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Abstract: The present analysis deals with the entropy analysis of the blood flow through an
anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles
(NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and
incompressible. The lubrication approach is used for the mathematical modeling. The second law
of thermodynamics is used to examine the entropy generation. The exact solutions are obtained
against velocity and temperature profile with the use of computational software. The results for
Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting
the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity,
economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e.,
antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of
the blood temperature in the case of the tapered artery has supreme importance in controlling the
temperature of blood in the living environment. The presence of a magnetic field is advantageous to
manage and control the blood motion at different temperatures. The present outcomes are enriched to
give valuable information for the research scientists in the field biomedical science, who are looking
to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases.

Keywords: entropy analysis; zinc-oxide nanoparticles (ZnO-NPs); blood flow; tapered artery;
peristaltic flow

1. Introduction

In recent years, nanomaterials in biomedical science have acquired significant attention because
of their promising applications. The development of nanoparticles in a smaller size shows remarkable
features in the biomedical field for anticancer gene/drug delivery, anti-bacteria, bio-sensing, and cell
imaging. The usage of nanoparticles (NPs) is beneficial in a broad range i.e., diagnosis, imaging,
and delivery. The unique features of magnetic nanoparticles (MNPs) are useful in theranostics
(magnetic resonance imaging agents), magnetic drug targeting, and magnetic fluid hyperthermia
vehicles. There are two components of nanoparticles, i.e., the surface modifier and the core
material. The core material is made up of biological materials i.e., lipids, phospholipids, chitosan,
dextran, and lactic acid, or maybe made up of metals, carbon, silica, and chemical polymers.
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The surface modifier is accountable for the change in the physiochemical features of core materials.
Multiple amounts of chemical compounds, probs, drugs, and proteins are connected to the nanoparticle
surface by adsorption process or due to covalent bonds’ assistance.

Zinc oxide (ZnO) nanoparticles (NPs) is one of the essential nanoparticles that are applicable
in multiple fields because of their promising chemical and physical features [1,2]. ZnO NPs were
firstly used in the rubber industry [3,4], but later it was also used in various cosmetic products [5].
Apart from the applications mentioned earlier, ZnO NPs are applicable in multiple industrial
processes i.e., photocatalysis, electronics, electro-technology industries, and concrete production [3,6].
ZnO NPs consist of low-toxicity and low-cost nanomaterial, which is beneficial in antioxidant,
antibacterial, anticancer, anti-inflammatory, and antidiabetic activities as well as useful in bio-imaging
and drug delivery [7–9].

Sucharitha et al. [10] discussed the peristaltic nanofluid flow with magnetic and Joule heating
effects. Shahzadi et al. [11] contemplated the impact of carbon nanotubes propagating in a wavy
annulus with variable viscosity features. Mekheimer et al. [12] used a third-grade fluid model to
determine the behavior of gold nanoparticles suspended in blood and presented an application
associated with cancer therapy. Eldabe et al. [13] also considered the gold nanoparticles in blood
flow but contemplated the non-Darcy porous medium. Prakash et al. [14] presented an application
of blood flow using the peristaltic pumping model through a tapered channel filled with nanofluids.
Ebaid et al. [15] used a homotopy perturbation scheme to determine the behavior of gold nanoparticles
suspended in blood and moving in sinusoidal format. Khan et al. [16] investigated multiple shapes
of nanoparticles through an asymmetric peristaltically induced channel under magnetic effects.
Ali et al. [17] investigated the hybrid TiO2 and Cu-H2O nanofluid under slip and magnetic forces via
the peristaltic mechanism. Some recent studies associated with the current topic can be found from the
references [18–22].

Entropy is one of the essential topic and plays a crucial role in our daily life. It is associated with
the second law of thermodynamics [23], which provides a measure of system’s disorder. According to
the thermodynamics, the physical process can be classified into two parts: irreversible and reversible.
A zero change in the entropy reveals the reversible process, whereas, when it is different from zero,
it reveals the irreversible process. Thus, the entropy generation can be contemplated as the measure of
the irreversibility of a process.

