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Abstract: Based on the application of the conditional mean rule, a sampling-recovery algorithm is
studied for a Gaussian two-dimensional process. The components of such a process are the input and
output processes of an arbitrary linear system, which are characterized by their statistical relationships.
Realizations are sampled in both processes, and the number and location of samples in the general
case are arbitrary for each component. As a result, general expressions are found that determine
the optimal structure of the recovery devices, as well as evaluate the quality of recovery of each
component of the two-dimensional process. The main feature of the obtained algorithm is that the
realizations of both components or one of them is recovered based on two sets of samples related to
the input and output processes. This means that the recovery involves not only its own samples of
the restored realization, but also the samples of the realization of another component, statistically
related to the first one. This type of general algorithm is characterized by a significantly improved
recovery quality, as evidenced by the results of six non-trivial examples with different versions of the
algorithms. The research method used and the proposed general algorithm for the reconstruction of
multidimensional Gaussian processes have not been discussed in the literature.

Keywords: sampling recovery algorithm of a realization of multidimensional gaussian process;
conditional mean rule; basic function; error recovery function; covariance function; cross-covariance
function

1. Introduction

The list of publications devoted to the study of sampling-recovery algorithms (SRA) for realization
of random processes is huge and difficult to read. The problem, formulated in the title of the article,
covers issues related to multidimensional SRA. Let us note two of the standard and most important of
them: (1) In accordance with the selected criterion, it is necessary to determine the optimal structure of
the device for restoring realizations of the selected random process for a given set of samples and (2) to
assess the quality of restoration realizations. These two problems must be studied for many types of
stochastic processes and for different types of sampling realizations. In the general case, the set of
samples of realizations can be random and described by a stream of random points. Deterministic
sampling can be periodic or non-periodic. When random jitter or gaps are present in the samples,
the determinism of the samples disappears. In addition, the number of samples involved in recovery
in all these cases can be arbitrary.

For each of the options mentioned, specific bibliographic lists of published works can be found.
Here we will indicate only a few typical publications [1–9], in which SRAs of multidimensional
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stochastic processes are discussed (the list of works does not claim to be complete). A similar situation
is due to the fact that in this article: (1) The study is carried out using the conditional mean method
(CMM), which has not been used by other authors when solving such problems; (2) the problem of
restoring the realizations for individual components of a multidimensional Gaussian process based on
given samples of all components, has not been investigated. The conducted bibliographic search for
the problem “Theory of sampling” did not reveal sources with the indicated characteristics, with the
exception the author’s publications.

The application of the CMM (see, for example, [10–12]) to the study of SRA of realizations of
random processes has a number of advantages (see [13–17] and references therein) in comparison with
the well-known Balakrishnan theorem (TB) [18] and many of its generalizations. Indeed, SRA based
on CMM are distinguished by such positive qualities as: (1) Restoration of a sampled realization of a
random process according to the CMM automatically provides a minimum of the root-mean-square
error of restoration; (2) the restoring function, like the restoring error function in the general case, takes
into account the main statistical characteristics of a random process: Probability density, covariance,
and cumulant functions; spectrum (a process with a limited spectrum is a special case); (3) the
considered algorithms are optimal for any number and location of samples (the variant of periodic
samples is a special case); (4) general analytical expressions for the considered SRA cover stationary and
non-stationary variants of stochastic processes; (5) sampled stochastic processes can be Gaussian and
non-Gaussian, continuous and discontinuous, etc. Moreover, the CMM has been productively applied
to study the SRA of random fields, both Gaussian [19,20] and fields with jumps [17,21]. Of course,
the version of a multidimensional Gaussian process turns out to be more convenient for analysis since
there are simple analytical relations for it.

Note, the application of CMM to the study of SRA-realizations of multidimensional random
processes has not been sufficiently discussed in the literature. The work is intended to partially fill this
gap. The aim of the article is to study SRA for message models that are described by two-dimensional
Gaussian random processes. However, the dimension of the problem is not limited by the presence
of two random processes at the input and output of the linear system, since in addition to them,
the problem includes two sets of samples fixed in the realizations of these processes. These fixed sets
are made up of an arbitrary number of samples that are randomly located on the time axis. The number
of samples involved in reconstruction significantly increases the dimension of the problem. CMM
expressions for a multidimensional random Gaussian variable [22,23] are generalized in relation to the
problem formulated in the title of the article. The use of CMM allows us to overcome the difficulties
that arise and obtain general expressions for describing the optimal structures and assessing the quality
of the restoration.

In practice, the option under discussion arises, for example, in telemetry systems, when messages
with statistical dependence are transmitted over separate channels. The most suitable and convenient
model for this kind of messages is a set of Gaussian random processes at the input x(t) and output
y(t) of an arbitrary linear system described by an impulse response h(t). By changing the type of the
function h(t), you can change the type of statistical relationship between the two processes. In this case,
the message is a two-dimensional Gaussian process [x(t), y(t)]T. The realizations of both components
are sampled and transmitted to the receiving side. Sets of samples X

(
T(x)

)
and Y

(
T(y)

)
realizations of

components x(t) and y(t) are arbitrary both in quantity and location on the time axis.
The matrix description of the recovery procedure allows one to obtain general optimal recovery

algorithms for both input and output realizations using both sets of samples X
(
T(x)

)
and Y

(
T(y)

)
.

In addition, you can evaluate the quality of restoration of the realizations of both components. In this
case, the recovery of each of the realizations by the proposed method turns out to be higher than
with the usual recovery algorithm only from its own samples. The study of this general case allows
us to consider two particular options, each of which consists in the fact that on the basis of both
sets of samples X

(
T(x)

)
and Y

(
T(y)

)
it is necessary to restore only one of the transmitted messages.

For example, the algorithm for restoring the realization of the output process y(t) must use not only



Entropy 2020, 22, 1079 3 of 24

a set of its own samples Y
(
T(y)

)
, but also a set of samples to implement an auxiliary input process

X
(
T(x)

)
. The examples below also consider the opposite case, when the realization of the input process

is restored, and the samples of the realization of the output process play an auxiliary role. The positive
effect of this operation is due to the fact both processes are statistically related, and therefore the role of
the cross-covariance function between output and input is significant.

The aim of the study is to provide an analytical description of the proposed algorithm for recovering
realizations of a two-dimensional Gaussian process and to assess the quality of its functioning, taking
into account the sets of samples of realizations of both processes. It should be emphasized that instead
of analyzing reconstruction functions that depend on a set of sample values, we will study basic
functions, which are the impulse responses of the shaping filters for each sample. Reconstruction
functions are created by multiplying each sample by its own basic function and then adding them. It is
clear the basic functions are independent of the sampled values.

