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Abstract: A distribution that maximizes an entropy can be found by applying two different principles.
On the one hand, Jaynes (1957a,b) formulated the maximum entropy principle (MaxEnt) as the search
for a distribution maximizing a given entropy under some given constraints. On the other hand,
Kapur (1994) and Kesavan and Kapur (1989) introduced the generalized maximum entropy principle
(GMaxEnt) as the derivation of an entropy for which a given distribution has the maximum entropy
property under some given constraints. In this paper, both principles were considered for cumulative
entropies. Such entropies depend either on the distribution function (direct), on the survival function
(residual) or on both (paired). We incorporate cumulative direct, residual, and paired entropies
in one approach called cumulative Φ entropies. Maximizing this entropy without any constraints
produces an extremely U-shaped (=bipolar) distribution. Maximizing the cumulative entropy under
the constraints of fixed mean and variance tries to transform a distribution in the direction of a bipolar
distribution, as far as it is allowed by the constraints. A bipolar distribution represents so-called
contradictory information, which is in contrast to minimum or no information. In the literature,
to date, only a few maximum entropy distributions for cumulative entropies have been derived.
In this paper, we extended the results to well known flexible distributions (like the generalized
logistic distribution) and derived some special distributions (like the skewed logistic, the skewed
Tukey λ and the extended Burr XII distribution). The generalized maximum entropy principle was
applied to the generalized Tukey λ distribution and the Fechner family of skewed distributions.
Finally, cumulative entropies were estimated such that the data was drawn from a maximum entropy
distribution. This estimator will be applied to the daily S&P500 returns and time durations between
mine explosions.

Keywords: cumulative entropy; maximum entropy distribution; generalized Tukey λ distribution;
generalized logistic distribution; skewed logistic distribution; skewed Tukey λ distribution;
skewed normal distribution; Weibull distribution; extended Burr XII distribution

1. Introduction

For a continuous random variable with density f , the classical differential (Shannon) entropy is
defined by

ES( f ) = −
∫

f (x) ln f (x)dx. (1)

Maximizing (1) with respect to f under the constraint of observed power or L-moments gives
maximum entropy (ME) densities (see e.g., [1,2]). This ME solution represents a distributional model
which is compatible with the minimum information given by the fixed constraints. The task of
deriving ME densities is important, as they are the only reasonable distribution to use for estimation,
as lower entropy distributions would mean to assume information that we do not possess. However,
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(1) has some shortcomings in order to be a good measure of information, as it could, for example be
negative for special densities [3]. Nevertheless, much of the literature has been concerned with the ME
task, not only for classical differential entropy, but also for the cumulative residual, the cumulative,
cumulative paired entropy, and further entropies with modifications of the generating functions.
Thus, in the following section, a short literature review is given.

Substituting the density by the survival function in (1) leads to the cumulative residual (Shannon)
entropy. Rao et al. [4] were the first who discussed this new entropy. The discussion occurred in the
context of reliability theory, where only random variables with non-negative support are of importance
while the survival function is the natural distributional concept. The solution of the maximum entropy
task under power moment constraints has already been discussed by [4,5]. They used the log-sum
inequality to derive the ME solution instead of the usual approach based on the Lagrange–Euler
equations. The exponential and more generally, the Weibull distribution, are solutions to these special
ME tasks. In the following years, several authors [6–17] also focused on cumulative residual entropies.
In particular, Drissi et al. [10] were concerned with the ME problem. They considered random variables
with support R and derived the logistic distribution as the ME solution under the additional constraint
that the ME solution has to be symmetric. DiCrescenzo [18] applied (1) to the distribution function
and called the result ’cumulative entropy’. Based on early results of DeLuca and Pal [19,20] in the
fuzzy set theory concerning membership functions, Li et al. [21] defined a further entropy concept
for so-called uncertainty variables which are similar but not identical to random variables. The main
idea here is to consider, in (1), the distribution function as well as the survival function. The obvious
corresponding ME task was discussed by [22–24]. There are many studies in the literature concerned
with the generalization of (1). Thus, some authors [25–27] modified the entropy generating function.
General generating functions were considered by [28–30] for the definition of the related concept
of f -divergence [31]. Sometimes f -divergences are also called φ-divergences [32]. Zografos [33]
generalized the cumulative residual Shannon entropy in a similar way. Klein et al. [34] combined the
ME task known from uncertainty theory with the use of general entropy generating functions. They
derived the Tukey λ distribution as an ME distribution when the entropy generating function of [25] is
applied together with the distribution and the survival function. They introduced the term ’cumulative
paired entropy’ analogue to the paired φ entropy introduced by [35]. Recent publications [36,37]
applied the Havrda-Charvát approach to the survival function under the name ’Cumulative Tsallis
entropy’ of order α. This term refers to the famous paper of [38], where he gives a physical foundation
for the Havrda-Charvát approach.

In this paper, the first research question was to clarify what kind of information cumulative
entropies really measure. Therefore, we introduce the concept of ’contradictory information’ in
contrast to ’no information’. As a second research question, we want to unify the diverse approaches
of cumulative entropies and their maximization. For this purpose, general cumulative Φ entropies
will be introduced. All known variants of cumulative entropies are special cases of this general
class. Then, after deriving two general formulas for ME quantile functions under some moment
restrictions, we apply these formulas to derive ME distributions for new cumulative entropies (like
the cumulative Mielke(r) entropy) as well as to identify the cumulative entropy for some flexible
families of distributions that allow for skewness (like the generalized Tukey λ or the generalized
logistic distribution). As a byproduct, we find some new families of distributions (like a special skewed
Tukey λ distribution and a generalized Weibull distribution). The results are summarized in a table
and discussed in detail in the Appendix A. The last research question starts with observed data and
tries to estimate the cumulative entropy in such a way that the data come from the corresponding
ME distribution. This gives an alternative to non-parametric estimation of density functions or
distribution functions.

This paper is organized in line with these research questions. Section 2 starts with the discussion
of contradictory information and cumulative entropies in principle. In Section 3, we introduce general
cumulative Φ entropies and prove general results for ME distributions for cumulative Φ entropies
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under different constraints. In Section 4, we propose an estimator for the ME generating function.
Finally, we apply this estimator to real datasets. In the Appendix A, we apply the theoretical results to
seven families of cumulative Φ entropies (MaxEnt) or families of distributions (GMaxEnt).

2. What does Maximizing Cumulative Direct, Residual, and Paired Shannon Entropies Mean?

In this section, we first discuss the concept of ’contradictory information’ in contrast to
no or minimum information and determine that contradictory information corresponds with
U-shaped/bipolar distributions. Then, we learn that maximizing cumulative paired entropies best
reflects this situation by comparing the results with those of maximizing differential, cumulative
residual, and cumulative direct entropies. Next, we see that the cumulative residual and cumulative
direct entropies do not correspond to a U-shaped distribution if the support of a random variable is
only non-negative. Overall, in this section, the focus is on Shannon entropies. However, all insights
can be transferred to arbitrary cumulative entropies immediately.