Different researchers examined the entropy generation with heat transfer. For instance,
Akbar et al. [24] discussed the peristaltic propulsion of copper water (H2O+Cu) nanofluid flow
with thermal conductivity and presented a detailed analysis of entropy generation. Ellahi et al. [25]
studied the peristaltic motion of nanofluid through a porous medium using Darcy law. Ranjit and
Shit [26] contemplated the electro-osmotic flow with entropy generation and discussed the peristaltic
pumping under magnetic effects. Qasim et al. [27] presented a detailed analysis of entropy generation
on a wavy channel filled with methanol-based nanofluid. Shehzad et al. [28] presented a mathematical
model of the entropy generation using non-Darcy Poiseuille flow with the application of purification.
Jangili and Bég [29] investigated the entropy generation in a micropolar fluid propagating through a
vertical plate under magnetic and buoyancy effects. Ali et al. [30] contemplated the similar problem [24]
but with slip effects. Saleem and Munawar [31] studied the cilia motion and entropy generation with a
non-Newtonian fluid model using Ohm’s law. Noreen et al. [32] studied the entropy generation on the
peristaltically induced motion with hall current and ohmic heating. Narla et al. [33] explored entropy
generation in electro-osmotic nanofluid flow in a curvy channel with joule dissipation. Monaledi and
Makinde [34] investigated the entropy generation in a microchannel filled with nanoparticles and
propagating via Poiseuille flow mechanism. Riaz et al. [35] presented a detailed mathematical analysis
of the peristaltic asymmetric wavy motion of blood with entropy generation with convection.

Due to such promising applications of ZnO NPs, the present study’s main target is to discuss the
entropy generation on the blood flow through anisotropically tapered arteries filled with magnetic
Zinc-oxide (ZnO) nanoparticles.The ZnO nanoparticles play a significant role in anticancer effects.
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Magnetic NPs are beneificial for synergic actions as well as direct heating, and the killing of
the cancer cells. Furthermore, Magnetic NPs are important in magnetic drug targeting, targeted
delivery, and magnetic hyperthermia. A significant motivation to examine the flow through the
converging-diverging artery comes from medical science. In the mammals’ arterial systems, it is
usual to observe stenosis or narrowings, including axisymmetric or collar-like. These constrictions are
because of the impingement of ligaments, intravascular plaques, and spurs on the wall’s vessel [36].
Once the vascular lesion has been evolved, a coupling impact occurs betwixt its further production and
the change of flow features [37]. The understanding of the flow in the neighborhood of the stenosis is
beneficial to examine the important complications that occur due to such contractions. For instance,
the inner generation of tissue into the artery, the production of thrombus, and the bulging and the
weakening of the artery downward from the stenosis.

For the proposed flow, the Jeffrey fluid model with incompressible and electrically conducting
features have been contemplated. The Jeffrey fluid model gives dual behavior, i.e., Newtonian and
non-Newtonian. The proposed Jeffrey fluid model is adequate to express the stress relaxation features
of non-Newtonian fluids, which usual viscous fluid models fails to express. The lubrication theory and
the second law of thermodynamics are applied to formulate mathematical modeling. The extrinsic
magnetic field is also contemplated; in addition, the behavior of viscous dissipation and Joule heating
are also contemplated with an energy equation. The exact solutions are obtained against velocity and
temperature profile with the use of computational software Mathematica using a Built-in command
‘DSolve’. The significant results are discussed across all the leading parameters.