The scientific novelty of the article is as follows: (1) The sampling—restoration algorithms (SRA) of
realizations of the components of a two-dimensional Gaussian process are studied, taking into account
the fact that the restoration is carried out not only on the basis of a set of their own samples of the
realization of the selected component, but also taking into account the set of samples of the realization
of another component, statistically related to the first. Owing to the use of CMM, general variants of
SRAs with an arbitrary number and location of samples in both realizations are investigated. (2) As a
result, a general scheme of the restorer of both realizations was obtained, which provides minimal
restoration errors. In addition, general relations are found to estimate the minimum recovery errors for
each of the sampled realizations. (3) For several typical models of linear systems with different input
processes, the cross-covariance functions between input and output are determined. These functions
play a major role in studying the influence of the set of samples of the realization of the auxiliary
component on the structure and quality of restoration of the realization of the selected component.
(4) Variants of SRA have been studied when the restoration of the realization of the selected component
occurs at one or several sampling intervals for various cross-covariance functions of the processes.
Several examples investigate non-trivial cases when the sampling intervals of the realizations of both
components are different. (5) In all the options considered, the optimal forms of the basic functions are
determined, and the functions of recovery errors are calculated. The latter show the advantages of
the proposed method in improving the quality of restoration in comparison with the classical method
when restoration is carried out only according to own samples of realization.

The article consists of the following sections. Section 2 presents general formulas for the vector
of conditional mathematical expectations and the matrix of conditional covariances in relation to the
here considered. Section 3 discusses the models of the Gaussian processes used. Section 4 is devoted
to the description of the optimal structure of the reductant of realizations of both components of a
two-dimensional Gaussian process based on a set of samples of the input and output processes of an
arbitrary linear system. Section 5 discusses examples describing SRP in a single recovery interval.
Section 6 is devoted to examining SRP at multiple recovery intervals. There is one Appendix A.

2. General Formulas for the Statistical Characteristics of the Two-Dimensional Conditional
Gaussian Process

In the mathematical literature, there is a result that is closely related to the problem formulated
in here. Namely, in [22] (see also [23]), matrix expressions were obtained for the conditional mean
vector and for the conditional covariance matrix of one vector for a fixed other vector. These relations
have been derived for multidimensional Gaussian random variables. These formulas are given in the
Appendix A and are designated by the letter “A”. They cannot be used directly to solve the problem
posed in the article. We generalize them to the case when two components are Gaussian processes
with continuous time, and the other components (sets of samples) are random Gaussian variables with
discrete time.
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For our purpose, we use different designations than those used in the Appendix A. Consider a
column vector Z

(
t, T(x), T(y)

)
that is analogous to the vector z (see Formula (A1)):

Z
(
t, T(x), T(y)

)
=

[
Z1(t), Z2

(
T(x), T(y)

)]T
(1)

Z1(t) = [x(t), y(t)]T (2)

Z2
(
T(x), T(y)

)
=

[
X
(
T(x)

)
, Y

(
T(y)

)]T
, (3)

where

X
(
T(x)

)
=

[
x1

(
T(x)

1

)
, x2

(
T(x)

2

)
, . . . , xN(x)

(
T(x)

N(x)

)]T
, (4)

Y
(
T(y)

)
=

[
y1

(
T(y)

1

)
, y2

(
T(y)

2

)
, . . . , yN(y)

(
T(y)

N(y)

)]T
(5)

where N(x), N(y) are the numbers of samples in both sets.
The vector Z

(
t, T(x), T(y)

)
is described by the mathematical expectation vector (see analogue the

Formula (A2)):

m
(
t, T(x), T(y)

)
=

[〈
Z1(t)

〉
,
〈
Z2

(
T(x), T(y)

)〉]T
(6)〈

Z1(t)
〉
=

[
mx(t), my(t)

]T
(7)〈

Z2
(
T(x), T(y)

)〉
=

[〈
X
(
T(x)

)〉
,
〈
Y
(
T(y)

)〉]T
(8)

and covariance matrix

K
(
t, t′, T(x), T(y)

)
=

 K11(t, t′) K12
(
t, T(x), T(y)

)
K21

(
T(y), T(x), t′

)
K22

(
T(x), T(y)

)  (9)

where K11(t, t′),K22
(
T(x), T(y)

)
are the covariance matrices of vectors Z1(t) and Z2

(
T(x), T(y)

)
,

respectively; K12
(
t, T(x), T(y)

)
,K21

(
T(y), T(x), t′

)
—matrices of cross covariance between vectors Z1(t)

and Z2
(
T(x), T(y)

)
. Expression (9) is an analog of the matrix (A3) written in the new notation. We fix

the vector Z2
(
T(x), T(y)

)
, and the vector

~
Z1(t) remains random with its components conditional with

respect to the vector Z2
(
T(x), T(y)

)
. Then, the vector

~
Z1(t) is described by a Gaussian two-dimensional

conditional probability density, which is characterized by a column vector of conditional mathematical
expectations and a matrix of conditional covariances. The vector of conditional mathematical
expectations instead of (A4) is written in the form:〈~

Z1(t)
〉
=

〈
Z1

(
t
∣∣∣∣X(

T(x)
)
, Y

(
T(y)

) )〉
=

〈
Z1(t)

〉
+

+K12
(
t, T(x), T(y)

)
K−1

22

(
T(x), T(y)

)(
Z2(T(x), T(y))-

〈
Z2(T(x), T(y))

〉) (10)

As in the one-dimensional case [13–16], based on (10), we introduce the definition of a
multidimensional basic function

b
(
t, T(x), T(y)

)
=

[
b(x)

(
t, T(x), T(y)

)
, b(y)

(
t, T(x), T(y)

)]T
=

= K12
(
t, T(x), T(y)

)
K-1

22

(
T(x), T(y)

) (11)

Relation (10) determines the optimal recovery structure for the sampled realizations of the
two-dimensional process (see the Section 4). Recovery should be carried out sequentially at
sampling intervals.
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The matrix of conditional covariance
~
K
(
t, t′

∣∣∣T(x), T(y)
)

of the vector function
~
Z
(
t
∣∣∣T(x), T(y)

)
, when

the vector Z2
(
T(x), T(y)

)
is fixed, based on (A5), (9) takes the form:

~
K
(
t, t′

∣∣∣T(x), T(y)
)
=K11(t, t′) −K12

(
t, T(x), T(y)

)
K-1

22

(
T(x), T(y)

)
K21

(
T(x), T(y), t′

)
(12)

Equating in (12) times t′ = t, it is possible to obtain relations that determine the functions of
conditional variance, which characterize the quality of restoration of realizations of each component.

Let us describe the general form of the submatrices included in expression (9). The two-dimensional

Gaussian process
[

x(t), y(t)
]T

is described by the mathematical expectation vector (7) and the
covariance matrix

K11(t, t′) =
[

Kx(t, t′) Kxy(t, t′)
Kyx(t, t′) Ky(t, t′)

]
(13)

In (13), functions Kx(t, t′), Ky(t, t′) are covariance functions of processes x(t) and y(t), accordingly.
The degree of statistical dependence between the processes is determined by the functions of cross
covariance Kxy(t, t′), Kyx(t, t′). The remaining three sub-matrices are written this way:

K12
(
t, T(x), T(y)

)
=


〈 .
x(t)

.
X
(
T(x)

)〉 〈 .
x(t)

.
Y
(
T(y)

)〉〈 .
y(t)

.
X
(
T(x)

)〉 〈 .
y(t)

.
Y
(
T(y)

)〉  (14)

Here and below, the dots above the letters indicate centered random variables.