The traditional ME approach starts with the result that the uniform distribution has minimum
information (= maximum entropy) under the constraint that the area under the density sums up to one.
However, there is another concept of maximum entropy in fuzzy set [19] and uncertainty theory [24,39].
Transferring this concept to probability theory, maximum uncertainty represents the fact that an event
A with probability 0 < P(A) < 1 and its complementary event A with probability P(A) = 1− P(A)

have identical probability. This means that P(A) = 1/2. Since the Shannon entropy

−P(A) log P(A)− (1− P(A)) log(1− P(A))

is maximized for P(A) = 1/2, this kind of entropy could serve as the basis for an uncertainty
measure. For a continuous random variable X, the ensemble of events (X ≤ x), x ∈ R such that
0 < P(X ≤ x) < 1 can be considered. It is obvious to measure the amount of uncertainty of X by

−
∫

P(X ≤ x) log P(X ≤ x)dx−
∫
(1− P(X ≤ x)) log(1− P(X ≤ x))dx,

with integration area R. We set 0 log 0 = 0. Let F be the cumulative distribution function of X, then the
cumulative paired Shannon entropy is defined by

CPES(F) = −
∫

F(x) log F(x)dx−
∫
(1− F(x))log(1− F(x))dx

= −
∫ 1

0
(u log u + (1− u) log(1− u))q(u)du (2)

with probability integral transformation u = F(x), quantile function Q(u) = F−1(u), and quantile
density q(u) = dQ(u)/du = 1/ f (Q(u)) for u ∈ [0, 1]. f denotes the density of X. If X has a compact
support [a, b], CPES(F) attains its maximum for F(x) = 1/2 for a ≤ x < b. This corresponds to
a so-called bipolar distribution with P(X = a) = P(X = b) = 1/2. For this bipolar distribution,
CPES(F) = ln 2(b− a), a < b holds. Therefore, the cumulative paired Shannon entropy increases
with b− a. In contrast to this, the classical differential Shannon entropy (ES) takes a value of ln 2 for
all bipolar distributions, independently of how large the distance between the two mass points is.
Rao [5] identified this property as an important advantage of cumulative entropies over the differential
entropy. The different behaviors of differential (Shannon) entropy and cumulative Shannon entropy
are illustrated in Example 1.

Example 1. We consider the symmetric beta distribution with density

f (x; α) =
1

B(α, α)
xα−1(1− x)α−1, 0 < x < 1, α > 0
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while parameter α ∈ (0.1, 2). This range allows almost bipolar distributions (α = 0.1), uniform distributions
(α = 1), and bell-shaped distributions (α = 2). Figure 1 compares the values of the differential entropy and
the cumulative paired Shannon entropy for this range of the parameter α. We see that the differential entropy
is non-positive everywhere and attains its maximum for the uniform distribution (α = 1). In contrast to this,
the cumulative paired Shannon entropy starts with the maximum value for a bipolar distribution and decreases
monotonically with an increase of the parameter α.

Figure 1. Differential entropy and cumulative paired Shannon entropy for the symmetric beta
distribution with several parameter values of α.

As we do not want to assume information that we do not possess, we perform the ME task to
search for densities that are relying on maximum entropy. The densities that are based on minimum
information are the only ones that could reasonably be used. In this paper, we propose to rely on bipolar
distributions, as they provide contradictory information which is even less useful than minimum or no
information for prediction.

The following examples intend to explain where bipolar distributions appear in real situations
and how this bipolarity affects the predictability of a random variable X.

Example 2. In an opinion poll survey, individuals are asked to judge their political belief on a continuous
left–right scale. 0 (100) symbolizes an extremely left (right) political view. The survey’s result maximizes the
cumulative paired Shannon entropy if half of the people state to be extremely left (= 0), and the other half state
to be extremely right (= 100). This is a situation of maximum uncertainty regarding how to predict the political
view of an individual person.

Example 3. If the task is to judge a product on a Likert scale with five ordered categories, the uniform distribution
means that no category will be favored by the majority of the voters. However, there could be a result of the
voting that is still more confusing than the uniform distribution. What can we learn from the extreme situation
that half of the voters give their vote to the best and the other half to the worst category? What does this
mean for a new customer thinking over buying the product? In this situation, buying would therefore mean
receiving an either excellent or very bad product. This is a situation in which it is most complicated to predict
the customer’s decision.

Both situations of Examples 2 and 3 can be characterized by the term ’contradictory information’
in contrast to minimum or no information. In general, information is able to reduce uncertainty.
However, contradictory information is implicitly defined by the fact that it increases uncertainty
and provides a high chance for a wrong decision. (Anti-information is a related, but less formal
concept introduced by the information scientist J. Verhoeff [40].) Therefore, as bipolar distributions
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lead to contradictory information, it is an important task to consider entropies that will be maximized
by a bipolar distribution if there are no constraints. Thus, we propose to use cumulative paired
entropies to cover contradictory information. Example 1 already showed that the differential entropy
does not embody contradictory information. In the following section, we compare the information
provided by using cumulative residual and cumulative direct entropies in contrast to using cumulative
paired entropies. Rao et al. [4] introduced cumulative residual entropies as a Shannon entropy, where
the density is substituted by the survival function. Then, [5–17] discussed this cumulative residual
Shannon entropy:

CRES(F) = −
∫ ∞

−∞
(1− F(x)) ln(1− F(x))dx. (3)

DiCrescenzo and Longobardi [41] applied the Shannon entropy to a distribution function and called it
cumulative entropy. This gave the formula

CDES(F) = −
∫ ∞

−∞
F(x) ln F(x)dx. (4)

We will call (4) cumulative direct Shannon entropy (CDES(F)) for a better distinction to the cumulative
residual Shannon entropy (CRES(F)) and the cumulative paired Shannon entropy (CPES(F)).

What does maximum entropy mean for the cases of cumulative residual and cumulative direct
Shannon entropy? The entropy generating function −(1 − u) ln(1 − u) attains its maximum for
u = 1 − 1/e = 0.632 > 0.5. If the support is [a, b], the maximum CRES distribution is bipolar.
However, this bipolarity is less extreme than in the symmetric case. This is due to that fact that it
holds P(X = a) = 1− 1/e and P(X = b) = 1/e. Therefore, there is a preference for the alternative a
that makes the prediction of X easier than in the symmetric case. However, there is still somewhat
contradictory information rather than information. Regarding (4), the probabilities for a and b have to
be interchanged to get a maximum CDES distribution. The following example illustrates this for a
beta distribution with parameters α and β.

Example 4. Let X be beta distributed with density

f (x; α, β) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1, α, β > 0.

In the following section, we fix β and compute α such that (3) or (4) will be maximized. In Table 1 αcre and αcde
denote the corresponding maximum values. Moreover, this table also contains the maximum values of CRES
and CDES. We see that the maximum is attained for small values of α and β, denoting a slightly asymmetric
U-shaped beta distribution.

Table 1. Maximum entropy beta distributions with several parameter values of β.

β αcre Max. CRES αcde Max. CDES

0.01 0.006 0.3678 0.017 0.3677
0.20 0.111 0.3543 0.290 0.3408
0.50 0.259 0.3222 0.595 0.2970
1.00 0.482 0.2778 1.000 0.2500
2.00 0.905 0.2226 1.000 0.1869

Figure 2 illustrates the maximum CRES and CDES beta distributions for the parameter settings displayed
in Table 1.
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Figure 2. Cumulative residual and cumulative direct Shannon entropy for the asymmetric beta
distribution with parameter values α such that CRES (CDES) is maximized for given β.

To date, the support has been R. However, as, e.g., in the reliability theory, the focus is on
random variables with only non-negative support. Thus, it is of importance to also discuss this
situation. When only considering a random variable with non-negative support and for the ME
quantile function Q holds Q(0) = 0, maximizing CRES or CDES gives a distribution which is no
longer U-shaped, and the maximum entropy situation no longer corresponds with contradictory
information. We illustrate this in Example 5 using a special beta distribution. The parameter β will be
set to 1 such that Q(0) = 0.

Example 5. Let X be beta distributed with density

f (x; α) =
1
α

xα−1, 0 < x < 1, α > 0.