2. Problem Description and Modeling

Let us contemplate a finite tube having length L filled with non-Newtonian fluid and Zinc-oxide
(ZnO) NPs. An extrinsic magnetic field is applied while the induced magnetic field is assumed to be
negligible to small magnetic Reynolds number. The non-Newtonian contains the following features
i.e., irrotational, constant density, electrically conducting, and incompressible. We have contemplated
the cylindrical polar coordinates r̃, θ̃, z̃ while r̃ lies towards the radial direction, θ̃ is located along the
circumferential direction, and z̃ is contemplated along the axis of the artery as displayed in Figure 1.
Furthermore, r̃ = 0 represents the axis of the tube. The presence of heat transfer is also contemplated.
At the wall of the tube, the temperature T̃1 is assumed. The mathematical expression for the proposed
anisotropically tapered artery with time-variant features is described as:

R(z̃) =

 `(t̃)

[
z̃η + R0 −

δ cos ψ

L0

(
11− 94

3L0
h̄ +

32
L2

0
h̄2 − 32

L3
0

h̄3

)]
; d ≤ z̃ ≤ d +

3L0

2
`(t̃)(1 + z̃η); otherwise

, (1)

where h̄ = z̃ − d, R0 represents the radius of the normal artery contains the non-stenotic area,
the stenotic length is denoted by L0, the height of the stenosis is δ, t̃ the time, R(z̃) represents the artery
radius and the tapered arterial segment having composite stenosis, and the tapering angle is denoted
by ψ, and η = tan ψ denotes the slope of tapered vessel.

We determine three distinct shapes of artery i.e., the diverging tapered artery (ψ > 0),
the converging tapered artery (ψ < 0), and the non-tapered artery (ψ = 0). It can be expressed
in mathematical form as:

ψ =


Converging artery ψ < 0,
Non-tapered artery ψ = 0,
Diverging artery ψ > 0,

(2)

The internal growth of the tissues, thrombus, in the artery is responsible for the diverging case.
The inner development of the tissues in the artery provides significant resistance and provides
resistance to the flow. The tissue may grow until the artery gets wholly occluded. The emergence of
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mural thrombi at the position of the narrowed artery causes the same similar obstacles as the internal
growth of the tissues. However, a non-tapered case reveals that the artery is smooth and uniform
throughout the whole region. The converging case occurs due to atherosclerotic plaques, which usually
occurs due to faulty lipid metabolism. Plaques consist of lipids and are often found these days in the
arteries, which occurs due to high cholesterol diet, etc.

The time-variant function `(t̃) reads as

`(t̃) =
eωαt̃ + (1− cos ωt̃) α

eωαt̃
, (3)

where ω represents the radial frequency due to force oscillation, and α the constant.
The proposed Jeffrey fluid model is

τ =
µn f

1 + Γ1

(
ϑ̇ + Γ2ϑ̈

)
, (4)

and

µn f =
µ f

(1−Ψ)2.5 , (5)

where the nanofluid viscosity is µn f , Ψ indicates the nanoparticle volume fraction, Γ1 the ratio betwixt
the relaxation to retardation time, Γ2 denotes the delay time, ϑ the shear rate, and dots represent the
differentiation w.r.t time.

In component form, they are found as

τr̃r̃ =
2µn f

1 + Γ1

[
1 + Γ2

(
v

∂

∂r̃
+ ũ

∂

∂z̃

)]
∂ṽ
∂r̃

, (6)

τr̃z̃ = τz̃r̃ =
µn f

1 + Γ1

[
1 + Γ2

(
v

∂

∂r̃
+ ũ

∂

∂z̃

)](
∂ṽ
∂z̃

+
∂ũ
∂r̃

)
, (7)

τr̃r̃ =
2µn f

1 + Γ1

[
1 + Γ2

(
v

∂

∂r̃
+ ũ

∂

∂z̃

)]
∂ũ
∂z̃

. (8)

The continuity equation, equation of motion with body forces, and energy equation are described as [38]

1
r̃

∂

∂r̃
(r̃ṽ) +

∂ũ
∂z

= 0, (9)

ρn f

(
ṽ

∂ṽ
∂r̃

+ ũ
∂ṽ
∂z̃

)
= −∂ p̃

∂r̃
+

1
r̃

∂

∂r̃
r̃τr̃r̃ +

∂

∂r̃
τr̃z̃ −

1
r̃

τθ̃θ̃ , (10)

