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Abstract: The southern Humboldt Current ecosystem is an important topic among researchers
working on the drivers of pelagic species’ biological indicators. While sea surface temperature is
believed to be a major driver in anchovies’ (Engraulis ringens) reproductive and body condition
indicators, this paper shows that regional drivers such as Pacific decadal oscillation anomalies also
influence these biological processes. In addition, a warm condition could trigger increased gonad
development of anchovies and synchronization of body condition dynamics with local environmental
conditions stemming from sea turbulence and Ekman transport. To test the statistical significance of
causality between two time series and determine the direction of causality, the frequency-domain
Granger-causality method is considered. Therefore, this study provides additional predictive
information, derived from past data on anchovy reproductive and feeding activities. The study
could be useful for researchers working on relationships of environmental conditions and pelagic
species to predict biological processes’ maximum and minimum peak movements and anchovy
abundance in the southern Humboldt Current ecosystem.

Keywords: granger-causality; cross-spectrum; spectral density; southern humboldt current
ecosystem; anchovy

1. Introduction

The Earth’s climate systems have important implications for the ecology and physiology of key
marine species. One of these systems is the 1997–98 El Niño–Southern Oscillation (ENSO) phenomenon,
which impacts the small pelagic ecosystem in northern Chile [1]. The findings of Ulloa et al. [2]
considered the importance of studying species’ dependent attributes for evaluating the biological
impacts of environmental perturbations produced by the ENSO phenomenon. Specifically, a long-term
climate variability estimate was produced in northern Chile [1], showing anomalies associated with El
Niño events, which affected the abundance, recruitment, reproduction, adult biomass and environment
of coastal pelagic fish such as the anchovy (Engraulis ringens) on different temporal and spatial scales [3].

In addition, large local-scale phenomena such as regime shifts, ENSO cycle (El Niño-La Niña),
seasonality, coastal-trapped waves and upwelling events have been postulated as driving biological
processes in northern Chile [3]. Examples include, (1) distribution of anchovy changes in space
and depth during warm conditions such as El Niño; (2) after 2002 female length classes showing
a positive trend of the gonadosomatic index (GSI), indicating favorable development of anchovy
gonads coinciding with the period of prevailing cool conditions without strong, warm events
(i.e., El Niño 1997–98); and (3) cool conditions will favor the presence of cold coastal water, a shallower
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thermocline, stronger upwelling and higher productivity [4]. Differences could be related to how
anchovies synchronize reproductive dynamics with local environmental conditions to foster survival of
offspring [5]. These dynamics are ultimately influenced by other long-term climatic processes, such as
mild temperature changes [6]. This is due to warm/cool phase changes produced by environmental
changes associated with sea surface temperature (SST) which affects upwelling habitat conditions.
Thus, regional factors could reduce the horizontal upwelling habitat, leading to more anchovy
abundance on the coast [4,5].

More recently, [7] characterized how the anchovy synchronizes reproductive dynamics.
They investigated how local environmental variables such as the multivariate ENSO index (MEI)
and Humboldt Current index (HCI) [8,9] couple with the reproductive timing of anchovy, measured by
GSI. Contreras-Reyes et al. [7] concluded that the beginning and end of the anchovy spawning period
fluctuate mainly because of environmental factors, that the environment is affecting the timing of gonad
development of anchovies off northern Chile, that the strength of the relationship varied according
to female body size and that this leads to at most two-monthly spawning events per year. However,
the authors presented these relationships from an autocorrelation function perspective, which ignores
the possibility that an environmental variable could cause the biological one. Distinguishing causality
from correlation is a crucial problem in connected dynamic systems, especially when system variables
appear positively coupled at certain times but negatively at others, depending on system state [10,11].
Additionally, studies are lacking on important aspects such as short- and long-term trends of local and
regional environmental conditions, which influence the local and regional oceanographic conditions
linked to climate change.

