ = kσ −

1
2

∫ x

P
dzλ

(
γσλ,β − γβλ,σ

)
kβ +

1
2

γασkα . (42)

It then follows from (42) that χ satisfies the eikonal equation gαβχ,αχ,β = 0.
The calculation of the deflection angle is particularly simple to do if the background metric is

γ00 = 2ϕ(r) , γij = 2ϕ(r)δij , (43)



Entropy 2020, 22, 1089 7 of 19

where ϕ(r) = −GM/r and r =
√

x2 + y2 + z2, which is frequently used in gravitational lensing.
For this metric, χ is given by

χ ' − k
2

∫ x

P

[
(x− x′)φ,z′dx′ + (y− y′)φ, z′dy′ − 2[(x− x′)φ, x′ + (y− y′)φ, y′ ]dz′

]
+ k

∫ x

P
dz′φ . (44)

The space components of the momentum are therefore

k̃1 = 2k
∫ x

P

(
−1

2
∂ϕ

∂z
dx +

∂ϕ

∂x
dz
)

, (45)

k̃2 = 2k
∫ x

P

(
−1

2
∂ϕ

∂z
dy +

∂ϕ

∂y
dz
)

, (46)

k̃3 = k(1 + ϕ) . (47)

We find
k̃ = k̃⊥ + k3 e3 , k̃⊥ = k1 e1 + k1 e2 , (48)

where k̃⊥ is the component of the momentum orthogonal to the direction of propagation of
the particles.

Since only phase differences are physical, it is convenient to choose the space-time path by placing
the particle source at a distance very large relative to the dimensions of M, while the generic point is
located at z along the z direction and z� x, y. Equations (45)–(47) simplify to

k̃1 = 2k
∫ z

−∞

∂ϕ

∂x
dz = k

2GM
R2 x

(
1 +

z
r

)
, (49)

k̃2 = 2k
∫ z

−∞

∂ϕ

∂y
dz = k

2GM
R2 y

(
1 +

z
r

)
, (50)

k̃3 = k(1 + ϕ) , (51)

where R =
√

x2 + y2. By defining the deflection angle as

tan θ =
k̃⊥
k̃3

, (52)

one finds
tan θ ∼ θ ∼ 2GM

R

(
1 +

z
r

)
, (53)

which, in the limit z→ ∞, yields the Einsteinian result

θM ∼
4GM

R
. (54)

The index of refraction can be derived from the known equation n = k̃/k̃0. By choosing the
direction of propagation of the particle along the x3−axis, and using (42), one finds

n ' 1 +
1
k0

(χ,3 − χ,0)−
m2

2k2
0

(
1− 1

k0
χ,0

)
(55)

and, again, for k0 � m, or for vanishing m,

n ' 1 +
1

2k0

[
−
∫ x

P
dzλ

(
γ3λ,β − γβλ,3

)
kβ + γα3kα +

∫ x

P
dzλ

(
γ0λ,β − γβλ,0

)
kβ − γα0kα

]
. (56)
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In the case of the metric (43), one gets the result

n ' 1 +
∫ x

P
dz0γ00,3 = 1− 2GM

r
. (57)

3. The Gravitational WKB Problem

We now study the propagation of a scalar field in a gravitational background. We know,
from standard quantum mechanics [14], that S of (25) develops an imaginary part when the particle
tunnels through a potential. This imaginary contribution is interpreted as the transition amplitude
across the classically forbidden region, which is therefore given by [15]

T = exp [−2Im(S)] = exp
{
−2Im

[
ln
(
Σn exp

(
−iΦ̂Gφn−1

))]}
. (58)

To O(γµν), (58) becomes

T = exp
{
−2Im

[
xβ +

1
2

∮
dzλγβλ(z)−

1
2

∮
dzλ(γαλ,β(z)− γβλ,α(z))(xα − zα)

]
kβ

}
, (59)

for a space-time path traversing the gravitational background from −∞ to +∞ and back as it must
in order to make (59) invariant. Assuming a Boltzmann distribution for the particles T = e−k0/T ,
where T is the temperature, we find, in general coordinates,

T = k0/Im
{

2kβ

[
xβ +

1
2

∮
dzλγβλ(z)−

1
2

∮
dzλ(γαλ,β(z)− γβλ,α)(xα − zα)

]}
. (60)

The intended application here is to the propagation problem in Rindler space given by

ds2 = (1 + ax)2 (dx0)2 − (dx)2 , (61)

with a horizon at x = −1/a, where a2 = aαaα is the constant proper acceleration measured in the rest
frame of the Rindler observer. We note that, a priori, our approach is ill-suited to treat this problem
which is frequently tackled in the literature starting from exact or highly symmetric solutions of the
KG equation [16]. In fact, the weak field approximation |γµν| < |ηµν| may become inadequate close to
the horizon, from where the imaginary part of T comes, for some systems of coordinates. This requires
attention, as discussed below. Nonetheless, the approximation has interesting features, such as the
presence of kα in (60) and manifest covariance and invariance under canonical transformations.