Table 2 displays the values for CRES and CDES for certain values of α. For α = 0.01, we get an extremely
right skewed and for α = 3 an extremely left skewed distribution. For α = 0.48 (α = 1), CRES (CDES) attains
its maximum.

Table 2. Cumulative residual and cumulative direct Shannon entropy for the beta distribution with
several parameter values α and β = 1.

α CRSS CDES

0.01 0.1836 0.0826
0.48 0.2779 0.2191
1.00 0.2500 0.2500
3.00 0.1464 0.1876

Figure 3 displays, on the top row, the maximum CRES distribution at α = 0.48 and shows that this is an
arrangement between an extremely right skewed (α = 0.01) and an extremely left skewed (α = 3) distribution.
On the bottom row, we see the maximum CDES distribution at α = 1.
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Figure 3. Cumulative residual and cumulative direct Shannon entropy and density for the beta
distribution with several parameter values α and β = 1.

The question we raised in the section title on what maximizing cumulative direct,
residual, and paired Shannon entropies means can be answered by the conclusion that maximizing
these entropies leads to a more or less skewed U-shaped distribution as long as there are no special
constraints (like Q(0) = 0) which are able to prevent this. This U-shaped distribution corresponds to
contradictory information. Examples 2 and 3 showed that this kind of information is even less useful
for prediction and estimation than minimum or no information. Therefore, those distributions are the
only reasonable distributions to consider to not assume information that we do not possess.

In the following section, we unify the diverse approaches of cumulative entropies and introduce
the general class of cumulative Φ entropies. Then, we derive two general formulas for ME quantile
functions under some restrictions.

3. Maximum Cumulative Φ Entropy Distributions

In the following, we will first introduce the general class of cumulative Φ entropies that
incorporates and generalizes well-known entropies. Then, we will derive general formulas
for maximum entropy distributions for this new class regarding arbitrary support as well as
non-negative support.

3.1. General Class of Cumulative Φ Entropies

In this section section, we incorporate cumulative direct, residual, and paired entropies into one
approach. Additionally, instead of focusing on the Shannon case, we allow for a general so-called
entropy generating function φ, which has to be non-negative and concave on [0, 1]. In general, but not
mandatory φ has a maximum in the interval [0, 1]. Hence, the corresponding cumulative φ entropies
are the cumulative paired φ entropy

CPEφ(F) =
∫
R

φ(F(x)) + φ(1− F(x))dx =
∫ 1

0
(φ(u) + φ(1− u)))q(u)du, (5)
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the cumulative residual φ entropy

CREφ(F) =
∫
R

φ(1− F(x))dx =
∫ 1

0
φ(1− u)q(u)du, (6)

and the cumulative direct φ entropy with

CDEφ(F) =
∫

φ(F(x))dx =
∫ 1

0
φ(u)q(u)du. (7)

To cover all three cases into one approach, we consider a general concave entropy generating
function Φ such that Φ(u) = φ(u) or Φ(u) = φ(u) + φ(1− u) or Φ(u) = φ(1− u), u ∈ [0, 1]. Then,

CEΦ(F) =
∫ 1

0
Φ(u)du

will be called cumulative Φ entropy. For the maximum entropy task, the objective is now to maximize
this cumulative Φ entropy with respect to F under distinct constraints and to search for the distribution
that maximizes this entropy. At first, we consider cumulative Φ entropies in a situation with fixed
mean and variance. The restriction to these two moments can be explained by the fact that higher
moments lead to equations for the ME quantile function which cannot be solved explicitly or the
solution does not exist. Then, we discuss the same task with the additional requirement that Q(0) = 0.
This leads to the fact that the solution can only exist for special relations between the fixed mean and
the fixed k-th power moment.

In Section 3.2, we consider the situation where mean and variance are fixed and in Section 3.3,
the situation with the additional requirement of Q(0) = 0.

3.2. General Results for Arbitrary Support

The focus in this section is on the situation where mean and variance are fixed and the
support is arbitrary. First, the maximum cumulative Φ entropy principle and then the generalized
maximum cumulative Φ entropy principle are introduced. General formulas for ME quantile functions
are provided.

3.2.1. Maximum Cumulative Φ Entropy Approach

In this section, for a given entropy and fixed constraints, general formulas for ME distributions are
derived. This maximum cumulative Φ entropy approach follows the maximum entropy principle in
the sense of [42,43]. The following theorem provides a general formula for the ME quantile function Q.

Theorem 1. Let CEΦ be the cumulative Φ entropy with concave entropy generating function Φ such that
the derivative Φ′ exists i.e., is quadratic integrable over [0, 1], and |Φ(0)| < ∞, |Φ(1)| < ∞ hold. Then,
the maximum CE distribution under the constraints of fixed mean µ and variance σ2 is given by the quantile
function

Q(u) = µ + σ
−Φ′(u) + (Φ(1)−Φ(0))√∫ 1

0 Φ′(u)2du + (Φ(1)−Φ(0))2
. (8)

Proof. The objective function ∫
Φ(F(x))du =

∫ 1

0
Φ(u)q(u)du

has to be maximized under the restrictions of fixed

µ =
∫ 1

0
Q(u)du and µ2 + σ2 =

∫ 1

0
Q(u)2du
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with respect to the quantile function Q and the quantile density q. This leads to the Lagrange function

L(q, Q, λ1, λ2) =
∫ 1

0
Φ(u)q(u)du− l1

(∫ 1

0
Q(u)du− µ

)
−l2

(∫ 1

0
Q(u)2du− σ2 + µ2

)
,

with l1 and l2 denoting the Lagrange parameters. The Euler–Lagrange equation gives

d
du

∂L
∂q
− ∂L

∂Q
= Φ′(u) + l1 + 2l2Q(u) !

= 0.

Solving this equation leads to the quantile function

Q(u) =
1

2l2

(
−Φ′(u)− l1

)
.

l1 and l2 are determined by the moments µ and σ2. Rearranging

µ =
1

2l2

∫ 1

0
(−Φ′(u)− l1)du = − 1

2l2
(Φ(1)−Φ(0))− l1

2l2

leads to
l1 = −2l2µ− (Φ(1)−Φ(0))

and
Q(u) = µ− 1

2l2

(
Φ′(u)− (Φ(1)−Φ(0))

)
. (9)

From

µ2 + σ2 =
∫ 1

0
Q(u)2 du

= µ2 +
1
l2

µ

(∫ 1

0
Φ′(u)− (Φ(1)−Φ(0))du

)
+

1
4l2

2

∫ 1

0

(
Φ′(u)− (Φ(1)−Φ(0))

)2 du

= µ2 +
1

4l2
2

(∫ 1

0
Φ′(u)2du− 2

∫ 1

0
Φ′(u)du(Φ(1)−Φ(0)) + (Φ(1)−Φ(0))2

)
= µ2 +

1
4l2

2

(∫ 1

0
Φ′(u)2du− (Φ(1)−Φ(0))2

)
.

Solving with respect to l2 leads to

l2 =
1

2σ

√∫ 1

0
Φ′(u)2du− (Φ(1)−Φ(0))2.

Inserting l2 into (9) gives the quantile function (8).

3.2.2. Generalized Maximum Cumulative Φ Entropy Approach

In this section, for a given quantile function Q, the corresponding generating function Φ of the
cumulative Φ entropy will be derived. This generalized maximum cumulative Φ entropy approach
follows the generalized maximum entropy principle formulated by [44]. We also use formula (8) for
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this approach. For a simpler notation, we introduce the partial mean function. Let X be the random
variable corresponding to Q and f be the density of X. Thus, the partial mean function µ(u) is given by

µ(u) =
∫ u

0
Q(v)dv =

∫ Q(u)

−∞
x f (x)dx = −E(X|X ≤ Q(u))P(X ≤ Q(u)), (10)

= uE(X|X ≤ Q(u)) u ∈ [0, 1].