To test the statistical significance of causality between two time series and determine the direction
of causality, the Granger-causality method [12] was employed in [13–15]. This approach motivated
the present study, as a need has arisen to characterize the short- and long-term causality of the
environment in anchovies’ biological processes. We applied the Granger-causality method to test
whether statistically significant feedback among environmental indexes and GSI and condition factor
(CF) [16] time series exists. In this case, HCI and regional environmental variability drivers such as
Pacific decadal oscillation (PDO) and Antarctic decadal oscillation (AAO), plus local environmental
variability drivers such as Ekman transport (ET), the sea turbulence index (TI) and SST can provide
additional predictive information from the past for the anchovy’s reproductive and feeding activities.
The Granger-causality method focuses on the type of dependence among the variables; the reproductive
and feeding activities by interval of length with more dependence on environmental variables; and the
expected variance produced in GSI monthly means and intra-annual behavior [17].

This paper is organized as follows: Granger-causality based on cross-spectrum methods is
described in Section 2. Section 3 presents the data collected off northern Chile to illustrate the evidence
for causality for local and regional environmental drivers and biological ones. Discussion concludes
the paper in Section 4.

2. Frequency-Domain Granger-Causality Test

To analyze the cause–effect interaction between the variables, i.e., to identify the stimuli and
responses for the variables along the time axis, the Granger-causality test [12] was carried out.
Granger-causality is a feedback mechanism method based on cross-spectral methods. Let xt be
a stationary process with no-periodic components, so the spectral representation of xt is

xt =
∫ π

−π
fx(λ)eiλtdλ, (1)

where λ ∈ (−π, π) are the Fourier frequencies. fx(λ) is the spectral density of xt given by

fx(λ) =
1
π

∞

∑
h=−∞

γx(h)e−iλh, (2)
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where γx(h) = E[xtxt+h], h ∈ Z, is the autocovariance function (ACF) of xt and i =
√
−1. Given that

for some processes the exact ACF is difficult to obtain, it is approximated by the sample ACF, γ̂x(h),
to then obtain the periodogram as estimator of the spectral density [18].

The main idea of Granger-causality is measuring the causality between two time series based
on spectral representation of Equation (1). To this end, the cross-spectral density and the coherence
function will be defined next.

Definition 1. Let xt and yt be two stationary time series, where yt has a spectral representation as in
Equation (1) but with spectral density fy(λ), λ ∈ (−π, π), given in Equation (2) with autocovariance
function γy(h) = E[ytyt+h]. Thus, the coherence function Cy→x(λ) between xt and yt is defined as

Cy→x(λ) =
|C(λ)|2

fx(λ) fy(λ)
,

respectively, where C(λ) = E[ fx(λ) fy(λ)] is the cross-spectral density between xt and yt, fy(λ) is the conjugate
of the complex function fy(λ) and "y→ x" denotes that yt Granger-causes xt.

The cross-spectrum density is the Fourier transformation of cross-covariance of two time
series, which gives us the degree of relationship between two time series at different frequencies.
The cross-spectral density of Definition 1 is a complex function of λ and the absolute value of the
coherence function is a real function defined in [0, 1] that measures the relationship degree between
xt and yt, given by the correlation coefficient square between the frequency components of the time
series. If Cy→x(λ) = 1, C(λ) = fx(λ) fy(λ), i.e., independence exists between spectral densities of both
time series. Additionally, on the contrary, if Cy→x(λ) = 0, strong dependence exists between spectral
densities of both time series.

Considering the univariate time series xt and yt of Definition 1, [19] showed that in
a two-dimensional vector of time series, zt = (xt, yt) at time t = 1, . . . , n, where zt is a finite p-order
vector autoregressive (VAR) process (see, e.g., [20]) of the form

Φ(B)zt = εt, t = 1, . . . , n; (3)

where Φ(B) = ∑
p
i=0 φiB

i is a 2× 2 lag polynomial with φ0 = 1 and Bizt = zt−i, and the error vector
εt is a white noise process with E[εt] = 0 and E[εtε

>
t ] = Σ, where Σ is a 2 × 2 positive definite

variance-covariance matrix. The VAR process may include a constant, a trend or dummy variables.
Considering a Cholesky decomposition using a lower triangular matrix G, the Σ matrix can be

decomposed as G>G = Σ−1 such that E[ηtη
>
t ] = I and ηt = Gεt. With the assumption that zt is

a stationary process, the moving average (MA) representation of the process is

zt = Φ(B)−1εt =

(
φ11(B)−1 φ12(B)−1

φ21(B)−1 φ22(B)−1

)(
ε1t
ε2t

)
=

(
ψ11(B) ψ12(B)
ψ21(B) ψ22(B)