It is convenient, for our purposes, to use the Schwarzschild-like form for (61) using the
transformation [17]

x0 =
1
a

√
1 + 2ax′ sinh(at′) , x1 =

1
a

√
1 + 2ax′ cosh(at′) (62)

for x1 ≥ −1/2a and the same transformation with the hyperbolic functions interchanged for
x1 ≤ − 1/2a. The resulting metric is

ds2 =
(
1 + 2ax′

)
(dt′)2 − 1

1 + 2ax′
(dx′)2 , (63)

for which the horizon is at x′ = −1/2a. From (63) we find γ00 = 2ax′, γ11 = 2ax′/(1 + 2ax′). If γ00

and γ11 represent corrections to the Minkowski metric, we must have |γ00/g00| < 1, |γ11/g11| < 1 for
any a > 0. The approximation therefore remains valid for −1/4a < x′ < 1/2a. This is sufficient for
our calculation. We now write the terms A and B, defined in (25), for the metric (63) explicitly. We find

A =
k0

2

∫
dz0γ00 +

k1

2

∫
dz1γ11 , (64)
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and, by taking the reference point xµ = 0,

B = − k0

2

∫
dz0γ00,1z1 +

k1

2

∫
dz0γ00,1z0 . (65)

The explicit expressions for A and B confirm the fact that T receives contributions from both
time and space parts of S, as pointed out in [17]. On the other hand, this is expected of a fully
covariant approach.

The first integrals in A and B cancel each other. The second integral in A can be calculated by
contour integration by writing z1 = −1/2a + εeiθ . The result Im

∫ ∞
−∞ dz1z1k1/(1 + 2az1) = −k1π/4a2

yields a vanishing contribution because k1 reverses its sign on the return trip. The last integral in B is
real. The term k0∆t′ in (25) contributes the amount k0(−iπ/2a)2 because for a round trip the horizon
is crossed twice and each time at′ → at′ − iπ/2 because of (62). The remaining term of (60) gives
k1∆x′ = k1x′ − (−k1)(−x′) = 0. The final result is therefore

T =
a

2π
, (66)

which is independent of k1 and coincides with the usual Unruh temperature [18,19]. This result,
with the replacement a→ a/

√
1− a2/A2, where A = 2m is the maximal acceleration, also confirms

a recent calculation [20] regarding particles whose accelerations has an upper limit. Equation (66)
comes in fact from the term k0∆t′ that does not contain derivatives of γµν. The difference from [20]
and from [17], is, however, represented by the form of (59) of the decay rate [15], which carries a factor
2 in the exponential, as required by our invariant approach.

Despite its limitations, the approximation already reproduces (66) at O(γµν). Additional terms
of (58) are expected to contain corrections to (66). We note, however, that for a closed space-time path
the last integral in (59) and (60) becomes

∫
Σ dσµλRµλαβ Jαβ, where Σ is the surface bounded by the

path [3], and has an imaginary part if Rµναβ has singularities. This eventuality may call for a complete
quantum theory of gravity [21].

4. “Gravitomagnetic” and “Gravitoelectric” Charges. Kλ in Interaction

i. Charge densities. From (20) and (6) we obtain divH̃ = [−Rαβ32,1 + Rαβ31,2 − Rαβ21,3](xα − zα)kβ +

(−R1β32 + R2β31 − R3β21)kβ = 0 on account of (4). There are therefore no “magnetic charges” in this
version of GEM.

From (18), the definition of Jαβ in (23) and the Einstein equations ∂2γβα = Rβα = (8πG/c4)Tβα,
we find jτ = (8πG/c4)(Tβτkβ), which, integrated over all space, is the work done by the field to
displace the particle by xα − zα in a time dt. The charge density is j0 and jτ ,τ = 0 as expected.

ii. Poynting vector. The question we now ask is whether GEM plays a role in radiation problems.
Using F̃µν, we can construct, for instance, a “Poynting” vector. Assuming, for simplicity, that jµ = 0
in (19), using known vector identities, by integrating over a finite volume we obtain from (19) and (20)
the conservation equation