Obviously, µ(0) = 0 and µ(1) = µ hold.
The following corollary states that the negative of the partial mean function determines the

entropy generating function such hat Q is the ME quantile function under the constraints of given
mean µ and variance σ2.

Corollary 1. Let Q be a quantile function. The entropy generating function Φ, such that Q is ME under the
constraints of given mean and variance, is given by Φ(u) = −µ(u), u ∈ [0, 1].

Proof. Setting Φ′(u) = −Q(u), u ∈ [0, 1] gives

Φ(u) = −
∫ u

0
Q(v)dv = −µ(u) u ∈ [0, 1]. (11)

Hence, −Φ(u)/u is the conditional mean of X given X ≤ Q(u) for u ∈ [0, 1]. It holds µ(0) = 0
and µ(1) = µ such that Φ(0) = 0 and Φ(1) = −µ. The partial mean function µ(u) therefore has a
special role. As µ(u) sums up the values x of X weighted with the density f (x) until the u-quantile of
X, this addition gives constant values until the median quantile for an extremely U-shaped distribution.
Thereafter, the value will be changed one time and stays again constant. Thus, the heavier the tails of
a distribution, the steeper the entropy-generating function Φ(u) at u = 0 and u = 1. This leads to a
large value for the derivative Φ′(u) at u = 0 and u = 1. If the support is R, then lim Φ′(0) = ∞ and
lim Φ′(u) = −∞. In line with the generalized maximum entropy principle, we will use (11) to derive
Φ such that a given distribution has the ME property under the constraints of fixed mean and variance.
In Section 5, based on (11), we will propose an estimator for Φ.

3.3. General Results for Non-Negative Support

To date, in the literature, the ME task was mainly considered for lifetime distributions with the
special property that the support is (0, ∞). Therefore, in this section, the focus is on the situation where
next to the constraints of fixed mean and variance also the support is restricted to (0, ∞). Similar to
Section 3.2, the maximum cumulative Φ entropy principle and then the generalized maximum
cumulative Φ entropy principle will be introduced in this situation and general formulas for ME
quantile functions will be provided.

3.3.1. Maximum Cumulative Φ Entropy Approach

In this section, for given entropy and constraints, a general formula for ME distributions will
be derived, following the maximum cumulative Φ entropy approach, while the support of the ME
distribution is (0, ∞), which means that Q(0) = 0 holds for the ME quantile function Q. From this
fact, we get an additional constraint for the ME task. As further constraints, we consider a fixed mean
µ and a fixed k-th power moment µ′k, k > 1. The following theorem shows how to derive the ME
quantile function under these three constraints. For an ME solution to be existent, it requires a special
relationship between the fixed moments µ and µ′k.
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Theorem 2. Let Φ a be concave function on [0, 1] with derivative Φ′ such that −Φ′(u) + Φ′(0) is
monotonically increasing. Then, the ME quantile function under the constraints of given mean and k-th
power moment µ′k is

Q(u) =
(−Φ′(u) + Φ′(0))1/(k−1)∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
µ, (12)

if
µ′k
µk =

∫ 1
0 (−Φ′(u) + Φ′(0))k/(k−1)du(∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
)k . (13)

Otherwise there is no solution of the ME task.

Proof. Due to the Euler–Lagrange equation, it is

Φ′(u) + l1 + kl2Q(u)k−1 !
= 0, u ∈ [0, 1].

The constraint Q(0) = 0 leads to l1 = −Φ′(0) and

Q(u) = ((−Φ′(u) + Φ′(0))/(kl2))1/(k−1), u ∈ [0, 1].

kl2 can be derived from

µ =
∫ 1

0
Q(u)du =

(
1

kl2

)1/(k−1) ∫ 1

0
(−Φ′(u) + Φ′(0))1/(k−1)du

as

kl2 =

(
1
µ

)k−1 (∫ 1

0
(−Φ′(u) + Φ′(0))1/(k−1)du

)k−1

.

Inserting kl2 into Q(u) gives (12) immediately.
There is the third constraint

µ′k =
∫ 1

0
Q(u)kdu =

∫ 1
0 (−Φ′(u) + Φ′(0))k/(k−1)du(∫ 1

0 (−Φ′(u) + Φ′(0))1/(k−1)du
)k µk.

Dividing µk on both sides gives (13).

In the most popular case, mean and variance are fixed. This means k = 2 and

Q(u) =
−Φ′(u) + Φ(0)∫ 1

0 (−Φ′(u) + Φ′(0))du
µ =

−Φ′(u) + Φ′(0)
−Φ(1) + Φ(0) + Φ′(0)

µ

and

µ′2
µ2 =

∫ 1
0 (−Φ′(u) + Φ′(0))2du(∫ 1
0 (−Φ′(u) + Φ′(0))du

)2

=

∫ 1
0 Φ′(u)2du− 2(Φ(1)−Φ(0))Φ′(0) + Φ′(0)2

(Φ(1)−Φ(0))2 − 2(Φ(1)−Φ(0))Φ′(0) + Φ′(0)2

3.3.2. Generalized Maximum Cumulative Φ Entropy Approach

The generalized maximum cumulative Φ entropy approach for random variables with
non-negative support and Q(0) = 0 remains to be discussed. We start with the knowledge of the
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quantile function Q to derive the corresponding generating function Φ of the cumulative Φ entropy
such that Q is the ME quantile function for Φ under the constraints Q(0) = 0 and fixed mean µ and
fixed k-th power moment µ′k. Therefore, we introduce a special partial mean function. µk−1(u) denotes
the partial (k− 1)-th power mean function with

µk−1(u) = uE[Xk−1|X ≤ Q(u)], u ∈ [0, 1]

for k = 2, 3, . . .. This partial (k− 1)-th power moment function is an important part of the entropy
generating function as the following corollary shows.

Corollary 2. Let Q be a quantile function. The entropy generating function Φ, such that Q is ME under the
constraints Q(0) = 0, fixed mean and fixed variance, is given by

Φ(u) = µ′k−1u− µk−1(u), u ∈ [0, 1].

Proof. Let X be the random variable corresponding to Q and f be the density of X. From

Q(u) = (−Φ′(u)−Φ′(0))1/(k−1), u ∈ [0, 1]

we get

−Φ(u) + Φ′(0)u =
∫ u

0
Q(v)k−1dv ≡ µk−1(u), u ∈ [0, 1].

It is easy to verify that Φ(0) = 0. Under the assumption Φ(1) = 0 it is Φ′(0) = µ′k−1 and

Φ(u) = µ′k−1u− µk−1(u), u ∈ [0, 1]. (14)

In Section 5, we use (14) to estimate Φ from a data set such that the data are generated by the
corresponding ME distribution under the constraints of Q(0) = 0 and fixed mean and fixed k-th
power moment.

4. Applications

In this section, we give an overview about some ME distributions for cumulative entropies
applying the results of Section 3. For some choices of Φ, the problem of the ME task has already been
solved. In the following section, we consider further choices of Φ with a focus on those that lead
to well known distributions. With the ME principle, it is no problem to generate completely new
distributions, but this will not be the objective of this paper.