K21
(
T(x), T(y), t′

)
=


〈 .
X
(
T(x)

) .
x(t′)

〉 〈 .
X
(
T(x)

) .
y(t′)

〉〈 .
Y
(
T(y)

) .
x(t′)

〉 〈 .
Y
(
T(y)

) .
y(t′)

〉  (15)

K22
(
T(x), T(y)

)
=


〈 .
X
(
T(x)

) .
X
(
T(x)

)〉 〈 .
X
(
T(x)

) .
Y
(
T(y)

)〉〈 .
Y
(
T(y)

) .
X
(
T(x)

)〉 〈 .
Y
(
T(y)

) .
Y
(
T(y)

)〉  (16)

Using Formulas (13)—(16), we can specify the relations (10) and (12), which should be calculated
sequentially in the intervals for interpolation Ti−1 < t ≤ Ti, i = 2, 3, . . . , N and for extrapolation at
t ≥ TN. There is a retropolation option, when t ≤ T1. Here, the superscripts (x) and (y) are omitted.

3. Models of Used Gaussian Processes

Below, the use of the above general algorithm is illustrated with a series of examples in which two
statistically related Gaussian processes appear. Covariance and cross-covariance functions of processes
vary within wide limits. As indicated in Section 1, these processes are most simply described using a
linear system with a given impulse response h(t). When the covariance function Kx(τ) of the input
process x(t) and characteristics h(t) change, the output process y(t) is described by various covariance
functions. In this case, of course, the cross-covariance function between the input and output is also
changed. There are general formulas [23], which can be used to determine the desired covariance
functions for given Kx(τ) and h(t). Let us write them out in relation to the stationary case, setting
mx(t) = my(t) = 0:

Kxy(τ) =

∞∫
0

h(u)Kx(τ− u)du, τ = t− t′ (17)
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There are two cross-covariance functions Kxy(τ), Kyx(τ), that have the property Kxy(τ) = Kyx(−τ):

Ky(τ) =
∞∫
0

∞∫
9

h(u1)h(u2)Kx(τ− u2 + u1)du1du2 =

=
∞∫
0

h(u)du
τ+u∫
−∞

h(τ+ u− v)Kx(v)dv
(18)

For our purposes, when choosing linear systems, it is advisable to choose the simplest in structure
and description. In this case, it can easily be demonstrated how the auto- and cross-covariance
functions of the input and output processes of linear systems affect the main characteristics of the SRP:
The structure of recovery devices (or basic functions) and the functions of recovery errors. As linear
systems, it is appropriate to choose low-pass filters, consisting of series-connected integrating RC
circuits, at the input of which there is white Gaussian noise. Such systems can have one or more
connected integrating RC circuits separated by buffer cascades [23]. At the outputs of such systems,
Gaussian processes with various statistical characteristics are formed. Below, this method will be used
to describe both input and output processes.

The simplest linear system is a single integrating RC circuit, at the input of which there is white
noise. At the output of such a system, a Markov Gaussian process with an exponential covariance
function is formed. At the outputs of two, three, and further circuits, the output processes will not
be Markov.

Formulas (17) and (18) will be used below when considering examples.

4. General Optimal Structure of Restoration of Realizations of the Two-Dimensional
Gaussian Process

Optimal recovery is understood to mean an algorithm that uses both sets of samples X
(
T(x)

)
, Y

(
T(y)

)
in the recovery of each of the components of a two-dimensional process Z1(t) = [x(t), y(t)]T.
The structure of the optimal recovery device is determined by Formula (10) and is given in Figure 1.Entropy 2020, 22, x FOR PEER REVIEW 7 of 26 
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, , , ,

x x y y
xx xx xy xyx y

x x y y
yx yx yy yy

K t T K t T K t T K t T
t
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6

1

2

12

11

10 6

9

11

( )xX,T
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8
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( )( )y
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( )xm t

( )ym t14
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5

Figure 1. General scheme of recovery of two-dimensional process realizations.

Both inputs of the device receive sets of samples X
(
T(x)

)
, Y

(
T(y)

)
, which are stored in memory

registers 1 and 2. The sets of samples are shifted in blocks 3 and 4 to obtain the best restoration
quality (see, for example, Example 3). Then, information about the location of the samples
along with the characteristics of the linear system is used to calculate the matrix elements
K12

(
t1, T(x), T(y)

)
,K−1

22

(
T(y), T(x)

)
in blocks 5 and 6. In block 7, these matrices are multiplied. A priori
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information about the mathematical expectation functions (7) and (8) is stored in blocks 8, 9, and is
used when subtracting average values mx

(
T(x)

)
, my

(
T(y)

)
at the reference points in blocks 10, 11,

and also when summing the functions mx(t), my(t) in blocks 13, 14 In block 12, matrix multiplication is
performed from the output of block 7 and elements of a centered a column vector of input samples.
Recovered realizations m̃x(t), m̃y(t) are formed at outputs of blocks 13, 14.

We draw attention to the fact that the matrix of basic functions b
(
t, T(x), T(y)

)
in the diagram in

Figure 1 is not indicated. However, in accordance with (11), it is formed at the output of block 7.
The elements of the matrix b

(
t, T(x), T(y)

)
represent a set of an orthonormal system of functions.

It means that

bk

(
t = T j

)
=

{
1, k = j
0, k , j

; k, j = 1, 2, . . . , N(x) + N(y) (19)

superscripts are omitted here.
The number of basic functions is the same as the total number of samples. To clarify the physical

meaning of the elements of the matrix b
(
t, T(x), T(y)

)
, consider a special case when N(x) = N(y) = 2.

This option is explored in the Examples 1 and 2 in the next section. Let us concretize the matrices
included in relation (11):

K12
(
t, T(x), T(y)

)
=


Kxx

(
t, T(x)

1

)
Kxx

(
t, T(x)

2

)
Kxy

(
t, T(y)

1

)
Kxy

(
t, T(y)

2

)
Kyx

(
t, T(x)

1

)
Kyx

(
t, T(x)

2

)
Kyy

(
t, T(y)

1

)
Kyy

(
t, T(y)

2

)
 (20)

K-1
22

(
T(x), T(y)

)
=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 (21)

As a result of multiplying (20) and (21), we obtain the matrix of basic functions

b
(
t, T(x), T(y)

)
=

[
b11(t) b12(t) b13(t) b14(t)
b21(t) b22(t) b23(t) b24(t)

]
(22)

whose elements are written in the form (we give only two of them):

b12(t) = Kxx

(
t, T(x)

1

)
a12 + Kxx

(
t, T(x)

2

)
a22 + Kxy

(
t, T(y)

1

)
a32 + Kxy

(
t, T(y)

2

)
a42 (23)

b23(t) = Kyx

(
t, T(x)

1

)
a13 + Kyx

(
t, T(x)

2

)
a23 + Kyy

(
t, T(y)

1

)
a33 + Kyx

(
t, T(y)

2

)
a43 (24)

Let us change the notation:

b1 j(t) = b(x)j (t), b2 j(t) = b(y)
j (t), j = 1, 4 (25)

Using relations (22)–(25), we write expressions for basic functions in the form:

b(x)j (t) =
N(x)∑
i=1

Kxx

(
t, T(x)

i

)
ai j +

N(x)+N(y)∑
p=N(x)+1

Kyx

(
t, T(y)

p−N(x)

)
apj (26)

b(y)
j (t) =

N(y)+N(x)∑
p=N(y)+1

Kxy

(
t, T(x)

p−N(y)

)
apj +

N(y)∑
i=1

Kyy

(
t, T(y)

i

)
ai j (27)
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Formulas (26) and (27) allow us to give a physical interpretation: (1) As in the one-dimensional

case, the basic function for each sample x
(
T(x)

j

)
or y

(
T(y)

j

)
in the general case is determined by the

sum of a product of the autocovariance function with arguments t, Tk, k = 1, 2, . . . , N (superscripts
are omitted here) and elements of inverse covariance matrix. The difference is that in the case under
consideration, we mean not only autocovariance functions Kxx(·), Kyy(·), but also cross-covariance
functions Kxy(·), Kyx(·). (2) It is clear for independent components, the sums with cross-covariances in
(26) and (27) disappear. Then, formulas for the basic functions coincide with the expressions for the
one-dimensional version, and the diagram in Figure 1 is split into two independent channels.