1
c

∂

∂t

∫ (
Ẽ2 + H̃2

)
dV = −2

∮
~̃S · d~Σ , (67)

where Σ is the surface bounding V and ~̃S = ~̃E× ~̃H is the gravitational Poynting vector. Both sides
of (67) acquire, in fact, the dimensions of an energy flux after multiplication by G/c3. We can now
calculate the flux of ~̄S at the particle assuming that the momentum of the free particle is k ≡ k3 and
that the source in V emits a plane gravitational wave in the x-direction. In this case the wave is
determined by the components γ22 = −γ33 and γ23, and we find Ẽ1 = 0, Ẽ2 = 2R0203 J03 + 2R0231 J31,
Ẽ3 = 2R0303 J03 + 2R0331 J31, H̃1 = 0, H̃2 = −4R3103 J03 − 4R3113 J13 and H̃3 = 4R2103 J03 + 4R2113 J13.
It also follows that R0203 = R0231 = R2103 − R2113 = −γ̈23/2 and R0303 = R0331 = R3103 = R3113 =

γ̈22/2. The action of S̃ on the quantum particle is directed along the axis of propagation of the wave
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and results in a combination of oscillations and rotations about the point xα with angular momentum
given by 2J03 = (x0 − z0)k− k0(x3 − z3), 2J13 = (x1 − z1)k and 2J23 = (x2 − z2)k. A similar motion
also occurs in the case of Zitterbewegung [22]. Reverting to normal units, the energy flux associated
with this process is

Φ = (ω4G/c3)
{
(γ23)2[(J03)2 + J31 J03] + (γ22)2[(J03)2 − J31 J03 − (J31)2]

}
(68)

and increases rapidly with the wave frequency ω and the particle’s angular momentum.
iii. Electromagnetic radiation. Let us assume that a spinless particle has a charge q. Acceleration,

whatever its cause, makes the particle radiate electromagnetic waves. The four-momentum radiated
away by the particle, while passing through the driving gravitational field F̃µν, is given by the formula

∆pα = −2q2

3c

∫ duβ

ds
duβ

ds
dxα = −2q2

3c

∫ (
F̃µνuν

) (
F̃µδuδ

)
dxα , (69)

which can be easily expressed in terms of the external fields (6) using the equation of motion of the
charge in the accelerating field [23]. At this level of approximation the particle can distinguish uniform
acceleration, which gives ∆pα ∼

∫
g2dxα, where g is a constant, from a non-local gravitational field,

and it radiates accordingly. This is explained by the presence of Rµναβ in (6) and is a direct consequence
of our use of the equation of geodesic deviation in (69).

When the accelerating field is the wave discussed above, the incoming gravitational wave and the
emitted electromagnetic wave have the same frequency ω and the efficiency of the gravity induced
production of photons increases as ω4k2.

iv. Flux quantization. Flux quantization is the typical manifestation of processes in which the wave
function is non-integrable. Of interest is here the presence of the free particle momentum kα in Kλ.

Let us consider for simplicity the case of a rotating superfluid. Then γ01 = −Ωz2/c, γ02 = Ωz1/c
and the remaining metric components vanish. The angular velocity Ω is assumed to be constant in
time and k3 = 0. Without loss of generality, we can also choose the reference point xµ = 0. We find
K0 = K3 = 0 and

K1 = −1
2

[
γ01,2z2 − γ01

]
k0 − 1

2

[
−γ01,2z0

]
k2 (70)

K2 = −1
2

[
γ02,1z1 − γ02

]
k0 − 1

2

[
−γ02,1z0

]
k1 .

By integrating over a loop of superfluid, the condition that the superfluid wave function be
single-valued gives the quantization condition

∮
dzλKλ = −Ωz0

2c

∮ (
k2dz1 − k1dz2

)
=

πΩz0

c
k$ = 2πn , (71)

where n is an integer, k =
√

k2
1 + k2

2 and $ =
√

z2
1 + z2

2. The time integrating factor z0, extended to N

loops, becomes z0 = 2π$εN/pc, where ε2 = (pc)2 + (mc2)2
and p = h̄k. The superfluid quantum of

circulation satisfies the condition
Ω(π$2)εN/c2 = nh̄ . (72)

If the superfluid is charged, then the wave function is single-valued if the total phase satisfies
the relation ∮

dzλKλ +
q
c

∮
dzλ Aλ = 2πnh̄ , (73)

which, for n = 0 and zero external magnetic field, leads to
∫
~H · d~Σ = −2π2Ω$2εN/qc. In this

case, therefore, rotation generates a magnetic flux through Σ and, obviously, a current in the N
superconducting loops. No fundamental difference is noticed from DeWitt’s original treatment of the
problem [24–27].
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5. Vortices

The vector Kλ is non-vanishing only on surfaces F̃µν that satisfy (19) and (20) and represent the
vortical structures generated by Φg. At a point zα along the path

∂Φg(z)
∂zσ

= −1
2
[(

γασ,β(z)− γβσ,α(z)
)
(xα − zα)− γβσ(z)

]
kβ = Kσ(z, x) , (74)

and
∂2Φg(z)
∂zτ∂zσ

−
∂2Φg(z)
∂zσ∂zτ

= Rαβστ (xα − zα) kβ ≡ [∂zτ , ∂zσ]Φg(z) = F̃τσ(z, x) . (75)