Table 3 displays an overview of several entropy generating functions and the corresponding
ME distributions. The table is divided by the situation where mean and variance are fixed, by the
distinction of the MaxEnt and the GMaxEnt task, and by the situation with the additional requirement
of Q(0) = 0. Moreover, while cases no. 1 to no. 4 require symmetry of the ME distribution, cases
no. 5 to no. 12 allow for skewness of the ME distribution. fN and F−1

N denote the density and the
quantile function of the standard normal distribution. We try to assign well known terms to the
cumulative entropies generated by the respective Φ. For the solution of the GMaxEnt task (no. 9
and 10), such terms are not available. The second column refers to the Appendix where the cases are
discussed in detail.
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Table 3. Entropy generating functions with corresponding maximum entropy distributions.

No. App. Φ ME distr.

Fixed mean and variance, without Q(0) = 0

1 Shannon −u ln u− (1− u) ln(1− u) logistic

2 Havrda-Charvát u(uα−1 − 1)/(1− α) Tukey λ

+(1− u)((1− u)α−1 − 1)/(1− α)

3 Appendix A.1 Leik 2(1/2− |u− 1/2|) bimodal

4 Appendix A.1 Gini 2(1/4− (u− 1/2)2 uniform

5 Appendix A.1 Mielke 2((1/2)r − |u− 1/2|r symm. beta

6 Appendix A.2 Havrda-Charvát − B(2−α,α)
α−1

(
β(u; 2− α, α)− u

B(2−α,α)

)
general. logistic

like

7 Appendix A.3 non-symm. −α1u ln u− α2(1− u) ln(1− u) skewed logistic
Shannon

8 Appendix A.3 non-symm. α1u uα−1
1−α + α2(1− u) (1−u)α−1

1−α skewed Tukey λ

Havrda-Charvát

9 Appendix A.4 GMaxEnt u(uα1−1 − 1)/(1− α1) general. Tukey λ

+(1− u)((1− u)α2−1 − 1)/(1− α2)

10 Appendix A.5 GMaxEnt 2γ3/(1 + γ2) fN(F−1
N (u)) · I(u ≤ γ2/(1 + γ2)) skewed normal

+2/(γ(1 + γ2))
(

fN(F−1
N (0.5((1 + γ2)u + 1− γ2))

−1/
√

2π
)
) · I(u > γ2/(1 + γ2))

Fixed mean and k-th moment, with Q(0) = 0

11 Appendix A.6 Shannon −(1− u) ln(1− u) Weibull

12 Appendix A.7 Havrda-Charvát −(1− u)((1− u)α−1 − 1)/(α− 1) ext. Burr XII

Some of the results presented in Table 3 are already known from the literature. These are the
solutions of no. 1 [24], no. 2 [34], no. 3 [34], no. 4 [23,45] and no. 11 [5]. The remaining cases state new
results which are discussed in the Appendix for all readers interested in flexible statistical distributions.
The general finding can best be illustrated by solutions no. 1 and no. 2. The ME distributions
are the logistic and the Tukey λ distribution. Solving the ME task for the classical differential and
the Havrda-Charvát (or Tsallis) entropy given fixed mean and variance results in the normal and
the t- or r-distribution [46,47]. The difference is easy to explain. The cumulative entropy pulls the
ME distribution as much as possible (limited by the restrictions) towards a U-shaped distribution.
This leads to distributions with heavier tails (logistic instead of normal, Tukey λ instead of t or r).

There are a lot of entropy-generating functions well-known from physics which could also be
considered in the context of cumulative entropies. It is easy to show that the results of Theorem 1
and Theorem 2 can be applied to, e.g., the generating functions of the Rényi [27], the Kaniadakis [48],
or the Hanel-Thurner entropy [49], to mention only a few. Another comment deals with the concept
of skewness. Some families of distributions have natural parameters of skewness. If the members of
these families have closed expressions for the quantile function, Corollary 1 can be applied directly
to derive the function Φ for the corresponding cumulative entropy (GMaxEnt task). This is the
reason why we focus on the generalized Tukey λ distribution. It is worth noting that again, a kind of
non-symmetric cumulative Havrda-Charvát entropy appears as solution (see no 9). Other families
of skewed distributions will be defined by modifying a given symmetric distribution. The Fechner
approach as well as the still more popular Azzalini approach proceed in such a way. The Fechner
approach introduces skewness by splitting the scale parameter for the positive and the negative halves
of the underlying symmetric distribution. This leads to a corresponding splitting of the quantile
function. Corollary 1 can again easily be applied to solve the GMaxEnt task as long as the quantile
function is available in a manageable form. The solution for the normal distribution is given by
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solution no. 10. For the more popular Azzalini approach [50,51], this is not the case. Therefore, we
omit to discuss the GMaxEnt task for this concept to generate skewed distributions.

Table 3 only contains special choices of the entropy generating functions Φ. The main question is
how to know Φ. The answer could be given by an axiomatic approach or empirically. The starting
point for the axiomatic approach are fundamental requirements with a plausible and general accepted
interpretation in the considered scientific discipline. Such axiomatizations are available for the
differential and the Tsallis entropy. A recent publication on this topic is e.g., [52]. In the context
of cumulative entropies, we can go back to approaches in the fuzzy set theory. In this theory, measures
of indefiniteness will be axiomatized (see [19,20,53]). The axioms are directly applicable to cumulative
entropies. (The discussion of alternative entropies, skewness and axiomatic approaches is based on
valuable comments of two anonymous referees.) In the following section, we do not want to discuss
the axiomatic approach further. Instead, in the next section, we will focus on how to estimate the
entropy generating function Φ.

5. Estimating the Entropy Generating Function

Can we learn something from data about the entropy generating function Φ for which the data
generating distribution is an ME distribution under the constraints of given mean and variance?
The entropy generating function Φ is given by the partial mean function

µ(u) = uE[X|X ≤ Q(u)] u ∈ [0, 1].

Therefore, we can estimate this partial mean function to get an estimator for Φ.
Let X1, . . . , Xn be identically and stochastically independent distributed random variables.

X(n:1), . . . , X(n:n) denote the corresponding sequence of order statistics. For a fixed value u ∈ [0, 1]
such that nu ∈ {1, 2, . . . , n} we consider an estimator of the form

Φ̂(u) = −µ̂(u) = −u
1

nu

nu

∑
i=1

X(n:i), nu ∈ {1, 2, . . . , n}

for the entropy generating function Φ.
We demonstrate the usefulness of this estimator by the following examples.

Example 6. The data set consists of the S&P500 standardized daily logarithmic returns from 10-05-2012 to
10-04-2017. (The data are available from https:// fred.stlouisfed.org/series/SP500.) This gives 1256 data points.
We have to notice that the mean and the variance are fixed to the values 0 and 1. In Figure 4, we compare the
estimated entropy generating function (−µ̂(u)) with the entropy generating functions of the standardized t
distribution with 4 degrees of freedom and the standard normal distribution. Standardizing gives also the mean
value 0 and the variance 1 for the t distribution. The entropy generating function of the t distribution must
be calculated by numerical integration. We chose the number of degrees of freedom by trail and error, but ML
estimation gives a value not far away from 4.

We can see that by estimating the entropy generating function Φ by the partial mean function, the density
of the S&P500 standardized daily logarithmic returns can be fitted quite well.

In the following example, we consider a situation with non-negative support. We know from (14)
that for a non-negative random variable with Q(0) = 0 and fixed mean µ and fixed k-th power moment
µ′k the entropy generating function Φ is given by

Φ(u) = µ′k−1u− µk−1(u) = µ′k−1u− uE[Xk−1|X ≤ Q(u)].