ρn f

(
ṽ

∂ũ
∂r̃

+ ũ
∂ũ
∂z̃

)
= −∂ p̃

∂z̃
+

1
r̃

∂

∂r̃
r̃τr̃r̃ +

∂

∂r̃
τz̃z̃ − σn f B2

0 ũ, (11)

(ρcp)n f

(
ṽ

∂T̃
∂r̃

+ ũ
∂T̃
∂z̃

)
= κn f

(
∂2T̃
∂r̃2 +

1
r̃

∂T̃
∂r̃

+
∂2T̃
∂z̃2

)
+ τr̃z̃

∂ũ
∂r̃

+ σn f B2
0 ũ2, (12)
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and [39]

σn f

σf
= 1 +

3Ψ (σ− 1)
(σ + 2)−Ψ (σ− 1)

, σ =
σnp

σf
,

κn f

κ f
=

κnp + 2κ f − 2Ψ
(

κ f − κnp

)
κnp + 2κ f + 2Ψ

(
κ f − κnp

) , (13)

where (ρcp)n f the specific heat capacity of nanofluid, ρn f the density of nanofluid, σn f the electrical
conductivity of nanofluid, σnp the electrical conductivity of the NPs κn f the thermal conductivity of
nanofluid, κp the thermal conductivity of NPs, and B0 the applied magentic field. The values used
in Equation (13) are presented in Table 1. The boundary conditions according to the proposed flow
configuration are described as

∂ũ
∂r̃

=
∂T̃
∂r̃

= 0, r̃ = 0, (14)

ũ = 0̃, T̃ = T̃1, r̃ = R(z̃). (15)

The following are the non-dimensional quantities which are helpful for further formulation

r =
r̃

R0
, u =

ũ
U

, z =
z̃

L0
, v =

L0

δU
ṽ, L =

L̃
L0

, R =
R
R0

, p =
R2

0
µ f L0U

p̃, η =
ηL0

R0
,

T̃ = T̃1 + T(T̃0 − T̃1), δ =
δ

R0
. (16)

Using the above equations in the governing equations, and an appropriate use of lubrication theory,
the mathematical modeling leads to the following formulation:

∂p
∂r

= 0, (17)

dp
dz

=
µn f

rµ f (Γ1 + 1)
∂

∂r

(
r

∂u
∂r

)
−

σn f

σf
Ha2u. (18)

In the above equation, the results for Newtonian fluid model reduce for Γ1 = 0.

κn f

κ f

∂2T
∂r2 +

µn f Bm

µ f (Γ1 + 1)

(
∂u
∂r

)2
+

σn f

σf
BmHa2u2 = 0, (19)

where Ha is the Hartmann number and Bm the Brinkman number which is found as

Ha =

√
σf

µ f
B0R0, Bm =

µ f U2

κ f
(
T̃0 − T̃1

) . (20)

The boundary conditions become

∂u
∂r

=
∂T
∂r

= 0, r = 0, (21)

u = 0, T = 0, r = R(z). (22)
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Figure 1. Geometrical configuration of the anisotropically tapered artery.

3. Entropy Generation Analysis

The volumetric entropy generation in dimensional form reads as [40–42]

E
′′′
gen =

κn f
T̃0

(
∂T̃
∂r̃

)2

+
τr̃z̃

T̃0

(
∂ũ
∂r̃

)
+

σn f B2
0

T̃0
ũ2, (23)

The above equations are comprised of three parts. The first term on the right-hand side represents
irreversibility due to heat transfer, the second term shows the irreversibility process due to fluid
friction, and the last term shows the behavior of hydromagnetics.