There may then be closed paths embracing the singularities along which the particle wave function
must be made single-valued by means of appropriate quantization conditions [28]. It also follows
from (75) that F̃µν is a vortex along which the scalar particles are dragged with acceleration

d2zµ

ds2 = uν
(

uµ,ν − uν,µ − Rµναβ (xα − zα) uβ
)

, (76)

and relative acceleration

d2(xµ − zµ)

ds2 = F̃µλuλ = Rµβλα (xα − zα) uβuλ , (77)

in agreement with the equation of geodesic deviation [28]. Notice that in (76) the vorticity is entirely

due to Rµναβ Jαβ and that d2zµ

ds2 = 0 when the motion is irrotational. This also applies when Rµναβ = 0,
in which case the vortices do not develop. Similarly, vortices do not form if kα = 0. Each gravitational
field produces a distinct vortex whose equations are (19) and (20); the vortex dynamics are given
by (76) and (77); and the topology of the object is supplied by ΦG. Though we started from a quantum
wave equation, the vortices generated are purely classical because γµν, Kλ and F̃αβ are classical and the
particles interact with gravity as classical particles do. In addition, φ and φ0 coexist with the vortices
generated by Φg in the ground state. The field F̃µν emerges as a property of gravitation when this
interacts with particles described by quantum wave equations. Its range is that of γµν. F̃αβ vanishes
on the line xα − zα = 0 along which Kλ can also be eliminated by a gauge transformation. In this
case we can say that the line is entirely occupied by φ0. Obviously ΦG = 0 on the nodal lines of φ

where it loses its meaning. Notice that the right hand side of (16) can also be replaced by its dual.
This is equivalent to interchanging the “magnetic” with the “electric” components of Rµναβ and the
corresponding vortex types.

We finally stress that it is the transformation (12) that induces the macroscopic phenomena
governed by the classical Equations (19) and (20). The same transformation thus provides a mechanism
by which a classical theory of gravity can be connected with quantum theory.

6. A Minimal Lagrangian

The coordinate x that refers to the total displacement along the path in the local coordinate system
has no role in what follows and can be dispensed with.

The simplest possible Lagrangian in which the features discussed in the previous sections can be
accommodated is [29]

L = −1
4

F̃αβ F̃αβ +
[(

∂µ − iKµ

)
φ
]∗

[(∂µ + iKµ) φ]− µ2φ∗φ , (78)
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where µ2 < 0. The second term of L contains the first order gravitational interaction γµν[(∂µ −
iKµ)φ]∗[(∂ν + iKν)φ] ∼ −γµν∂µ∂νφ0 met above. By varying L with respect to φ∗ and by applying
a gauge transformation to Kα, we find, to O(γµν),[

∂2 + m2 + γµν∂µ∂ν
]

φ(z) ' 0 , (79)

and −µ2 has now been changed into m2 > 0 because the Goldstone boson has disappeared;
the remaining boson is real and so must be its mass [29]. Equation (79) is identical to (9) and its
solution is still represented by the boson transformation (12). However, a variation of L with respect
to Kα now gives

∂ν F̃µν = J̃µ = i [(φ∗∂µφ)− (∂µφ∗) φ]− 2Kµφ∗φ (80)

from which, on using (12) and a gauge transformation, we obtain the field equation

∂2Kµ + 2Kµφ2 = 0 , (81)

that shows that Kµ has acquired a mass. By expanding φ = v + ρ(z)/
√

2, we find that the mass of Kµ is
v and its range ∼ v−1. Any metrical theory of gravity selected remains valid at distances greater than
v−1, but not so near or below v−1. The screening current in (81) determines a situation analogous to
that of vortices of normal electrons inside type-II superconductors where the electron normal phase is
surrounded by the condensed, superconducting phase. The fundamental difference from the approach
followed in the first two sections is represented by (81) that now becomes a constraint on Kλ. It can
be satisfied by requiring that (∂2 + v2)γαβ = 0. No other changes are necessary. On the other hand
this condition can be applied directly in Sections 1 and 2 without making use of L. F̃µν again vanishes
when zα − xα = 0, which indicates that the line zα − xα = 0 can only be occupied by the normal phase.
As before, the field F̃µν is classical and emerges as a property of gravitation when it interacts with
quantum matter. The range of interaction can obviously be very short if v is large.