For this entropy generating function Q is an ME quantile function.

https://fred.stlouisfed.org/series/SP500
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To get an estimator for Φ, it is only necessary to estimate the (k − 1)-th power mean µ′k−1
and the partial (k − 1)-th power mean function µk−1(u). For a fixed value u ∈ [0, 1] (such that
nu ∈ {1, 2, . . . , n}), a natural estimator for the partial (k− 1)-th power mean function is

µ̂k−1(u) = u
1

nu

nu

∑
i=1

Xk−1
(n:i), nu ∈ {1, 2, . . . , n}.

An estimator for the entropy generating function Φ is given by

Φ̂(u) = u

(
1
n

n

∑
i=1

Xk−1
(n:i) −

1
nu

nu

∑
i=1

Xk−1
(n:i)

)
, nu ∈ {1, 2, . . . , n}.

We will show that this estimator works well for a real data set and the Weibull distribution.
Therefore, we need the partial (k− 1)-th power mean function for the Weibull distribution with shape
parameter r and scale parameter λ. For this distribution, it holds

µk−1(u) =
∫ u

0
(λ(−(1− v)r))k−1 dv = λk−1Γ

(
k− 1

r
+ 1
)

Γ
(
− ln(1− v);

k− 1
r

+ 1, 1
)

for u ∈ [0, 1]. Γ(x; a, b) denotes the distribution function of a Γ distribution with shape parameter
a and scale parameter β. The corresponding entropy generating function Φ such that this Weibull
distribution is CEΦ maximum under Q(0) = 0 and the constraints of fixed mean µ and fixed k-the
power moment is

Φ(u) = uλk−1Γ
(

1 +
k− 1

r

)(
1− Γ

(
− ln(1− u);

k− 1
r

+ 1, 1
))

, u ∈ [0, 1].

k determines the shape parameter r by the relation

µ′k
µk =

Γ(1 + k/r)
Γ(1 + 1/r)k .

Figure 4. Estimated entropy generating function and estimated density for the S&P500 standardized
daily log returns from 10-05-2012 to 10-04-2017.
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Example 7. Let X be a random variable representing the duration in days between two explosions in the mines
of a specific region. From [54], we get the following dataset with the duration between 41 mine explosions:

378 36 15 31 215 11 137 4 15 72
96 124 50 120 203 176 55 93 59 315
59 61 1 13 189 345 20 81 286 114

108 188 233 28 22 61 78 99 326 275

We set k = 2. This means that for every potential ME distribution, µ′2/µ2 = 1.762 has to hold. This implies
r = 1.148 for the shape parameter r of the Weibull distribution. In Figure 5, the estimated entropy generating
function is compared with µk−1(u) for this Weibull distribution. The fit seems to be rather good in view of the
relatively small sample size.

Figure 5. Estimated entropy generating function and estimated density for a data set with time intervals
between 41 mine explosions.

Further work will be conducted to estimate the number of degrees or parameters of other flexible
distributions by minimizing the distance between the easy-to-calculate empirical entropy generating
function, and the entropy-generating function of the distribution, we suppose the data could be
generated from. The advantage of this procedure could be that the empirical entropy-generating
function is rather smooth. Therefore, minimizing the distance between the entropy generating
functions could be more accurate than considering the distance between the empirical quantile
functions, a density estimator, or the empirical distribution functions and the corresponding theoretical
counterpart. However, this will be investigated in future research.

6. Conclusions

To be able to estimate and predict while not using information that we do not possess, it is
important to derive maximum entropy distributions. Maximizing Shannon’s differential entropy
under different moment constraints is a well-known task. Without any constraints, the differential
entropy will be maximized by a uniform distribution representing the situation of no information.
However, an extremely bimodal (=bipolar) distribution represents a situation of so-called contradictory
information since an event and its complement can happen with equal probability. In this situation,
it is extremely hard to make a forecast, even harder than for a uniformly distributed random variable.
Hence, this paper claims that contradictory information is even less useful than minimum or no
information as it increases uncertainty and provides a high chance for a wrong decision. Such a
bipolardistribution is covered by maximizing a cumulative entropy instead of the differential entropy
without any constraints. Such a cumulative entropy depends either on the distribution function
(direct), on the survival function (residual) or on both (paired). Under the constraints of fixed mean
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and variance, maximizing the cumulative entropy tries to transform a distribution in the direction of a
bipolar distribution as far as it is allowed by the constraints. For so-called cumulative paired entropies
and the constraints that mean and variance are known, solving the maximization problem leads to
symmetric ME distributions like the logistic and the Tukey λ distribution [21,34]. So far, other ME
distributions were found for the cumulative paired Leik and Gini entropy [23,34,45]. There are two
different principles to derive maximum entropy distributions. The maximum entropy principle in
the sense of [42,43] is the task to derive an ME distribution for a given entropy and fixed constraints.
The generalized maximum entropy approach formulated by [44] uses a given ME distribution for
which the corresponding generating function of the cumulative entropy will be derived. In this paper,
we will applied both approaches for the cumulative Φ entropy, which generalizes the cumulative
paired entropy in several ways and thus introduced the maximum cumulative Φ entropy approach
and the generalized maximum cumulative Φ entropy approach. Moreover, we regarded situations
with different constraints. First, we considered a situation with arbitrary support and given mean
and variance and second a situation with non-negative support and the additional constraint of
Q(0) = 0 for the ME quantile function. This was done, as in the literature the ME task was considered
mainly for lifetime distributions with the special property that the support is [0, ∞) and it holds
Q(0) = 0. Under these additional constraints, we derived ME distributions for fixed mean and k-th
power moment. For the situation with arbitrary support and given mean and variance, we introduced
the cumulative paired Mielke(r) entropy and derived the ME distributions. The results already
known for the cumulative paired Leik and Gini entropy are included for r = 1 and r = 2. Then,
starting with a natural generalization of the derivative of the entropy generating function known
from the logistic distribution, we derived as ME distribution the generalized logistic distribution
(GLO) immediately. Considering a linear combination of entropy generating functions led to new
ME distributions with skewness properties. Here, we derived the skewed logistic distribution and
the skewed Tukey λ distribution in line with [55]. Next, using the generalized maximum Φ entropy
approach, we derived an entropy generating function such that a pre-specified skewed distribution is
an ME distribution. The generalized Tukey λ distribution served as an example. Now, we considered
Fechner’s proposal to define different values of a scale parameter for both halves of a distribution
for getting skewed distributions. Again, we derived the corresponding entropy generating function.
The skewed normal distribution served as an illustrative example. Then, we focused on the situation
where the support of the ME distribution is restricted to (0, ∞), while using the maximum cumulative
Φ entropy approach. Here, we derived as ME distribution for the cumulative residual Shannon entropy
the Weibull distribution and for the cumulative residual Havrda-Charvát entropy the extended Burr
XII distribution. Finally, we proposed an estimator for the cumulative Φ entropy generating function
representing all the properties of the underlying ME data generating distribution. This gives an
alternative to non-parametric estimation of density functions or distribution functions. The usefulness
of this estimator was demonstrated for two real data sets.

Author Contributions: I.K. conceived the new maximum entropy concepts, investigated its properties, applied it
to several distributions and wrote an initial version of the manuscript. M.D. contributed by mathematical and
linguistic revision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Paul van Staden for the hint to Hosking’s work about the
generalized logistic distribution and three anonymous reviewers for their constructive criticism, which helped to
improve the presentation of this paper significantly.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Appendixes A.1–A.5 the situation will be considered where mean and variance are fixed
and the support is arbitrary. Then, in Appendixes A.6 and A.7 the support of the ME distribution
has to be non-negative and the property Q(0) = 0 will be required as an additional constraint.
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Furthermore, we will use the maximum cumulative Φ entropy approach in Appendixes A.1–A.3 as
well as in Appendixes A.6 and A.7. In Appendixes A.4 and A.5 we will use the generalized maximum
cumulative Φ entropy approach.