Applying the dimensionless variables in Equation (16) to the above equation, we obtain the
following form of the entropy equation

Es =
E
′′′
gen

E′′′g
=

κn f

κ f

(
∂T
∂r

)2
+

T0Bm

Γ1 + 1

(
µn f

µ f

)(
∂u
∂r

)2
+

σn f

σf
BmT0Ha2u2, (24)

where

E
′′′
g =

κ f (T̃0 − T̃1)

T2
0R2

0

, T0 =
T̃0

T̃0 − T̃1
. (25)
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Brinkman number Bm, and the Hartmann number Ha is defined in Equation (20). The Bejan number
for the present formulation reads as

Nb =

κn f

κ f

(
∂T
∂r

)2

κn f

κ f

(
∂T
∂r

)2
+

T0Bm

Γ1 + 1

(
µn f

µ f

)(
∂u
∂r

)2
+

σn f

σf
BmT0Ha2u2

. (26)

4. Solution of the Problem

The formulated Equations (18) and (19) are linear but coupled differential equations. Therefore,
utilization of computational software Mathematica 10.3v is helpful to solve these kinds of differential
equations. The results are obtained by utilizing the built-in command in Mathematica. We obtain the
exact solutions as:

u =
1

A2Ha2
dp
dz

(
I0 (u0r)− I0 (u0R)

I0 (u0R)

)
, (27)

T = Bm

(
dp
dz

)2 [
−2
{

A1(1 + Γ1) + A2Ha2r2Γ1

}
I0 (u0r)2 − {2A1(1 + Γ1)(3 + 4Γ1)

+A2Ha2(r2(1 + Γ)− R2(1 + 3Γ1))
}

I0 (u0R)2 + 2A2Ha2Γ1

(
r2 I0 (u0r)− R2 I0 (u0R)

)
× I0 (u0r)

{
8A1(1 + Γ1)

2 I0 (u0R) + A2Ha2Γ1r2
0F1

(
; 2;

u2
0

4
r2

)}

−A2Ha2R2Γ1 I0 (u0R)
1

Γ(2) 0F1

(
2;

u2
0

4
R2

)]
÷ 4A2

2 A3Ha4(1 + Γ1)I0 (u0R)2 , (28)

where

u0 =

√
A2Ha√

A1(1 + Γ1)
, A1 =

µn f

µ f
, A2 =

σn f

σf
, A3 =

κn f

κ f
. (29)

In the above equations, I0 is the Bessel functions of zeroth-order, and 0F1 represents the
hypergeometric function.

The flux is calculated utilizing the following expression:

Q = 2r
∫ R

0
udr, (30)

Q =
dp
dz

R2

A2Ha2 I0 (u0R)

[
0F1

(
2;

u2
0

4
R2

)
− I0 (u0R)

]
. (31)

The impedance is calculated utilizing the following expression

Λ =
1
Q

∫ L

0

(
−dp

dz

)
dr. (32)
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where

dp
dz

=
A2Ha2QI0 (u0R)

R2

[
I0 (u0R)− 0F1

(
2;

u2
0

4
R2

)] . (33)

5. Graphical Analysis

In this section, the graphical outcomes are elaborated against all the leading parameters for
velocity, temperature, entropy, and Bejan number profile. The following are the parameter values
that are used to elaborate the numerical results: L0 = 1; Ψ = 0.1; Bm = 0.2; Γ1 = 1; ω = 0.2; α = 0.7;
Ha = 4; δ = 0.2, and the thermophysical properties for blood and ZnO-NPs are given in Table 1.
All the graphical results are plotted for three distinct cases i.e., converging ψ < 0, non-tapered ψ = 0,
and diverging ψ > 0.

Table 1. Thermo-physical properties of blood and Zinc-oxide NPs [43,44].

Physical Properties cp (J/Kg·K) ρ (Kg/m3) κ (W/mK)