)(
η1t
η2t

)
= Ψ(B)ηt,

where Ψ(B) = Φ(B)−1G−1. Then, the spectral density of xt is

fx(λ) =
1

2π

(
|ψ11(e−iλ)|2 + |ψ12(e−iλ)|2

)
. (4)

Definition 2. [21] Considering the spectral density of Equation (4), the measure of causality of yt over xt is

My→x(λ) = log
(

1 +
2π fx(λ)

|ψ11(e−iλ)|2

)
= log

(
1 +
|ψ12(e−iλ)|2
|ψ11(e−iλ)|2

)
. (5)
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The null hypothesis that yt does not Granger-cause xt and the alternative hypothesis that yt

Granger-causes xt at frequency λ is then given by

H0 : My→x(λ) = 0 versus H1 : My→x(λ) 6= 0. (6)

To obtain a suitable Wald statistic, My→x(λ) is obtained by replacing |ψ11(e−iλ)| and |ψ12(e−iλ)|
in Equation (5) by the estimated values obtained from the fitted VAR [20]. However, as in [19],
the disadvantage of Wald’s statistic is the exact computation of |ψ12(e−iλ)|. To solve this, the following
facts should be considered:

(a) From Equation (5), if |ψ12(e−iλ)|2 = 0, then My→x(λ) = 0, which implies that yt does not
Granger-cause x at frequency λ ∈ (−π, π);

(b) From Cholesky decomposition, we have Ψ(B) = Φ(B)−1G−1 and

ψ12(B) =
−g22φ12(B)
det[Φ(B)]

,

where g22 is the lower-diagonal element of G−1 and G−1 is a positive matrix given that Σ is
a positive definite variance-covariance matrix.

From (a) and (b) and the Euler representation, we have that y 9 x for a frequency λ ∈ (−π, π) if

|φ12(e−iλ)| =
∣∣∣∣ p

∑
j=1

φ12,j

(
cos(jλ)− i sin(jλ)

)∣∣∣∣ = 0, (7)

with φ12,j the (1, 2)th-element of φj defined in Equation (3), j = 1, . . . , p. Given that sin(jλ) = 0 if
λ = 0 or π, from Equation (7) we have that

p

∑
j=1

φ12,j cos(jλ) =
p

∑
j=1

φ12,j sin(jλ) = 0. (8)

Let αj = φ11,j, and β j = φ12,j and j = 1, . . . , p; the process xt can be modeled by harmonic regression

xt =
p

∑
j=1

αixt−i +
p

∑
j=1

βiyt−i + ε1t. (9)

If i exists such that βi 6= 0, then yt Granger-causes xt; if βi = 0 for all i, yt does not Granger-cause xt.
This implies the mean square error (MSE) of E[xt|yt, yt−1, . . .] is smaller than E[xt|xt, xt−1, . . .]. Then,
the null hypothesis of Equation (6) is equivalent to H0 : R(λ)β> = 0, where R(λ), λ ∈ (0, π), is a 2× p
matrix defined by

R(λ) =

(
cos(λ) cos(λ) . . . cos(pλ)

sin(λ) sin(2λ) . . . sin(pλ)

)
(10)

and β = (β1, . . . , βp).
Under null hypothesis, yt is Granger-cause of xt if βi 6= 0 for a specific i versus the alternative

hypothesis, yt does not Granger-cause xt if βi = 0, for all i. Therefore, the null hypothesis is tested
with a joint Fisher F-test of the harmonic regression model given in Equation (9). The F statistic
is approximately Fisher-distributed as F(2, n− 2p) for a frequency λ ∈ (0, π). A critical value for
rejecting the null hypothesis is 0.05 if a 95% confidence level is considered.

The proposed test developed by [19] postulates that a variable yt affects another variable xt

at a finite time horizon. Typically, some environmental and biological systems are modeled as
cointegrated (non-stationary) ones [13]; thus, the definition of causality at frequency zero is equivalent
to the concept of long-run causality. For stationary systems, it is assumed that xt is predicted using
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only the past of the series. If the spectral density of the resulting forecast error at low frequencies
can be explained by the additional past information of yt, then yt is said to be a long-run cause for xt.
Both cases must be considered in marine ecosystem modeling.