Each example presented in the article is illustrated not only by the type of basic functions, but also
by the corresponding graphs of recovery errors. Moreover, in the latter case, among many curves,
a curve corresponding to the reconstruction algorithm is necessarily shown, in which only the own
samples of the reconstructed realization are used. Comparison of the quality of restoration is performed
for the same process models and selected parameters. Note that the always-proposed algorithm is
characterized by an improvement in the quality of functioning.

5. Study Cases: Reconstruction of Realizations on One Sampling Interval

Shown in Figure 1, the general recovery scheme includes the option under consideration
(one sampling interval) as a special case; therefore, a somewhat simplified scheme will not be
discussed. Two of the most important characteristics of the SRA are detailed below: The basic functions
for each sample involved in recovery and the error recovery functions. The purpose of considering
a set of examples is to find out how the following parameters affect the specified characteristics:
(1) The number and location of samples of input and output realizations, (2) input and output
covariance functions, (3) their cross-covariance functions, and (4) the type of recovery procedure—on
one interval or multiple intervals.

Further research requires specification of data on the number and location of samples. We note one
important feature of the discussed algorithm, which will be considered when calculating the recovery
errors in all the examples considered below. Formulas (10) and (12) are of a general nature, and their
application for a large set of samples is associated with the complication of the device. Theoretically,
each sample should participate in the formation of the output processes of the system shown in Figure 1.
Actually, the samples of the realization of one component (say x(t)) affect the formation and the error
of recovery of the other component y(t) only when the localization of samples of the first component
is located near or inside the sampling interval of the recovered realization of the second component.
The reason for this effect is that it is realized through the cross-covariance function: When the argument

of this function is less than the covariance time τ(y)
c of the output process

(
T(x)

j − T(y)
i < τ

(y)
c

)
, then the

value of the function Kxy(τ) is close to the maximum and the influence of the corresponding sample
on the quality of recovery is significant. In addition to the position of the maximum of the function
Kxy(τ), the discrepancy between the samples of the auxiliary and recovered realizations also affect the
reduction of the recovery error. Such an effect occurs, for example, with unequal sampling periods

T(x)
j = T(y)

i + ∆T j (see Examples 5 and 6). In this case, the minimum of the recovery error will be in
the interval close to the point ∆T j + tmax (here tmax is location of the point at which the function Kxy(τ)

reaches its maximum within the sampling interval T(y)
j −T(y)

j+1). The main characteristics of the SRA are
also influenced by the elements of the inverse covariance matrix. However, it is difficult to establish at
least some patterns of such influence.

In Section 5.1 Example 1 and Section 5.2 Example 2, the numbers of samples are equal to two and
the samples of both realizations are located at the same points. In Section 5.3 Example 3, the auxiliary

sample is one, but its location varies within the sampling interval T(y)
i − T(y)

i−1.
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5.1. Example 1. System from One RC Chain with Markov Input Process

A Markov Gaussian process is formed at the output of an integrating RC circuit that is under the
influence of white noise. Its normalized covariance function R(τ) = K(τ)/σ2 in the stationary mode is
determined by the formula

Rx(τ) = exp(−α|τ|) (28)

where α = 1/RC is the constant parameter.
We put mx(t) = my(t) = 0. The linear system is also an integrating RC circuit with an

impulse response
h(t) = β exp(−βt) (29)

Using expressions (18), (28) and (29) we determine the normalized covariance function of the
output process y(t):

Ry(τ) =
1

β− α
[β exp(−α|τ|) − α exp(−β|τ|)] (30)

as well as normalized cross-covariance functions (17) between the processes x(t) and y(t):

Rxy(τ) =


√

β
α+β

1
β−α

[
exp(−ατ) − 2α

α+β exp(−βτ)
]
, τ ≥ 0√

β
α+β

1
β+α exp(−ατ), τ < 0

(31)

Ryx(τ) =


√

β
α+β

1
β+α exp(ατ), τ ≥ 0√

β
α+β

1
β−α

[
exp(−ατ) − 2α

α+β exp(−βτ)
]
, τ < 0

(32)

where Ri j(τ) = Ki j(τ)/σiσ j. In Figure 2 shows the graphs of the cross covariance function Rxy(τ)

and Ryx(τ) for various values of the parameters α and β. The curves are calculated for the following
parameters: Curve 1—α = 2, β = 1; curve 2—α = 4, β = 1; curve 3—α = 4, β = 2 for Ryx(τ) and
curve 4—α = 2, β = 1; curve 5—α = 4, β = 1; curve 6—α = 4, β = 2 for Rxy(τ). As can be seen,
the cross-covariance functions are odd, and their maxima are shifted of the point τ = 0. Especially we
note the curves 3 and 4 with their maxima in points τ = 0.25 and τ = −0.25 for Rxy(τ) and Ryx(τ),
respectively. In general, when the value of parameters α, β of cross covariance functions Rxy(τ), Ryx(τ)

increase, their maxima values decrease. This is explained, because the realizations of the input and
output process are more chaotic when the bandwidth is increased, which is described by the value of
parameters α, β.
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The results of calculations of basic functions carried out according to formula (11) are shown
in Figure 3. The values of the selected parameters are as follows: N(x) = N(y) = 2; the number of
samples involved in the recovery of realizations is the same: The samples are located at the same points:

T(x)
1 = T(y)

1 = 0.0; T(x)
2 = T(y)

2 = 1.0;α = 2, β = 1; σ2
x = 1 > σ2

y. In Figure 3 shows the basic functions of

the multidimensional algorithm b(x)j (t),
(
j = 1, . . . , N(x) + N(y)

)
(curves 1–4) and the one-dimensional

algorithm bi(t),
(
i = 1, . . . , N(x)

)
(curves 5 and 6). These basic functions correspond to the restoration

of realization of process x(t) at the input of the system. The samples of the realization of the output
process y(t) are auxiliary samples here. The multivariate algorithm has four basic functions (for own
and for auxiliary samples), while the unidimensional algorithm has two basic functions.

Curves 5 and 6 in Figure 3 refer to a one-dimensional algorithm. They are described by the first
term in (26) and the covariance function (28). In accordance with (26), the multidimensional algorithm
includes four basic functions, including two of them formed on the basis cross covariance functions
(32). Moreover, these functions, elements of the inverse matrix, influence the calculation of the basic
functions. It is obvious that the form of the multidimensional basic function changes radically in
relation to the main functions in a one-dimensional algorithm.
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Figure 3. The basic functions of recovery of the realization x(t) in Section 5.1 Example 1.