7. The One-Dimensional Model

A lattice gas model can be used to calculate the alignment per particle and correlation length that
follow from gravity induced condensation. The properties of a many-particle system satisfying (12)
follow from H = gµνPµPν ' m2 + 2γµνkµkν which strongly resembles the energy function of the Ising
model. A difference is represented here by the vectors kα (or Pα) that replace the Ising spin variables σi,
which are numbers that can take the values ±1. It is, however, known that a lattice gas model [30],
equivalent to the Ising model, can be set up in which the particles are restricted to lie only on the N
sites of a fine lattice, instead of being allowed to occupy any position in space-time. Then one can
associate with each site i a variable si = (1 + σi)/2 which takes the value 1 if the site is occupied by
a vector kα and the value 0 if it is empty. Any distribution of the particles can be indicated by the set
of their site occupation numbers s1, ....sN . By replacing kµkν in H with their average k2ηµν/4 over the
angles in Minkowski space and restricting the interaction to couples of nearest sites, one obtains

H = −m
4

γ

(
N

∑
k=1

sksk+1

)
, (82)

where γ ≡ γµνηµν. By imposing periodic conditions sN+1 = s1 along the hypercylinder with axis
parallel to the time-axis, the partition function becomes

Z = ∑
s1

... ∑
sN

exp

(
βε

N

∑
k=1

sksk+1

)
, (83)
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where β ≡ 1/T and ε ≡ mγ/4 contains the gravitational contribution due to γµν. This one-dimensional
Ising model can be solved exactly [30]. Equation (83) can be rewritten as Z = ∑s1

< s1|M̃N |s1 >=

Tr(M̃N) = λN
+ + λN

− and the eigenvalues of M̃ are λ+ = 2 cosh(βε) and λ− = 2 sinh(βε). As N → ∞,
λ+ makes a larger contribution than λ−, N−1 ln Z → ln(λ+) and the Helmholtz free energy per site is
F/N = −(Nβ)−1 ln Z → −β−1 ln(λ+). The alignment per particle for large values of N is

Γ ≡ − 1
N

∂F
∂ε
∼ 1

β

d ln λ+

dε
= tanh(βε) , (84)

which yields the gravitational correction contained in ε. It also follows from (84) that there is no
spontaneous momentum alignment (Γ = 0 when ε = 0) and that complete alignment Γ = 1 is possible
only for T → 0. In fact F → −Nε in the limit T → 0 for completely aligned momenta and one can
say that there is a phase transition at T = 0, but none for T > 0. It follows from (84) that the value of
Γ depends on the gravitational contribution γ. It also follows that there is no alignment (Γ = 0) for
T → ∞ (for any γ and m), or for γ = 0 (no gravity and any T). According to (84), complete alignment
Γ = 1 can be achieved only at T = 0, which, as shown below, is not, however, a critical temperature in
the model.

The correlation length per unit of lattice spacing is

ξ ∼ 1
2

exp(2βε) , (85)

which gives ξ = ∞ at T = 0 and ξ = 1/2 at T = ∞ where thermal agitation can effectively disjoin
neighboring sites.

One can also define a gravitational susceptibility as dΓ/dγ. One finds

dΓ
dγ

=
mβ

4 cosh2(βε)
≥ 0 (86)

always. It follows that when βε� 1, tanh(βε) ≈ βε = γm/4T, and

dΓ
dγ
' m

4T
= 2.9× 1012 m(GeV)

T(K)
, (87)

which is reminiscent of Curie’s law.
Interesting aspects of the problem are revealed by calculating the value of T for which 1/ cosh2(βε)

has an extremum. The derivative of dΓ/dγ with respect to T vanishes when 2y tanh(y) = 1 which
gives y = mγ/4T = 0.77. The temperature at the extremum is

Tm(K) =
mγ

4× 0.77
=

m(GeV)γ

2.65× 10−13 , (88)

and the corresponding value of the susceptibility is(
dΓ
dγ

)
m
=

m
4Tm cosh2( mγ

4Tm
)
' 0.45

γ
, (89)

which is independent of m. All materials therefore respond to changes in gravity in a universal way that
depends only on the source, rather than on the material itself. Table 1 lists the values of (dΓ/dγ)m for
some relevant astrophysical objects. In Tm, the nucleon mass m ∼ 0.9 GeV has been used for simplicity.
In general, even a small value of γ is sufficient to saturate the alignment of momenta over a range of
temperatures, which is narrow because of the sharpness of dΓ/dγ. At T = Tm, the correlation length is
only ξ ' 2.33 which is rather small. This is expected because the values T = 0 and T ' Tm correspond
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respectively to states of low and high thermal agitation in which the system changes from a high to
a small correlation. It is therefore necessary to consider the value of ξ at a particular temperature.

In all cases where βε � 1, one finds T � 1 and (dΓ/dγ) � 1/γ. This is the high T case.
If βε � 1, then T � (1/4)γm and 0 ≤ (dΓ/dγ) < 1.2× 1012m(GeV)/T(K). For Earth, T ∼ 300 K
yields dΓ/dγ ∼ 1.6× 107 and ξ ∼ 1.8× 107.