3. Application to Southern Humboldt Current Ecosystem

The anchovy is the main small pelagic fishery species in the upwelling southern Humboldt
Current ecosystem (SHCE), with stock in southern Peru and northern Chile (16◦–24◦ S). In this system,
the PDO has been described as the main driver of pelagic species alternation in several upwelling
systems on eastern coasts, such as California’s and the Humboldt Current [1,9]. The PDO oscillates
between warm and cool phases associated with sardine/anchovy dominance. Specifically, the PDO
presented a warm phase from 1989 to 2000, and then a cool phase started that is predicted to last until
2025. Anchovies’ existence on northern Chile’s coasts is related to local environmental conditions,
characterized by high-intensity coastal upwelling processes in summer due to the intensity of southern
winds [22]. The coastal upwelling processes generate strong temperature gradients coupled with
the phytoplankton community, with the coolest and warmest habitats inside and outside the coast,
respectively, and abundant anchovy biomass in hot zones.

In this section, we analyze the influence and Granger-causality of regional (HCI, PDO and AAO)
and local (IT, ET and SST) factors in anchovy reproductive and body condition indicators (GSI and CF,
respectively) in the upwelling Humboldt Current system in northern Chile.

3.1. Data and Software

The study area was restricted to anchovy landings in northern Chile (18◦21′–24◦00′ S), along the
Peru–Chile maritime border at the port of Antofagasta (23◦26′ S; see Figure 1).

3.1.1. Environmental Data

On a local scale, the 1989–2017 monthly means of meteorological and oceanographical station
records of Antofagasta port (23◦26′ S) were analyzed for SST, ET and TI. SST data correspond to
images of global SST level 4 and are produced daily in a grid of 0.25◦ by NOAA’s National Climatic
Data Center with a spatial resolution of 25 km obtained from the Group for High Resolution SST.
The satellite information on SST was analyzed in [4] with the help of daily images by constructing 1896
interpolated weekly images using empirical orthogonal functions (DINEOF) to complete the missing
data between 1981 and 2017 [4]. For each interpolated weekly image, the average SST was extracted for
the first 10 nautical miles from the coast. SST, air temperature, chlorophyll, mean sea level and wind
magnitude and direction were variables used to estimate ET and TI, according to methods proposed
by [23,24], respectively.

At the regional scale, three indexes were used: the HCI (http://www.bluewater.cl/HCI/),
containing atmospheric–oceanographic activity along the Chilean coast [8]; the PDO (http://
research.jisao.washington.edu/pdo, University of Washington) and the monthly AAO anomalies
(http://www.cpc.noaa.gov, NOAA-Climate Prediction Center).

3.1.2. Biological Data

The study period was from 1989 to 2017 and the studied small pelagic species were part of the
Chile–Peru shared stock, located between 16◦ S and 24◦ S. Analyzed biological information came from
the Fisheries Development Institute’s (IFOP) monitoring program and was financed by the Chilean
Undersecretariat of Fisheries and Aquaculture (SUBPESCA). Data were generated from biological
sampling at landings or aboard fishing vessels. A total of 25,000 samplings are available on average
per year; 50 specimens are selected for each sampling. Sex, total weight and gonad weight (0.01 g)
were determined (visual inspection according to [25]).

http://www.bluewater.cl/HCI/
http://research.jisao.washington.edu/pdo
http://research.jisao.washington.edu/pdo
http://www.cpc.noaa.gov
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Figure 1. Study area restricted to anchovy landings in the north of Chile (18◦21′–24◦00′ S). The circles
represent gravity centers of capture distributions of anchovies in northern Chile during the study
period (1989:01–2016:12). Source: Contreras-Reyes et al. [7].

Reproductive condition was determined by calculating the GSI [4,7] at month t as the percentage of
gonad monthly mean weight (Gt) in relation to monthly mean body weight (Wt) for all fish sampled as

GSIt = 100
Gt

Wt − Gt
(%). (11)

Fulton’s condition factor (CF) [26] of all fish sampled was calculated at month t as follows:

CFt = 100
Wt

L3
t
(%), (12)

where Lt is the monthly mean weight. In the denominator of Equation (12) exponent 3 is imposed as
an approximation of the estimated exponent in the regression model given in [16].
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3.1.3. Software and Computational Implementation

All estimations and computational implementations were carried out with R software [27].
To evaluate the presence of unit roots in time series, the augmented Dickey–Fuller (ADF) [28]

test was considered. For the presence of seasonal unit roots in time series, the Hylleberg–Engle–
Granger–Yoo (HEGY) test [29] was considered. The ADF test was implemented in the adf.test
function of the tseries package and the HEGY test was implemented in the hegy.test function of
the uroot package. To detect significant frequencies in time series, the robust G-test was considered
based on robust regression [30] and implemented in the robust.spectrum function of the GeneCycle
package.