The results of calculations of recovery errors carried out according to formula (12) are shown
in Figure 4. The values of the selected parameters are the same as in the comments to Figure 3.
Curve 1 describes the recovery error of realization of x(t) with multidimensional algorithm. It has
a smoothed minimum close to the point τ = 0.25, because the function Kyx(τ) has maximum at this
point. The smoothness of the discussed extremum is influenced by the proximity of the control point,
where the error is zero by the definition.

Curves 3 and 4 describe the recovery errors σ̃2
x(t), σ̃2

y(t) for the one-dimensional algorithm, when
the recovery is performed only on their own samples. The difference in the values of the curve
maxima is explained by the difference in the time structure of the processes: The output process y(t) is
smoother than the input process x(t). Curves 1 and 2 are obtained by a multidimensional algorithm,
when both sets of samples participate in the restoration of each realization. The even form of curve 3

is explained, because this form is determined by the covariance functions Rxy

(
τ− T(y)

1

)
, Rxy

(
τ− T(y)

2

)
.

According to formula (27), the influential of these functions are weighed by the elements of the
inverse matrix. A comparison of pairs of curves 2, 4, and 1, 3 indicates that the restoration using the
multidimensional algorithm provides a higher quality of recovery than the similar procedure according
to the one-dimensional algorithm.
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5.2. Example 2. The Input Is Non-Markovian Process Formed by Two Sequential RC Chains. System Is One
RC Chain

There is one difference between Example 1 and Example 2: Here, the input process is not
Markovian. This circumstance changes all the covariance functions included in the expressions for the
analysis of the studied algorithm.

The covariance function of the input process is determined by relation (30) with the change
of index.

The linear system under study is described by the function

h(t) = γ exp(−γt), t ≥ 0 (33)

and the process at its output is characterized by the covariance function (18)

Ry(τ) =
β(γ− β)(γ+ β)(γ exp(−α|τ|) − α exp(−γ|τ|))

(γ− α)(γ− β)(β(γ+ α) − α(γ+ β))
−

−
α(γ− α)(γ+ α)(γ exp(−β|τ|) − β exp(−γ|τ|))

(γ− α)(γ− β)(β(γ+ α) − α(γ+ β))

(34)

The cross-covariance functions between the input and output are determined by the following
expressions (17)

Rxy(τ) =
√
γ(γ+α)(β+γ)

(γ+α)(γ+β)
√
β(γ+β)+α(γ−α)

×

×


β(γ− β)

[
exp(−ατ) − 2α

α+γ exp(−γτ)
]
−

−α(γ− α)
[
exp(−βτ) − 2α

(γ+β)
exp(−γτ)

]
, τ ≥ 0

β(α+ γ) exp(ατ) − (γ+ α)α exp(βτ) , τ < 0

(35)

Ryx(τ) =
√
γ(γ+α)(β+γ)

(γ+α)(γ+β)
√
β(γ+β)+α(γ−α)

×

×


β(α+ γ) exp(−ατ) − (γ+ α)α exp(−βτ) , τ ≥ 0

β(γ− β)
[
exp(ατ) − 2α

α+γ exp(γτ)
]
−

−α(γ− α)
[
exp(βτ) − 2α

(γ+β)
exp(γτ)

]
, τ < 0

(36)
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Figure 5 shows the graphs of the cross covariance function Rxy(τ) and Ryx(τ) following (35) and
(36) for various values of the parameters α and β. The curves are calculated for the parameters: curve
1—α = 2, β = 1,γ = 3/8; curve 2—α = 4, β = 1,γ = 3/8; curve 3—α = 4, β = 2,γ = 3/4 for Ryx(τ)

and curve 4—α = 2, β = 1,γ = 3/8; curve 5—α = 4, β = 1,γ = 3/8; curve 6—α = 4, β = 2,γ = 3/4
for Rxy(τ).
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As can be seen, the cross -covariance functions are odd, and their maxima are shifted to the points
τ = −0.3 and τ = 0.3 for Rxy(τ) and Ryx(τ), respectively. In general, when the value of parameters
α, β,γ of cross-covariance functions Rxy(τ), Ryx(τ) increase, their maxima are decreasing. This is due
to the fact that the realizations of the input and output processes have wider spectrums Note that
all the curves are smoother than those in Figure 2. This is explained by the fact that both processes
x(t), y(t) are non-Markovian.

The results of calculations of basic functions and recovery errors are shown in Figures 6 and 7.
The values of the selected parameters are as follows: The number of samples involved in the
recovery of realizations is the same: N(x) = N(y) = 2; the samples are located at the same points:

T(x)
1 = T(y)

1 = 0.0; T(x)
2 = T(y)

2 = 1.0;α = 2, β = 2;γ = 3
8 ; σ2

x = 1 > σ2
y.Entropy 2020, 22, x FOR PEER REVIEW 14 of 26 
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In Figure 6, the basic functions of the multidimensional algorithm (curves 1–4) and one-dimensional
algorithm (curves 5 and 6) are observed.

As in the previous example, covariance functions and elements of the inverse matrix influence the
basic functions. The difference is explained by non-Markovian characteristics of the output process.

The results of calculations of recovery errors are shown in Figure 7. The Curves 1–4 are
characterized by the same parameters as in Figure 6. When the basic functions change, the error
recovery functions must also change. Comparison of the curves in Figures 4 and 7 shows that the
maximum error values differ significantly. This fact is explained by the greater smoothness of the
studied processes in this example compared to the processes in Section 5.1 Example 1 (see more about
this effect in [13,14,16]). In addition, note that the curve 1 is asymmetric compared to curve 3. This is
explained because the influence of the output process determines the reconstruction of the process
at the input by means of the cross-covariance function. Meanwhile, curve 2 is a symmetric function,
because the cross-covariance function Ryx(τ) influences the reconstruction to a lesser extent.

In Section 5.1 Example 1 and Section 5.2 Example 2, the processes at the input and output of the
linear system are different in the time structure: The process y(t) is more smoothed compared to the
process x(t). The results of restoration errors calculations in Section 5.1 Example 1 and Section 5.2
Example 2 show that the degree of influence of additional samples of one process on the restoration
quality of another process is different. Specifically, when the process is more smoothed, then its positive
influence on the restoration quality of another process is significantly higher than in the other situation.
(see differences between curves 1 and 3, 2 and 4 in Figures 4 and 7).

The option considered in the first two examples of Section 5, in addition to theoretical, is of
practical interest. We repeat that the proposed method refers to the case when the transmitted messages
must have a statistical relationship. In telemetry systems, such messages are transmitted over different
channels. It is quite possible that a message described by the simplest covariance function (in our model
this is an input process) must be reconstructed with greater accuracy. Then, naturally, the message
samples with a more complex covariance function (this is an output process) will play an auxiliary role.