It follows from Table 1 and from Figures 1 and 2, that condensation effects can be large even
though γ is small, provided ξ retains a reasonable value. This is an unusual occurrence in gravitation.
The effect should be observable by comparing ∂Γ

dγ at T = Tm for different materials.

Table 1. Maximum values of dΓ/dγ for some astrophysical objects.

γ Tm (dΓ/dγ)m

Earth 10−9 3391 4.5× 108

Sun 2× 10−6 7.2× 106 2.3× 105

Neutron star 0.26 8.8× 1011 1.73
White dwarf 10−3 3.4× 109 450

0.5 1.0 1.5 2.0

2

4

6

8

Figure 1. ξ (dot-dashed); Γ (continuous); ∂Γ/∂γ (dashed) for 0 < γ < 2.

The oscillations of Pµ are similar to spin waves and obey the dispersion relation [28,31]

ω =
msγ

2
(1− cos `a) , (90)

where s is the spin magnitude at a site, ` = |~̀ | is the spin-wave momentum and a is the lattice
spacing. Upon quantization, spin waves give rise to quasiparticles that, by analogy with magnons,
shall be called “gravons”. For oscillations of small amplitude and on using (90), one obtains ω '
msγ(`a)2/2 = `2/2m∗, where m∗ is taken as the gravon’s effective mass. If the lattice subdivision is
very fine so that a ∼ m−1, then m∗ = m/sγ can become large for small γ and the oscillation frequency
of these waves is very low. Magnons can, of course, be created in laboratory experiments by scattering
neutrons against an ordered magnetic structure. The analogous gravon experiment in Earth or near
space laboratories, seems to be precluded by the high values of m∗ for small γ. It would be useful,
for astrophysical purposes, to derive a gravon’s spectrum and distribution. For sufficiently small
changes of γ, the energy of a mode of energy ω` = `2/2m∗ and n` gravons is that of a harmonic
oscillator and the gravon distribution is that of Planck. When ω` � T, the number of gravons per unit
volume is

∑
`

n` ' 8(0.0587)
(

T
msγa2

)3/2
, (91)
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also reminiscent of Bloch T3/2 law for magnetism. As indicated by Figure 2, the approach to the Curie
point is less sharp than in magnetism. This is due to the mitigating action that a small γ has on 1/T
in ε as T → 0. Curie’s law and (91) suggest Tc = 0 as a critical temperature. It is shown in the next
section that this choice is, however, inappropriate.

Figure 2. γ dΓ
dγ for 0 ≤ T ≤ 300 K and 0 ≤ γ ≤ 0.26.

Finally, the radiation spectrum of gravons produced by a proton a distance b from a star of mass
M can be calculated from the power radiated in the process of p→ p′ + γ̃ using the expression

W =
1

8(2π)2

∫
δ4(P− p′ − `)

|M|2
Pp′0

d3 p′d3` , (92)

where
Σ|Mp→p′γ̃|2 = e2 [−4(p′αΦG,α) + 8(pαΦG,α)

]
, (93)

and γ̃ represents the gravon. The process is similar to that of magnon production by neutron scattering
by a magnetic structure. The quantum mechanical power spectrum of γ̃ is

dW
d`
' e2`

π

(
GM

b

)
, (94)

where p = |~p| > mp is the momentum of the incoming nucleon and pGM/b < ` ≤ p to satisfy the
requirement | cos ϑ| ≤ 1, where ϑ is the emission angle. Results (90) and (94) agree for `a� 1.

If ω` � T, the total number of gravons can be written in the form

Ñ ' 4T
msγa

∼ 4TL
msγa2ñ

, (95)

where ñ = N/V and L ∼ ña is the typical size of the system. From Ñ/N ≤ 1, one gets T ≤ msγña2/4L
which can be satisfied for sufficiently large L.

8. A Two-Dimensional Model

Not all ordered phases can exist, because the number of space dimensions plays a role in phase
changes. Changes to ordered phases can survive only if they are stable against long wavelength
fluctuations. Consider, for instance, a system of particles that is invariant under translations in a space
V of d dimensions. Representing the deviation of the particles from the equilibrium position by
q(x) = (1/V)∑k,r eik·xqi(k), where i indicates the normal modes and k extends up to some value,
the normal modes energy is T = ω2

i (k)|qi(k)|2 by the theorem of equipartition of energy. Then for
V → ∞, < q(x)2 >= Σi

∫
ddk2T/ω2

i . If the continuous symmetry has been broken spontaneously,
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the excitations whose frequencies ωi(k) ∼ k, vanish as k → 0 and give the low frequency limit
<q2> ∼ Σi