ZnO 523 5700 25
Blood 1063 3594 0.492

Figure 2 is sketched to observe the behavior of the magnetic field Ha on the motion of the blood
under the suspension of the magnetic field. The response is dual in the artery; for instance, along the
walls, it increases, whereas it decreases in the middle of the artery. This shows that the Lorentz force,
which occurs due to the magnetic field, is more effective in the middle of the artery. The behavior
of the blood flow in all three cases i.e., diverging, non-tapered, and converging, is the same as the
effects of the magnetic field. Figure 3 shows the effects of nanoparticle volume Ψ on the velocity of
blood for all the cases. It is easily observable that, in the middle of the artery, the blood flow gains its
maximal velocity due to the increment in nanoparticle volume fraction; however, closer to the artery,
it decreases. Furthermore, Ψ reflects the results for single-phase motion. Another thing we can see
is that the effects of Ψ are small. Figure 4 presents the behavior of Jeffrey fluid parameter Γ1 on the
velocity profile against all three cases. In this figure, the results for Newtonian fluid Γ1 = 0 are also
plotted. It can be seen that Jeffrey fluid parameter enhances the velocity of the fluid in the middle
of the channel, while the effects closer to the walls are negligible. Figure 5 shows the consequences
of impedance profile Λ versus the height of stenosis δ against distinct values of Ha for all the cases
of proposed geometry. In this figure, we can see that, by increasing magnetic effects, the impedance
profile uniformly increases; however, less magnitude has been observed for diverging and non-tapered
cases than the converging artery. Next, Figure 6 represents the variation of Ψ on the impedance profile.
In this figure, we found that, for the single-phase case when Ψ = 0, the magnitude of the impedance
profile is maximal, whereas, by increasing the values of Ψ, the impedance profile reduces.

Figure 7 is plotted to determine the consequences of impedance Λ versus radial frequency ω

for multiple values of Ha. In this figure, we can see in the horizontal directional that, as ω → 0.3,
the impedance profile is decreasing, which shows that higher values of radial frequency are less
effective on the impedance of blood. Furthermore, the Lorentz force that occurs due to the magnetic
field boosted the impedance profile throughout the domain; however, it is decreasing against diverging
and non-tapered cases. It depicts from Figure 8 that an increment in Ψ significantly enhances the
impedance profile; however, the results for all the cases and every value of Ψ are negligible when then
the radial frequency approaches to 0.3.

Figure 9 demonstrates the behavior of the magnetic field on the temperature profile. From this
figure, we can observe that the pattern gets higher in magnitude when the effects of the magnetic
field increases. Another thing we can see is that, when the magnetic field is small i.e., Ha = 3,
the converging, diverging, and non-tapered artery shows similar behavior, but, by increasing the
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magnetic field, the results become more transparent. Figure 10 is plotted for temperature profile to
see the consequences of Brinkman number Bm. An enhancement in Brinkman number Bm causes
a significant increase in the temperature profile because higher values of Brinkman number lessen
the heat conduction, which creates an increment in the temperature profile. It can be viewed in
Figure 11 that higher values of Ψ reduce the temperature profile. For the single-phase profile,
the results are maximum; however, the suspension of particles tends to diminish the temperature
profile. Similar behavior has been observed for all the cases of the artery.

Figures 12 and 13 are developed to see the behavior of entropy Es against the Brinkman number Bm

and the magnetic parameter Ha. Figure 12 shows that, due to a significant increment, Brinkman number
Bm boosted the entropy profile, while for each case of the artery, it decreases. It depicts from Figure 13
that the presence of the magnetic also enhances the entropy profile, but the magnitude is small but
remains uniform and positive throughout the domain.

Figures 14 and 15 are sketched to examine the Bejan number Nb profile against the Brinkman
number Bm and the magnetic parameter Ha. It can be seen in Figure 14 that Brinkman number
Bm convexly enhances the Bejan number. However, during the variation of Brinkman number,
the converging, non-tapered and diverging arteries show themselves to be less effective. In Figure 15,
the magnetic field enables the Bejan number to perform as an increasing function.