5.3. Example 3. Displacement of the Auxiliary Sample within the Sampling Interval of the Main Component

Again, consider the system studied in Section 5.1 Example 1. That means there is a system of one
RC circuit with a parameter β = 1. A Markov process x(t) with a parameter α = 2 acts at its input.
There are three important differences: (1) The input x(t) is an auxiliary process, (2) the set of samples

X
(
T(x)

)
consists of one sample x

(
T(x)

1

)
, and (3) the location of this sample is changed within sampling
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interval T(y)
2 − T(y)

1 of the main restored component y(t). The output process still has two samples

y
(
T(y)

1

)
= 0.0, y

(
T(y)

2

)
= 1.0. All characteristics of this example are described by the formulas (28)–(32).

For this simple variant, we specify the relations (14)–(16):

K12
(
t, T(x).T(y)

)
=


〈

.
x(t)

.
x
(
T(x)

1

)〉 〈
.
x(t)

.
y
(
T(y)

1

)〉 〈
.
x(t)

.
y
(
T(y)

2

)〉
〈

.
y(t)

.
x
(
T(x)

1

)〉 〈
.
y(t)

.
y
(
T(y)

1

)〉 〈
.
y(t)

.
y
(
T(y)

2

)〉
 (37)

K21
(
T(x), T(y), t

)
=



〈
.
x
(
T(x)

1

)
.
x(t)

〉 〈
.
x
(
T(x)

1

)
.
y(t)

〉
〈

.
y
(
T(y)

1

)
.
x(t)

〉 〈
.
y
(
T(y)

1

)
.
y(t)

〉
〈

.
y
(
T(y)

2

)
.
x(t)

〉 〈
.
y
(
T(y)

2

)
.
y(t)

〉


(38)

K22
(
T(y), T(x)

)
=


〈

.
y1

(
T(y)

1

)
.
x1

(
T(x)

1

)〉 〈
.
y1

(
T(y)

1

)
.
y1

(
T(y)

1

)〉 〈
.
y1

(
T(y)

1

)
.
y2

(
T(y)

2

)〉
〈

.
y2

(
T(y)

2

)
.
x1

(
T(x)

1

)〉 〈
.
y2

(
T(y)

2

)
.
y1

(
T(y)

1

)〉 〈
.
y2

(
T(y)

2

)
.
y2

(
T(y)

2

)〉
 (39)

Elements of matrices (37) and (38) show that cross-covariance functions have an important role in
calculating reconstruction error.

In this example, the auxiliary sample x1

(
T(x)

1

)
is located at five time points: (1)T(x)

1 = 0;

(2)T(x)
1 = 0.25; (3)T(x)

1 = 0.75; (4)T(x)
1 = 1.0. These different points affect the shape of the basic

functions as well as the course of the reconstruction error curves. The results of calculating these
dependences are shown in Figures 8 and 9.

It should be noted again that a realization to be restored belongs to the output process, which is
characterized by the cross-covariance function in Figure 1, curve 4 in contrast to Section 5.1 Example 1
and Section 5.2 Example 2.

In Figure 8, the basic functions of the multidimensional algorithm b(y)
1 (t) − b(y)

3 (t) are designated
by the numbers 1, 2, 3, meanwhile the basic functions of the one-dimensional algorithm b1(t), b2(t) are
denoted by the numbers 4 and 5.

The influence of the auxiliary sampling moments T(x)
1 on the reconstruction depends on the location

of the maximum of the cross- covariance function Kxy(τ) in the interpolation region. It should be noted
that the maximum of the Kxy(τ) covariance function (Figure 2 curve 4) is located at t = −0.45; that is,

the maximum of the cross covariance function is located at t < T(y)
1 = 0. As a consequence, Kxy(τ) this,

the lobe of the basic function of the auxiliary sampling instant b(y)
1 (t), is negative. This corresponds

to the sampling moments T(x)
1 = 0; 0.25. On the other hand, the maximum of the cross-covariance

function Kxy(τ) is in the interpolation region, that is, in the interval [0, 1]. This occurs when the

auxiliary sample instant is located at T(x)
1 = 0.75. The lobe of the basic function b(y)

1 (t) has positive

values in this region. Finally, the auxiliary sampling instant T(x)
1 is located with the second own sample,

that is T(x)
1 = T(y)

2 = 1. The influence of the mutual covariance function is located the interpolation

region, that is t > 1. As a result, the basic functions b(y)
2 (t), b(y)

3 (t) have the same shape as the basic
functions of the one-dimensional algorithm b1(t), b2(t).

In the proposed method, with a limited number of counts, each of the counts has its own
basic function. This is true even for a one-dimensional algorithm. In the multidimensional version,
the situation is more complicated, since the form of the basic function is influenced by both its own
samples and the samples of the auxiliary realization. Moreover, the first of them affect the form of the
basic function through their own covariance function, and the second through the cross-covariance
function. In addition, in both cases, the elements of the inverse covariance matrix and the temporal
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position of the entire set of samples play a role. The variety of these factors makes it difficult to comment
on the form of basic functions (see curves in Figure 8). One can only assert the following: The article
contains an analytical expression that defines the form of basic functions in general; the specified types
of basic functions in all cases provide a minimum of recovery errors.Entropy 2020, 22, x FOR PEER REVIEW 16 of 26 
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In Figure 9, there are four error recovery curves when the auxiliary sample x1

(
T(x)

1

)
is located at four

different instants: Curve 1—T(x)
1 = 0; curve 2—T(x)

1 = 0.25; curve 3—T(x)
1 = 0.75; curve 4—T(x)

1 = 1.0.
In Figure 9 shows the influence of the auxiliary sampling moments on the reconstruction quality

T(x)
1 . When the auxiliary sample T(x)

1 is located at some point in the own samples T(y)
1 , T(y)

2 , the error

recovery is quantitatively equal max
(̃
σ2(t)

)
= 0.078, as can be seen in curves 1 and 4. When the auxiliary

sample is displaced x1

(
T(x)

1

)
= 1.0 (curve 4), the effect of the cross-covariance function Kxy(τ) is zero,

because the influence of the auxiliary sample goes to the extrapolation interval. The different locations
of the maximum error (curves 1 and 4) is explained by locating the maximum of the cross-covariance
function Kxy(τ) at the instants T(x)

1 = 0; 1 (Figure 9). For example, when the cross-covariance function

Kxy(τ) is at T(x)
1 = 0, curve 1 is tilted to the right (Figure 9). This is explained by the influence of the

maximum of the cross-covariance function Kxy(τ) manifesting itself in the region close to the sampling

instant T(y)
1 = 0. On the other hand, when the sampling moments are located in the interpolation region,

the error reconstruction is reduced according to the fact that the maximum of the cross-covariance
function is shifted towards the sampling moment T(x)

2 , as observed in curve 2 and 3.
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6. Study Cases: Reconstruction of Realizations on Several Sampling Intervals

There are three examples here with multiple sampling intervals SRA. The input process realizations
are auxiliar. The realization of the output process should be restored. Each example has its own
peculiarity. Section 6.1 Example 4 and Section 6.2 Example 5 are described by the same input process
and system as in Section 5.1 Example 1. Section 6.1 Example 4 differs in sampling procedures:
The sampling of the input realization is non-periodic; the sample of the output realization is periodic.
The number of samples is equal N(x) = N(y) = 3. In Section 6.2 Example 5, the sampling of the
realizations of both processes is periodic, but the instance points are offsets. The number of samples is
equal N(x) = N(y) = 6. Section 6.3 Example 6 examines the SRA when the input process is not Markov.
The number of samples is equal N(x) = N(y) = 7.