The estimation of cross-spectral density and coherence function was implemented in the
crossSpectrum function of IRISSeismic package. The Granger-causality test described in Section 2
was implemented in grangertest function of lmtest package. The VAR parameter estimation and
frequency-domain-based Granger-causality test were respectively implemented in VAR and causality
functions of vars package.

3.2. Results

Figure 2 plots the environmental and biological variables described. The plot of the regional
environmental drivers seems to be non-stationary, though it could well be trend-stationary.
Additionally, the plot of local environmental and biological indicators looks stationary with an annual
cyclical pattern. Some relationships can be highlighted between indicators, mainly produced by
the 1996–1998 El Niño phenomenon, which can be crucial for analysis of causality (see Section 2).
Considered time series include the most relevant events (significant trend breaks identified in [7]):
the first in 1995:5, the second and highest in 1998:6 and the last one in 2002:3 [31].
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Figure 2. Time-series of the Humboldt Current index (HCI), Pacific decadal oscillation (PDO), Antarctic
decadal oscillation (AAO), sea surface temperature (SST), sea turbulence index (TI) and Ekman
transport (ET), for 1989:01–2016:12.
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We started with unit root tests to verify if the time series are stationary I(0) (and/or I(1)). Table 1
shows, based on the ADF unit root tests, that the null hypothesis of a non-stationary unit root was
rejected for all variables, except HCI and TI (at 95% confidence level), and ET (at 98% confidence
level). Next, the ADF test was applied to the detrended processes but gave a rejected null hypothesis
of a non-stationary unit root. As mentioned in Section 3.1.2, local environmental and biological time
series presented significant frequencies at 6 and 12 months, as confirmed by the p-values of the robust
G-test. The HEGY test did not present seasonal unit roots but confirmed the results of the ADF test for
HCI and ET. Therefore, p-values smaller than 0.01 are not shown in Table 1, where p-values of GSI
and CF also suggest seasonal stationarity. Therefore, the differentiation (1− B)yt = yt − yt−1 was only
imposed for HCI, ET and TI time series for the next analysis.

Table 1. Statistics and p-values (in parenthesis) for augmented Dickey–Fuller (ADF) and Hylleberg–
Engle–Granger–Yoo (HEGY) tests; p-values of robust G-test (RG) are also presented for frequencies
related to 6 and 12 months. Other frequencies are not presented, given that p-values were higher than
0.05 (no significant frequencies).

Variable Hypothesis ADF RG HEGY

HCI

s6 - 0.605 -
s12 - 0.754 -
I(0) −3.226 (0.083) - -
I(1) −13.192 (0.010) - -
t1 - - −2.207 (0.462)

PDO
s6 - 0.602 -
s12 - 0.049 -
I(0) −5.088 (0.010) - -

AAO
s6 - 0.682 -
s12 - 0.744 -
I(0) −7.639 (0.010) - -

SST
s6 - 0 -
s12 - 0 -
I(0) −4.999 (0.010) - -

TI

s6 - 0.041 -
s12 - 0 -
I(0) −2.919 (0.189) - -
I(1) −19.462 (0.010) - -

ET

s6 - 0 -
s12 - 0 -
I(0) −3.780 (0.020) - -
I(1) −20.727 (0.010) - -
t1 - - −3.165 (0.084)