Converging
Non-Tapered
Diverging

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

r

u

Figure 2. Consequences of velocity against multiple values of Ha. Black color: Ha = 1; red color:
Ha = 4; green color: Ha = 7.
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Figure 3. Consequences of velocity against multiple values of Ψ. Black color: Ψ = 0; red color: Ψ = 0.1;
green color: Ψ = 0.2.
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Converging
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Diverging
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Figure 4. Consequences of velocity against multiple values of Γ1. Black color: Γ1 = 0; red color: Γ1 = 1;
green color: Γ1 = 6.
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Figure 5. Consequences of impedance vs. δ against multiple values of Ha. Black color: Ha = 1;
red color: Ha = 4; green color: Ha = 7.
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Figure 6. Consequences of impedance vs. δ against multiple values of Ψ. Black color: Ψ = 0; red color:
Ψ = 0.1; green color: Ψ = 0.2.
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Figure 7. Consequences of impedance vs. ω against multiple values of Ha. Black color: Ha = 1;
red color: Ha = 4; green color: Ha = 7.
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Figure 8. Consequences of impedance vs. ω against multiple values of Ψ. Black color: Ψ = 0; red color:
Ψ = 0.1; green color: Ψ = 0.2.
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Figure 9. Consequences of temperature against multiple values of Ha. Black color: Ha = 3; red color:
Ha = 5; green color: Ha = 7.
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Figure 10. Consequences of temperature against multiple values of Bm. Black color: Bm = 0.1; red color:
Bm = 0.2; green color: Bm = 0.3.
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Figure 11. Consequences of temperature against multiple values of Ψ. Black color: Ψ = 0; red color:
Ψ = 0.05; green color: Ψ = 0.1.
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Figure 12. Entropy profile against multiple values of Bm. Black color: Bm = 0.15; red color: Bm = 0.2;
green color: Bm = 0.3.
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Figure 13. Entropy profile against multiple values of Ha. Black color: Ha = 0.5; red color: Ha = 1;
green color: Ha = 1.5.
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Figure 14. Consequences of Bejan number against multiple values of Bm. Black color: Bm = 0.15;
red color: Bm = 0.2; green color: Bm = 0.3.
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Figure 15. Consequences of Bejan number against multiple values of Ha. Black color: Ha = 0.5;
red color: Ha = 1; green color: Ha = 1.5.
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6. Conclusions

We have studied the entropy generation on the blood flow using the Jeffrey fluid model
propagating through an anisotropically tapered artery under the suspension of magnetic Zinc-oxide
(ZnO) nanoparticles (NPs). The proposed fluid model is incompressible and electrical conducting.
Using the lubrication approach and the second law of thermodynamics, mathematical modeling is
performed. The exact solutions are found using the computational software, Mathematica. The physical
effects of all the leading parameters are discussed using the graphical method. The critical outcomes
of the present analysis are summarized below:

(i) It is found that the magnetic field opposes the fluid motion in the middle of the artery while the
nanoparticle volume fraction enhances the motion.

(ii) The magnitude of the Newtonian fluid velocity is lower compared with the non-Newtonian case.
(iii) The magnetic boosted the impedance profile, whereas the nanoparticle volume fraction opposes

the impedance profile.
(iv) Temperature profile gets significantly increased due to the increment in Brinkman number and

magnetic field.
(v) The enhancement in nanoparticle volume fraction reduces the temperature profile.
(vi) Entropy profile shows a uniform and increasing behavior against the magnetic field and Brinkman

number.
(vii) Bejan number profile also rises due to the increment in the magnetic field and Brinkman number.
(viii) The monitoring of the blood temperature in the case of the tapered artery has supreme importance

in controlling the temperature of blood in the living environment.
(ix) The presence of a magnetic field is advantageous to manage and control the blood motion at

different temperatures.
(x) ZnO-NPs have promising applications in biomedical engineering due to its low toxicity,

economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e.,
the antibacterial and anticancer fields, and are also beneficial in antidiabetic treatment.

Limitations and future perspectives: There is no question that the usage of magnetic NPs is
helpful and plays an essential role in the treatment of different diseases, including cancer. In particular,
magnetic hyperthermia and magnetic drug delivery aggregate auspicious technologies for the
treatment of cancer. However, the limitations are related to the strength of the extrinsic magnetic field
and the problems associated with the penetration of the tissues, which have to have to be further
enhanced. Moreover, the present results show the laminar flow description. The present study ignores
the effects of shear-thinning and shear-thickening, which can be further elucidated in the near future.
The proposed outcomes are hopefully beneficial for the experimental investigation of magnetized fluid
flows with non-Newtonian models and heat transfer.
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