6.1. Example 4. SRA Algorithm with Non-Periodic Sampling of Auxiliary Input Process

There is a system of one RC circuit with a parameter β = 1. A Markov process x(t) with a
parameter α = 2 acts at its input. The option of recovering the output process at several intervals,
when the procedures for sampling the processes x(t) and y(t) are different, is considered. The numbers
of samples are the same, i.e., N(x) = N(y) = 3. Sampling intervals of the process y(t) are periodic:

T(y) =
[
T(y)

1 = 0, T(y)
2 = 1.0, T(y)

3 = 2.0
]
. Samples of the realization of the process x(t) are non-periodic:

T(x) =
[
T(x)

1 = 0.7, T(x)
2 = 1.8, T(x)

3 = 2.5
]
. This is a non-trivial case, which, however, is easily studied

by the applied methodology.

Note that the basic functions of the multidimensional algorithm b(y)
4 (t) − b(y)

6 (t) (even number
curves) are narrower than the basic one-dimensional functions b1(t) − b3(t) (odd number curves). This

is explained by the influence of the displaced cross covariance function Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
at the sampling instants T(x)

i ,
(
i = 1, 2, . . . , N(x)

)
(Figure 10). This influence is weighted by the elements

ai j of the inverse covariance matrix. This influence is most clearly seen in the basic function b(y)
6 (t)

(curve 6) in the extrapolation region, where there is an approximate fluctuation. This is explained by
the presence of the sampling instant T(x)

3 = 2.5.
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Attention should be paid to Figure 11 that shows the auxiliary main functions (curves 1–3)
have a variable shape. This is explained because the sampling intervals ∆T(x) between the sampling

instants T(x)
i ,

(
i = 1, 2, . . . , N(x)

)
are arbitrary. The amplitude of each basic function b(y)

1 (t) − b(y)
3 (t)

decreases with increasing sampling interval. This means that, as the sampling interval ∆T(x) increases,

the influence between the mutual covariance functions Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
decreases;

this is manifested in the coefficients ai j in the inverse covariance matrix.
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The results of calculations of recovery errors are presented in Figure 12. Curve 1 describes the
recovery error using the multidimensional algorithm, and curve 2 refers to the one-dimensional version.
As you can see, the character of curve 1 is different on both sampling intervals due to non-periodicity
of auxiliary samples.
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6.2. Example 5. SRA of the Realizations of Both Processes Is Periodic, but the Instance Points of the Input
Are Offsets

In this example, the question of using the proposed algorithm when restoring the realization of
the output process at sampling intervals 5 and 6 is considered.

The description of the system and the input process coincides with the data of Section 5.1 Example 1.
All covariance functions are characterized by expressions (28), (30)–(32). The example is considered
when the numbers of samples are equal N(x) = N(y) = 6, and the sampling of the input x(t) and output
y(t) processes occurs with different periods. So, the set of input and output processes is described by
such data:

T(x) =
[
T(x)

1 = 0.75, T(x)
2 = 1.75, T(x)

3 = 2.75, T(x)
4 = 3.75, T(x)

5 = 4.75, T(x)
6 = 5.75

]
,

T(y) =
[
T(y)

1 = 0.0, T(y)
2 = 1.0, T(y)

3 = 2.0, T(y)
4 = 3.0, T(y)

5 = 4.0, T(y)
6 = 5.0

]
.

Sample sets X
(
T(x)

)
, Y

(
T(y)

)
are used to reconstruct the realization of the output process y(t).

The basic functions of the multidimensional algorithm b(y)
7 (t) − b(y)

12 (t) (odd curves) and basic
functions of the one-dimensional algorithm b1(t) − b6(t) (even curves) are shown in Figure 13.
Note that the shape of the basic functions of the multidimensional algorithm differs from
the functions of the one-dimensional algorithm close to the moments of the auxiliary samples
T(x)

i ,
(
i = 1, 2, . . . , N(x)

)
. This means that this difference is caused by the functions of cross-covariance

Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
in the instants T(x)

i ,
(
i = 1, 2, . . . , N(x)

)
(as one can see in Figure 2).

As can be seen in Figure 14, the form in the interpolation region of the auxiliary

basic function b(y)
1 (t) − b(y)

6 (t) is determined primarily from the cross-covariance function

Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
that determines the Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
, as appropriate.

Note that the auxiliary basic functions b(y)
1 (t) − b(y)

6 (t) have a smaller amplitude than the own

b(y)
7 (t) − b(y)

12 (t) and one-dimensional b1(t) − b6(t) basic functions. This is explained by the elements

of the inverse matrix ai j. The auxiliary basic function b(y)
6 (t) has a different form than the basic

functions b(y)
1 (t)− b(y)

5 (t). The reason for this is that all coefficients are positive for the auxiliary sample

T(x)
6 = 5.75. That means covariance functions and cross-covariance functions are summed.
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The recovery error of the output process y(t) by multidimensional and one-dimensional
algorithms is illustrated in Figure 15. Curve 1 characterizes the recovery using a multidimensional
algorithm. Curve 2 relates to a one-dimensional algorithm. The influence of the displacement

of the auxiliary samples with respect to the own samples T(y)
i ,

(
i = 1, 2, . . . , N(y)

)
is observed.

This means that the maximums of the cross-covariance functions are located the interpolation
region. This location corresponds to the minimum of the reconstruction error function, that is

t = 0.75 + T(y)
i ,

(
i = 1, 2, . . . , N(y)

)
. There is a small smoothed minimum at the highs of curve 2 in

the middle of the total interval. This effect for non-Markov processes is described in the analysis
of a one-dimensional algorithm [13,14,16]. In this example, the difference in the maxima of the
one-dimensional curves is insignificant. On curve 1, this effect is seen by the dependence among
their samples.



Entropy 2020, 22, 1079 20 of 24

Entropy 2020, 22, x FOR PEER REVIEW 21 of 26 

 

elements of the inverse matrix ija . The auxiliary basic function ( ) ( )6
yb t  has a different form than the 

basic functions ( ) ( ) ( ) ( )1 5
y yb t b t− . The reason for this is that all coefficients are positive for the auxiliary 

sample ( )
6 5.75xT = . That means covariance functions and cross-covariance functions are summed. 

 
Figure 14. Auxiliary basic functions in Section 6.2 Example 5. 

The recovery error of the output process ( )y t  by multidimensional and one-dimensional 

algorithms is illustrated in Figure 15. Curve 1 characterizes the recovery using a multidimensional 
algorithm. Curve 2 relates to a one-dimensional algorithm. The influence of the displacement of the 
auxiliary samples with respect to the own samples ( ) ( )( ), 1, 2, ...,y y

iT i N=  is observed. This means that 

the maximums of the cross-covariance functions are located the interpolation region. This location 
corresponds to the minimum of the reconstruction error function, that is 

( ) ( )( )0.75 , 1, 2, ...,y y
it T i N= + = . There is a small smoothed minimum at the highs of curve 2 in the 

middle of the total interval. This effect for non-Markov processes is described in the analysis of a one-
dimensional algorithm [13,14,16]. In this example, the difference in the maxima of the one-dimensional 
curves is insignificant. On curve 1, this effect is seen by the dependence among their samples. 