GSI
s = 6 - 0 -
s = 12 - 0 -
I(0) −7.555 (0.010) - -

CF
s = 6 - 0.011 -
s = 12 - 0 -
I(0) −5.386 (0.010) - -

Figure 3 illustrates the coherence functions by frequency based on cross-spectral density between
environmental and biological time series. We can probably consider a linear relationship between
two tested time series’ frequencies if the coherence function is large at specific frequencies. As can be
seen in Figure 3a–c, the coherence function was close to 0 for frequencies in (0, 2π) and the highest
coherence was obtained at λ ≈ 0.52 (12 months or annual cycle), and the second one was obtained at
λ ≈ 1.05 (6 months or inter-annual cycle), obtained by seasonal components of GSI and CF. However,
in Figure 3d–f, the coherence function is close to 1 for frequencies in (0, π) and close to 0 for frequencies
in [π, 2π), where the highest coherence was obtained at λ ≈ 1.05. This means that evidence exists
of causality at different lags (but related to low number of predictors) based on the cross-spectrum
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analysis when compared the local environmental and biological time series, mainly produced by the
significant frequency detected by robust G-test.
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Figure 3. Coherence function between a regional or local environmental (yt) and biological (xt)
indicator, where xt represents the gonadosomatic index (GSI; solid red line) or condition factor (CF;
solid green line).
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Subsequently VAR models were evaluated for bivariate time series, composed from the
local/regional environmental and biological time series. Figure 4 illustrates Akaike’s information
criterion (AIC) with respect to number of predictors/regressors (p). The AIC was used to determine
the number of predictors/regressors, where the smallest AIC values indicate the “best” models.
Given that the Granger-causality test is very dependent and highly influenced by the selection
of predictors/regressors, an appropriate p for the objective variable zt in Equation (3) should be
determined by AIC. No environmental indicator had the minimum AIC value when the GSI was
considered as a biological indicator; thus in the first instance a cut-off point (or marked reflection point,
vertical dotted line) was considered. However, when the CF was considered as a biological indicator,
a minimum AIC value emerged among p = 10 and p = 13 predictors in panels (a)–(d), but for panels
(e) and (f), the same situation as in the GSI case occurred.
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Figure 4. Akaike’s information criteria (AIC) versus the number of predictors/regressors (p) for VAR
models considering regional or local environmental and biological (GSI (solid red line) or CF (solid
green line)) time series.

According to AIC results of Figure 4, a VAR model with a low number of predictors was considered
for frequency-domain Granger-causality test in the first instance, and a high number of predictors
(p = 100) in the second instance, except for bivariate time series composed of CF and detrended HCI,
PDO, AAO and SST. The results of these frequency-domain Granger-causality tests are presented
in Table 2. For the low p and GSI as X case, the null hypothesis that Y does not Granger-cause X
was rejected at a 95% confidence level only for PDO, SST and detrended TI as Y cases, but the null
hypothesis could not be rejected for a high p. This means that evidence exists of PDO, SST and
detrended TI Granger-causing GSI. For the CF case, only for SST and detrended ET was the null
hypothesis rejected with a 95% confidence level for a low p, but again, the null hypothesis could not
be rejected for a high p, proving that SST and detrended ET Granger-cause CF. This corroborates the
evidence of Granger-causality at different lags in the cross-spectrum analysis when compared to the
local environmental and biological time series.

Table 2. Frequency-domain Granger-causality test results in the Y → X sense for two VAR models:
the first and second ones considered p1 (low) and p2 (high) numbers of predictors, respectively. For each
model, the tests included the Fisher statistic (F) and p-value.

Y X p1 F p-Value p2 F p-Value

Detrended HCI GSI 13 1.353 0.177 100 0.741 0.930
CF 13 0.905 0.548 100 - -

PDO GSI 10 2.075 0.025 100 0.852 0.786
CF 10 1.831 0.052 100 - -

AAO GSI 10 0.514 0.881 100 0.358 1.000
CF 10 0.878 0.553 100 - -

SST GSI 10 9.158 <0.01 100 1.258 0.152
CF 10 2.357 0.001 100 - -

Detrended TI GSI 11 1.935 0.033 100 1.210 0.175
CF 11 1.607 0.092 100 0.946 0.608

Detrended ET GSI 12 0.842 0.608 100 0.647 0.984
CF 12 2.191 0.011 100 0.897 0.704
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Contreras-Reyes et al. [7] detected cross-correlation between detrended HCI and GSI; however,
we observed in Table 2 evidence that Granger-causality running from detrended HCI to biological
processes is weak for no-coupling. Moreover, the weakest causal effect holds for AAO according to tests
of both biological processes. This occurs because the Antarctic dynamic system is not synchronized
with the biological processes of small pelagics from the Chile-Peru shared stock. Therefore, AAO
could be discarded as a strong signal in biological indicator estimates and cannot be used to detect the
presence of external drivers that might be unknown in the modeling.