Appendix A.1. Cumulative Paired Mielke(r) Entropy and the Symmetric Beta Distribution

Mielke [56] as well as Mielke and Johnson [57] discussed two-sample linear rank tests for
alternatives of scale with score generating function∣∣∣∣u− 1

2

∣∣∣∣r , u ∈ [0, 1], r > 0.

This family of tests, parameterized by r, includes the well known test from [58] for r = 1 and [59] for
r = 2. Mood [59] also derived the symmetric distribution corresponding to an asymptotically optimal
linear rank test with this score generating function. Similar to [34], there is a simple relationship
between the score generation functions of two sample linear rank tests for scale alternatives and the
entropy generating function Φ of a corresponding cumulative paired Φ entropy. In the case [56,57]
considered, we get the entropy generating function

Φ(u) = 2
((

1
2

)r
−
∣∣∣∣u− 1

2

∣∣∣∣r) u ∈ [0, 1].

This function is strictly concave on [0, 1] for r > 1 and concave for r = 1. Therefore, we will only
consider these cases. Φ is differentiable and the derivative is twice integrable. It holds Φ(1/2) =

(1/2)r ≥ Φ(u), u ∈ [0, 1] and Φ(1) = Φ(0) = 0. In the following section, we talk about the cumulative
paired Mielke(r) entropy. We show that the symmetric double beta distribution maximizes CPEM(r),
r > 1, if mean and variance are known (see Table 3 no. 5). For r = 1, we get an extremely bimodal
distribution. In both cases, the support of the ME distribution is a closed interval. The four-parameter
double beta distribution is defined by

f (x; a, b, c, d) =
1

2B(a, b)
1
d

(
x− c

d

)a−1 (
1− x− c

d

)b−1
, c− d ≤ x ≤ c + d

with a, b, d > 0, c ∈ R.

Corollary A1. The distribution F maximizing

∫ 1

0
2
((

1
2

)r
−
∣∣∣∣F(x)− 1

2

∣∣∣∣r) dx

under the constraints of known mean µ and known variance σ2 is a double beta distribution with parameters
a = 1/(r− 1), b = 1 and support [µ− σ

√
2r− 1, µ +

√
2r− 1σ] for r > 1. We get an extremely bimodal

distribution with support {µ− σ, µ + σ} for r = 1.

Proof. The derivative of Φ is given by

Φ′(u) = −2r|u− 1/2|r−1sign(u− 1/2), u ∈ [0, 1], r ≥ 1.

In (8) we need the expected value of Φ′(U)2 for U ∼ R(0, 1). This expected value is given by

E[Φ′(U)2] = 4r2
∫ 1

0
(u− 1/2)2r−2du = 4r2

∫ 1/2

−1/2
v2r−2dv

= 4r22
∫ 1/2

0
v2r−2dv =

4r2

2r− 1
(1/2)2r.
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With Φ(0) = Φ(1) = 0 and according to (8), the quantile function is given by

Q(u)− µ = σ
√

2r− 1|2u− 1|r−1sign(u− 1/2), u ∈ [0, 1]

with the support given by
[µ− σ

√
2r− 1, µ + σ

√
2r− 1].

for r 6= 1 and {µ− σ, µ + σ} for r = 1. For r ≥ 1 the corresponding distribution function is

F(x) = 1/2

(
1 + sign(x− µ)

(
|x− µ|

σ
√

2r− 1

)1/(r−1)
)

for x ∈ [µ− σ
√

2r− 1, µ + σ
√

2r− 1]. The corresponding density is

f (x) = 1/2
1

σ
√

2r− 1
1

r− 1

∣∣∣∣ x− µ

σ
√

2r− 1

∣∣∣∣1/(r−1)−1

for x ∈ [µ− σ
√

2r− 1, µ + σ
√

2r− 1]. This is a beta distribution with parameters a = 1/(r− 1), b = 1
and support x ∈ [µ− σ

√
2r− 1, µ + σ

√
2r− 1]. For r = 1 we get an extremely bimodal distribution

with mass points µ− σ and µ + σ.

Figure A1. Entropy generating function and density for the double beta distribution with parameter
values r = 1, 1.5, 2, 3.

In Figure A1, the entropy generating functions and ME densities demonstrate the impact of
different settings for the parameter r. For r = 1, the entropy generating function is a triangle, such that
the ME density is bipolar (extremely bimodal) (see Table 3 no. 3). Increasing r leads to a bimodal
distribution (r = 1.5), a uniform distribution (r = 2) (see Table 3 no. 4), up to a very leptokurtic
distribution with singularity at 0 (r = 3). With increasing r, the entropy generating functions become
more and more platycurtic. The entropy generating function starts at 0 and 1 with an absolute value of
the derivative which is smaller than 1/2. This characterizes the compact support of all ME distributions
for the cumulative paired Mielke(r) entropy. All distributional characteristics can be learned from
the form of the entropy generating function. Klein et al. [34] discussed the cumulative paired Leik
entropy and Dai and Chen [45] the cumulative paired Gini entropy. Both are embedded in the class of
cumulative paired Mielke(r) entropy for r = 1 and r = 2.
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Appendix A.2. Cumulative Paired Shannon Entropy and the Generalized Logistic Distribution

Formula (8) can also be used by starting with derivative of the entropy generating function,
instead of with the entropy generating function itself. Such a derivative could be

Φ′(u) = φ

(
1− u

u

)
, u ∈ [0, 1] (A1)

where φ is strictly increasing on [0, 1]. An example is φ(x) = ln x, x > 0, such that

Φ′(u) = ln
(

1− u
u

)
u ∈ [0, 1]. (A2)

In this special case, Φ′ belongs to the cumulative paired Shannon entropy and the corresponding ME
distribution is the logistic distribution under the constraints of fixed mean and variance [21,24,34,39].

As an extension, we can consider

Φ′(u) =
((1− u)/u)α−1 − 1

α− 1
, u ∈ [0, 1], α 6= 1. (A3)

For α→ 1 we get (A2).

Corollary A2. The density of the ME distribution for the cumulative entropy with derivative (A3) is given by

f (x) =
(1− (α− 1)x)1/(α−1)−1(

1 + (1− (α− 1)x)1/(α−1)
)2

for x ∈ (−∞, 1/(α− 1)) if 1 < α < 3/2 and x ∈ (−1/(α− 1), ∞) if 1/2 < α < 1.

Proof. Φ′ determines the ME quantile function via (8). This means

Q(u) = − ((1− u)/u)α−1 − 1
α− 1

, u ∈ [0, 1]. (A4)

The support is given by

supp(F) = (Q(0), Q(1)) =

{
(−∞, 1/(α− 1)) for α > 1
(1/(α− 1), ∞) for α < 1

The considered ME task requires the existence of the variance. The k-th power mean

∫ 1

0
Q(u)kdu =

(
1

α− 1

)k ∫ 1

0

(
1− u1−α(1− u)α−1

)k
du

=

(
1

α− 1

)k k

∑
i=0

(
k
i

)
(1−)k−iB((1− α)(k− i) + 1, (α− 1)(k− i) + 1)

exists for (1− α)(k− i) + 1 > 0 and (α− 1)(k− i) + 1 > 0 for i = 1, 2, . . . , k. This means 1− 1/k <

α < 1 + 1/k. Therefore, the variance exists for 1/2 < α < 3/2.
Solving Q(u) = x with respect to u gives

F(x) =
(

1 + (1− (α− 1)x)1/(α−1)
)−1

, x ∈ supp(F)

and differentiating the distribution function delivers the postulated density.
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The quantile function (A4) has first been introduced by [60] under the term ’generalized logistic
distribution’ (GLO). Further discussions of the GLO can be found in [61,62]. The generalization
of the GLO is due to the fact that skewness will be introduced into the logistic distribution by the
parameter α. The support also depends on the parameter α. For α→ 1, we get the support R and as
ME distribution the logistic distribution. This is the only symmetric distribution in this GLO class.
For α > 1, the support is (−∞, 1/(α− 1)] and the GLO distribution is skewed to the left. For α < 1,
we get the support [−1/(1− α), ∞) and the ME distribution is skewed to the right.