 
Figure 15. Recovery errors in Section 6.2 Example 5. Figure 15. Recovery errors in Section 6.2 Example 5.

6.3. Example 6. SRA When the Input Process Is Non–Markovian

Consider another example, which is an analogue of Section 5.2 Example 2. Here, the system is an
RC circuit with a parameter γ, and the input process is formed from white noise by two consecutive
RC circuits with parameters α, β. Covariance functions are defined by expressions (34)–(36). The input
process x(t) here is non-Markovian. Input and output processes are sampled as follows:

T(x) =
[
T(x)

1 = 0.6, T(x)
2 = 1.6, T(x)

3 = 2.6, T(x)
4 = 3.6, T(x)

5 = 4.6, T(x)
6 = 5.6, T(x)

7 = 6.6
]

T(y) =
[
T(y)

1 = 0.0, T(y)
2 = 1.0, T(y)

3 = 2.0, T(y)
4 = 3.0, T(y)

5 = 4.0, T(y)
6 = 5.0, T(y)

7 = 6.0
]

As can be seen, the number of samples is different and equal to 7. Input samples are delayed for a
while t = 0.6. A realization of the output process y(t) is reconstructed.

In Figure 16, the basic functions of the multidimensional b(y)
7 (t) − b(y)

12 (t) (odd curves) and
one-dimensional algorithm b1(t) − b6(t) (even curves) are compared. Note that the maximum of
the basic functions of the multidimensional and one-dimensional algorithm corresponds to the

sampling instant T(y)
i ,

(
i = 1, 2, . . . , N(y)

)
. This means that there is a greater of the covariance functions

Ky

(
τ− T(y)

i

)
,
(
i = 1, 2, . . . , N(y)

)
, which are weighted by the elements of the inverse covariance matrix ai j,

as observed in Formula (27). Another feature to note is that the basic functions of the multidimensional
algorithm b(y)

7 (t)− b(y)
12 (t) are narrower than the functions of the one-dimensional algorithm b1(t)− b6(t).

This is because all the cross-covariance functions Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
influence the recovery

of the samples T(y)
i ,

(
i = 1, 2, . . . , N(y)

)
.

In Figure 17, the auxiliary basic functions b(y)
1 (t) − b(y)

6 (t) of the multidimensional algorithm are

observed. Comparing the results with Figure 15, the amplitude of the functions b(y)
1 (t) − b(y)

6 (t) in

Figure 17 is greater. This is related to the cross-covariance function Kxy

(
τ− T(x)

i

)
,
(
i = 1, 2, . . . , N(x)

)
,

which is manifested in the elements of the inverse covariance matrix ai j. To explain the last basic

function b(y)
6 (t) of the last instant of the auxiliary sample T(x)

6 = 5.6 concentrates the influence in an
additive form (that is, the coefficients of the inverse matrix ai j are positive in this last auxiliary sampling
instant) of the covariance function Ky(τ) and the mutual covariance function Kxy(τ).
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The form in Figure 18 of the curves shows an analogy with Figure 15 in Section 6.2 Example 5.
The main differences in (18) (with a comparison of Figure 15) are associated with a significant decrease
in the values of the errors n and the asymmetric nature of the curves related to multivariate recovery.
The reasons are obvious: (1) The output process y(t) is smoother and (2) the shift of the samples of
the set T(x) as compared with the samples of the set T(y), and with the size of the sampling interval,
is insignificant (0.15). Curve 1 shows the effect of reducing the error in the center between the extreme
samples. Obviously, this is a reflection the greater statistical relationship between samples in the
considered non-Markov process.

The increase in the quality of restoration (in Figure 18) is physically explained by the fact that
in the known method when restoring realizations, only its own samples are used. In the proposed
method, the number of samples participating in the reconstruction is increased due to samples from
another, statistically related realization. Moreover, the number of additional samples can be arbitrary.
It is obvious that the restoration of realizations from a larger number of samples leads to an increase in
the quality of restoration.
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7. Conclusions

The problem investigated in the article work to the problem of sampling—recovery of
two-dimensional Gaussian processes. The dimensionality of the problem is not limited by the
presence of two random processes at the input and output of the linear system, since, in addition to
them, the problem includes two sets of samples fixed in the realizations of these processes. The algorithm
developed differs in that the reconstruction of the realizations of both components, or one of them, is
carried out on the basis of two sets of samples. This means that the recovery occurs not only with the
participation of its own realization samples, but with the realization samples of another component.
The considered examples illustrate some applications of the proposed algorithm. They studied the
options when the following changes: (1) The type and input of the system, (2) the number of intervals
on which the restoration is performed, (3) as well as the number of auxiliary samples involved in the
functioning of the multidimensional algorithm.

In all cases, there are basic functions and error recovery functions. These functions are optimal
and characterize the estimation of yields using the recovery algorithm studied. These reconstruction
characteristics allow us to demonstrate the advantage of using the algorithm based on the quality of the
reconstruction. This result will be used as long as the random processes have a statistical dependency.

Author Contributions: Methodology, V.K.; software, F.M.; formal analysis, V.K.; investigation, V.K., M.A.E.,
and F.M.; resources, V.K. and M.A.E.; data curation, F.M.; writing—original draft preparation, V.K. and F.M.;
writing—review and editing, V.K., M.A.E. and F.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors are grateful for the support of the National Polytechnic Institute (IPN). Especially,
to the Department of Telecommunications of the Section of Postgraduate Studies and Research (SEPI) of
ESIME Zacatenco.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Formulas for Conditional Statistical Characteristics of Multidimensional Gaussian
Random Variables

Application of the conditional average rule (CMR) to the problem under consideration requires
knowledge of the conditional characteristics for the Gaussian process. In mathematical statistics,
a general expression is known that allows one to determine the conditional expectation vector and the
conditional covariance matrix of a k-dimensional random variable based on a priori information about
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a n-dimensional Gaussian variable (n > k). The following general formulas fully fall under the CMR
as applied to a multidimensional Gaussian random variable.

We give these formulas using the simplest notation [23]. In the text of the article, these formulas
are concretized for the studied problem.

Consider a n-dimensional Gaussian variable

z = [z1, z2]
T, z1 = [z1, z2, . . . , zk]

T, z2 = [zk+1, zk+2, . . . , zn]
T (A1)

which is completely described by the vector of mathematical expectations

〈z〉 = [〈z1〉, 〈z2〉]
T (A2)

and covariance matrix K of the column vector z = [z1, z2]
T:

K =

[
K11 K12

K21 K22

]
(A3)

where K11,K22 are the covariance matrices of vectors z1 and z2, respectively; K12,K21—matrices of
cross covariance between vectors z1 and z2.

Suppose that the vector z2 is fixed, then the vector z1 becomes conditional with respect to the vector
z2. Its statistical characteristics are denoted by tildes. Then, the vector of conditional mathematical

expectations
〈~
z1

〉
and the matrix of conditional covariance

~
K are written in the form [22,23]:〈~

z1
〉
= 〈z1〉+ K12K-1

22(z2 − 〈z2〉) (A4)

~
K = K11-K12K-1

22K21 (A5)
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