4. Conclusions and Discussion

The SHCE is an important topic among researchers working on the drivers of pelagic species’
biological indicators. However, the selection of “correct” drivers for identifying causality in the
SHCE can be difficult. Sometimes the variables are positively coupled, but at other times they appear
unrelated or even negatively coupled depending on the local/regional environmental indicator [4].
Chile–Peru shared stock exhibit radically different dynamic control regimes by large local-scale
phenomena, such as regime shifts, ENSO cycle, seasonality, coastal-trapped waves and upwelling
events, causing the correlations between small pelagic species and phytoplankton and producing
a change sign [5].

Given the importance of the issue of climate change, this study revisited the question of
whether environmental factors influence reproductive and body conditions of the anchovy by using
a frequency-domain Granger-causality test. This technique can capture nonlinearities, potentially
intrinsic to data generating processes for local/regional environmental and biological processes,
for instance, due to the structural breaks explained in [4,7]. These structural breaks in SST, GSI and CF
were determined by the 1996–1998 El Niño event, and this study presented evidence that a regional
indicator such as PDO could be an important factor in anchovy development. Moreover, given that the
Granger-causality test is highly influenced by the number of predictors/regressors p in the VAR model,
for a high p (∼100), this implies that a variable yt affects another variable xt at a infinite time horizon;
however, this concept is not addressed by the frequency-domain Granger-causality test, as is postulated
in the conclusions of [19]. Therefore, our study presented the evidence of Granger-causality for a low
p (10 ≤ p ≤ 13, see Table 2) based on a cut-off point criterion. In addition, the study highlighted
that PDO, SST, TI and ET have always been important in predicting reproductive and body condition
activity, as researchers working on links between environmental conditions and pelagic species can
predict movements of the maximum and minimum peaks of biological indicators. This study could
also be useful for predicting anchovy abundance in the SHCE [5,11].

While SST is believed to be a major cause of GSI and CF time series [3,4], there is a debate that
suggests that regional drivers such as PDO anomalies also drive these biological indicators. However,
the evidence in terms of the latter line of reasoning is mixed. Hernández-Santoro et al. [4] highlighted
that seasonal change of SST explained and caused GSI and CF, determining a delay of the start and
maximum GSI, and a negative relationship with CF. In addition, [4] showed a gradual SST increase
mainly during the austral winter starting in 2006, due to a phase change in the PDO [32]. Therefore, this
study corroborates that a warm condition could trigger a rise in anchovy gonad development, so the
GSI could be explained by SST as local environmental indicator. Additionally, anchovy synchronize
their body condition dynamics with the local environmental conditions given by TI and ET.

This study is based on previous cross-correlation analysis of [4,7], where the the question of
causality in a dynamic ocean SHCE was addressed with a different methodology. To answer that
question, the Granger-causality concept provides predictability, rather than correlation of these studies,
giving more evidence of causation between time-series variables [11], and filling the gap of determining
Granger-causation over correlation. Although correlation is neither necessary nor sufficient to establish
causation, it remains deeply ingrained in our heuristic thinking [10]. For example, detrended HCI
does not Granger-cause GSI and/or CF, but they are correlated. On the other hand, lack of correlation
does not imply lack of Granger-causation. However, Granger-causality addresses prediction rather
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than correlation as the criterion for causation in time series and assumes that causes can be separated
from effects. This is possible in purely stochastic system; however, it is not defined for all systems,
such as deterministic dynamic systems. Additionally, while we only analyzed Granger-causality in
addition to the correlation analysis by [4,7], we must highlight that GSI and CF were used as partial
proxies for reproductive and body condition factors of anchovy, respectively. Thus our evidence of
causality between the processes should not be associated with a real correlation between two variables.
To confront this issue, a detrended cross-correlation analysis [33] will be required, which was beyond
the scope of this study.

Finally, further work must consider a spatial-temporal approach for causality [34]. Neglecting
these issues could also lead to spurious research outcomes, ignoring more significant influences
local/regional environmental drivers have on biological ones. However, our objective was to obtain
the first evidence of causality at a space-point scale but over a long period.
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