∫
dkkd−1/k2 which diverges for d ≤ 2. Hence the lowest critical dimension is d = 2,

below which order is destroyed by long wavelength fluctuations.
Consider, therefore, the case d = 2. The quickest way to obtain the relevant expressions for

a two-dimensional model is to restart from (82) and replace the vectors si with classical vectors
constrained to lie in the sxsy–plane. Then si = (six, siy) and s2

ix + s2
iy = 1 and

H = −mγs2

4
Σi,j cos(θi − θj) (96)

if i and j are neighbors; H = 0 otherwise. If the neighboring angles are close in value, then by
neglecting an irrelevant constant, H ' −(mγs2/8)Σ~RΣ~a [−θ(~r) + θ(~r +~a)]2, where~r +~a is the nearest
neighbor of~r. When replacing the finite differences with derivatives one gets

H =
1
8

mγs2
∫

d2r~∇θ(~r) · ~∇θ(~r) . (97)

These excitations are vortices for which ~∇θ = n~aθ/r and n is an integer. The energy of an isolated
vortex is E = (1/8)mγs2

∫ L
a dr/r = (1/8)mγs2 ln(L/a), where L is the linear dimension of the vortex.

The entropy associated with a single vortex is S = ln(L/a)2 and the change in free energy due to the
formation of a vortex is

∆G =

(
1
8

mγs2n2 − 2T
)

ln
L
a

, (98)

which is positive for

T <
1
8

mγs2n2 ≡ Tc . (99)

Isolated vortices do not therefore form for T ≤ Tc. At low temperatures the state of the system
consists of an equilibrium density of bound vortices. At T > Tc the vortices become unbound and the
condensed phase is destroyed.

The condition Ñ/N ≤ 1 gives in two dimensions

Ñ ' 4T
ñmsγa2 ln(

L
a
) ≤ 1 , (100)

which can be satisfied for 0 ≤ T ≤ mñsγa2/4 ln(L/a) provided L/a ≥ 1.
Given the important role of space dimensionality in critical phenomena, one may wonder

about the behavior of Ñ in dimensions higher than two. In three dimensions the condition
Ñ/N ' 2T/(πñmsγa3) ≤ 1 can be satisfied at all T for sufficiently high values of ñ ∼ L/a.

9. Summary and Conclusions

A rotationally-invariant quantum system acquires a privileged direction in the course of its
evolution in curved space-time. This symmetry breaking takes the form of a space-time-dependent
ground state (12) and of a topological singularity in (13) that leads to the phenomenon of condensation
in an ensemble of like particles. In the re-distribution of degrees of freedom that follows symmetry
breaking, the gravitational field is represented by the two-point potential Kµ(z, x). The tensor
F̃µν = Kν,µ − Kµ,ν satisfies Maxwell-type equations and depends on the metric tensor. The potential
Kλ suggests the introduction of the notion of the quasiparticle, because gravity affects, in general,
the dispersion relations of the particles with which it interacts, as shown by (29), and because it carries
with itself information about matter through kα.

A simple Lagrangian was introduced to illustrate how Kµ(x) acquires a mass v and a range v−1.
Above v−1 the gravitational interaction is conveyed by γµν, but below this range, when interacting
with matter, the gravitational action is carried by Kλ. The screening current associated with a massive
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Kλ resembles what occurs with vortices of normal electrons in type-II superconductors where the
electron normal phase is surrounded by the condensed superconducting phase. The normal phase
φ0 remains shielded from the external gravitational field, a situation that is of interest in dark matter
studies. The field F̃µν is classical and emerges as a property of gravitation when the latter interacts
with quantum matter.

Some applications of GEM have been examined in some detail.
The equations obeyed by F̃µν do not contemplate the presence of “gravitomagnetic” charges.

This follows immediately from (20) and (4).
The “gravitoelectric” charge density follows from jτ = −8πG/c4)(Tβτkβ) when τ = 0, and after

integration over space, can be interpreted as the amount of work done by the gravitational field to
deflect the particle by an amount xα − zα in a time dt.

Some particular aspects of the behavior of Kλ have been examined. We have found that when
jµ = 0, scale invariance assures that a gas of gravitons satisfies Planck’s radiation law, but that this is
no longer so, in principle, for non-pure gravitational fields.

Kλ also determines the equations of motion of a particle through (30)–(32) and (21). We have found
that the motion follows a geodesic only if the quantum particle chooses, among all available paths,
that for which Dkα/Ds = 0. Along this particular path the principle of equivalence is satisfied. We have
then shown that the particle motion is contained in the solution (12) of the covariant KG equation.

We have also studied quantum mechanical tunneling through a horizon and derived a covariant
and canonical invariant expression for the transition amplitude. Though the approximation looks
ill-suited to deal with regions of space-time close to a gravitational horizon, the approximation
reproduces the Unruh temperature exactly in the case of the Rindler metric. No corrections of and no
effects due to kµ have been found for the standard result of O(γµν). Higher order approximations can
be calculated by applying (60).

As F̃µν satisfies Maxwell-like equations, it is also possible to define a Poynting vector and a flux
of energy and angular momentum at the particle so that the particle’s motion can be understood as
a sequence of oscillations and rotations similar to what is found in the case of Zitterbewegung [22].

Use of Kλ in problems where gravity accelerates a charged particle and electromagnetic radiation
is produced offers a rather immediate relationship between the loss of energy-momentum by the
quantum particle and the driving gravitational field. These processes could give sizable contributions
for extremely high values of ω. Astrophysical processes like photoproduction [32] and synchrotron
radiation [33] have been discussed in the literature and are worthy of re-consideration in view of
the present results. An advantage from the point of view of detecting high frequency gravitational
radiation, for which detection schemes are in general difficult to conceive, is represented by the
efficiency of the graviton–photon conversion rate and by the high coupling afforded by a radio receiver
over, for instance, a mechanical one. This would enable, in principle, a spectroscopic analysis of
the signal.

In the last problem considered, we have calculated the flux of Kλ in the typical quantum case
of a non-integrable wave function. Here too, it is possible to isolate quantities of physical interest,
such as magnetic flux or circulation, despite the non-intuitive character of

∮
dzλKλ. Unlike [24],

our procedure and results are fully relativistic. They can be applied directly to boson condensates in
boson stars [34].

Covariant wave equations have solutions (12) and (21) that are space-time-dependent transformations
of the vacuum. The resulting degeneracy of the ground states produces Nambu-Goldstone excitations
which break the rotational symmetry of the system. The quasiparticles generated, or gravons,
are oscillations that obey the dispersion relation (90) and have an effective mass.

In the one-dimensional Ising model considered, the order parameter is the generalized momentum
ΦG,µ, along which the particle momenta tend to align. The motion of the particles in the direction of
ΦG,µ is along geodesics. Off them, along the variable z, Φg is topologically singular and length scales
change. The phase singularities of Φg give rise to quantized vortices [35], and the particle motion along



Entropy 2020, 22, 1089 18 of 19

the hypersurfaces F̃αβ 6= 0 satisfies the equation of deviation. Phase singularities give rise to strings
of silence in acoustics; lines of magnetic flux in magnetism; and vortices in optics, in superfluids and
superconductors [35]. The multivalued nature of Φg leads to the loss of a standard of length in the
region of critical phenomena. For space-time loops linking the regions of singularity, one must have

∮
Γ

dzλKλ(z) =
∮

Γ
dzλ ∂Φg

∂zλ
=
∫

Σ
dσλµ F̃λµ = 2nπ , (101)

where Σ is a surface bound by Γ. Outside the critical region the change in length still vanishes around
paths Γ that do not link any singularity. The field F̃στ vanishes on the line xσ − zσ = 0 which is entirely
occupied by the normal phase. In addition, the choice ∂2γαβ 6= 0 in (18), would give a Meissner-type
effect for F̃στ . The result is here analogous to that of superconducting strings. It is also remarkable that
a singularity in a quantum mechanical wave function produces a field F̃στ that is entirely classical.

The effect of gravity on some parameters that characterize the critical behavior of a quantum
system of scalar particles can be calculated. For instance, the gravitational susceptibility dΓ/dγ is
always positive and obeys a Curie-type law. The susceptibility can be understood as a measure of
the reaction of the system to a gravitational field and is analogous to the magnetic susceptibility.
There are, of course, no gravitational dipoles in an ensemble of quantum particles because Einstein’s
gravity is always attractive. There are only the particle momentum vectors in the lattice gas model
considered. Therefore, dΓ/dγ indicates only how the momentum alignment per particle changes when
the gravitational parameter γ changes. Since dΓ/dγ always satisfies (86), the response to changes in
γ can be termed “paragravitational”. The increase is larger as T → 0 because at lower temperatures
thermal agitation subsides and correlation is preserved.

The number of quantized spin-waves, or gravons, per unit volume, follows a T3/2 law;
the emission cross-section is low; and the gravon spectrum depends linearly on the momentum
`, both classically and quantum mechanically, if `a� 1.

In the one-dimensional case one cannot say that T = 0 is the critical temperature of the model.
The lowest critical dimension is 2 and the simplest two-dimensional system is the XY-model. A critical
temperature is in fact given by (99), below which isolated vortices do not exist; only bound vortices do.
Symmetry breaking has a topological origin also in the XY-model. Due to the important developments
that have recently taken place in the field of condensed matter physics, such as block spin models and
renormalization, the prospects of extending the results to dimensions greater than one look promising
and are under consideration.

Summarizing, the solution (12) and its extension (21) introduce topological singularities and
induce condensation. This gives rise to the classical and quantum aspects of GEM discussed above
when gravity interacts with quantum matter.
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