A working paper written by [63] gives an overview about other generalizations of the logistic
distribution that are completely different to (A4). Nassar and Elmasry as well as Tripathi et al. [64,65]
are also concerned with generalizations of the logistic distribution.

In this paper, as we started with the derivative of the entropy generating function, the entropy
generating function Φ belonging to (A3) remains to be identified. By simple integration, we get the
partial mean function

µ(u) =
1

α− 1

(∫ u

0
((1− p)/p)α−1dp− u

)
=

1
α− 1

(∫ u

0
p1−α(1− p)α−1dp− u

)
=

B(2− α, α)

α− 1

(
β(u; 2− α, α)− u

B(2− α, α)

)
with β(.; a, b) as the distribution function of the β(a, b) distribution (see Table 3 no. 6). Then, Φ(u) =
−µ(u), u ∈ [0, 1] with Φ(1/2) = 0 and Φ(1) = −µ = 1/(α− 1)(1− B(2− α, α) for 1/2 < α < 3/2,
α 6= 1 hold.
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Figure A2. Entropy generating function and density for the generalized logistic (GLO) distribution
with parameter values α = 0.6, 1, 1.2, 1.4.
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Figure A2 displays Φ as well as the corresponding density of the GLO distribution. The logistic
distribution serves as a reference (α = 1). The other settings show left skewed (α = 0.6) and two right
skewed distributions (α = 1.2 and α = 1.4).

Appendix A.3. Asymmetric Entropy Generating Functions and ’New’ Skewed Logistic and Tukey
λ Distributions

Again, we apply the maximum cumulative Φ entropy approach where the entropy generating
function Φ is fixed and we search for the corresponding ME distribution.

In [34] entropy generating functions of the symmetric form

Φ(u) = ϕ(u) + ϕ(1− u), u ∈ [0, 1]

with ϕ concave on [0, 1] have been discussed. Again, we quote the result that for ϕ(u) = −u ln u we
get the logistic and for ϕ(u) = u(uα−1− 1)/(1− α) the Tukey λ distribution as ME distributions under
the constraints of given mean and variance (see Table 3 no. 1, no. 2).

In the following section, we consider the more general case that

Φ(u) = ϕ1(u) + ϕ2(1− u), u ∈ [0, 1]

with ϕi, i = 1, 2 concave on [0, 1]. More special is the form

Φ(u) = α1 ϕ(u) + α2 ϕ(1− u), u ∈ [0, 1],

where αi > 0, and ϕi concave on [0, 1], i = 1, 2. If ϕ is symmetric around 1/2, then Φ(u) = (α1 +

α2)ϕ(u), u ∈ [0, 1]. (α1 + α2) only plays the role of a scale parameter. In the following, we are interested
in skewed ME distributions and thus this case will not be considered.

Examples for asymmetric functions are

ϕ(u) =

{
−u uλ−1

λ for u ∈ [0, 1], λ 6= 0
−u ln u for u ∈ [0, 1], λ = 0

(A5)

We search for ME distributions in this special case. To get only one skewness parameter, we
set α1 + α2 = 1 such that α1 = α and α2 = 1− α for α ∈ [0, 1]. The following corollary gives the
corresponding ME quantile function.

Corollary A3. Let Φ(u) = αϕ(u) + (1 − α)ϕ(u), u ∈ [0, 1], α ∈ [0, 1] with ϕ from (A5) the entropy
generating function. Then the corresponding ME quantile function is

Q(u) =

{
(2α− 1) + (λ + 1)

(
α uλ−1

λ − (1− α) (1−u)λ−1
λ

)
for u ∈ [0, 1], λ 6= 0

(2α− 1) + α ln u− (1− α) ln(1− u) for u ∈ [0, 1], λ = 0
(A6)

with support depending on α and λ > −1/2

λ α support

∈ (−1/2, 0] = 0 [−1, ∞)

= 1 (−∞, 1]
∈ (0, 1) (−∞, ∞)

∈ (0, ∞) = 0 ([1,−1 + (λ + 1)/λ]

= 1 [1− (λ + 1)/λ, 1]
∈ (0, 1) [2α− 1− α(λ + 1)/λ, 2α− 1 + (1− α)(λ + 1)/λ]
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Proof. The claim follows immediately by calculating the derivative Φ′ and the fact that Q(u)) =

−Φ′(u), u ∈ [0, 1]. The variance exists for λ > −1/2. The support is easily verified by calculating Q(0)
and Q(1).

For α 6= 1/2, the entropy generating function gives different weight to small and large values of u
which leads to an asymmetric ME quantile function determined by the negative of the derivative of Φ.
In the case of α = 1/2, we get the the logistic distribution and the well-known Tukey λ distribution.
Therefore, (A6) can be considered as the quantile function of a skewed logistic distribution or a skewed
Tukey λ distribution (see Table 3 no. 7, no. 8). Both seem to be a new alternative to the already discussed
generalized Tukey λ and the GLO-distribution. However, in his Ph.D. thesis [55] already introduced
these alternatives. In his joint paper with King [66], he investigated the properties of the skewed
logistic distribution intensively. Now, we know how the cumulative paired Φ entropy looks like for
which these distributions are ME distributions under the constraints of known mean and variance. [55]
and [66] derived explicit expressions for the ML estimators for the location parameter, the scale
parameter, the parameter α, and the parameter λ as well as their asymptotic standard errors. Here,
skewness and kurtosis are controlled by the latter parameters jointly. More precisely, [55] discussed
the quantile function

Q(u) =

{
a + b

(
α uλ−1

λ − (1− α) (1−u)λ−1
λ

)
for u ∈ [0, 1], λ 6= 0

a + b (α ln u− (1− α) ln(1− u)) for u ∈ [0, 1], λ = 0

with a location parameter a and a scale parameter b > 0. With this terminology Q belongs to the
setting a = 2α− 1 and b = λ + 1.

Figure A3. Entropy generating function and density for the skewed logistic (λ = 0) and the skewed
Tukey λ distribution for λ = −0.4, 2 and α = 0.1, 0.5, 0.7, 0.9.
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Figure A3 gives an impression of the different entropy characterizing functions Φ and the density
of the skewed logistic (λ = 0) and the skewed Tukey λ distribution (λ = −0.4). The symmetric logistic
and Tukey λ distribution (α = 1/2) serve as a point of reference. The parameter setting α = 0.1 results
in left skewed logistic and Tukey λ distributions. For α = 0.7 and α = 0.9, we get a right skewed
distribution. Moreover, in Figure A3, the parameter λ was set to 2.0 to display a compact support and
an extremely skewed distribution.

Appendix A.4. Skewed Tukey λ Distribution and Entropy Generating Function Φ

Now, we will apply the generalized maximum cumulative Φ entropy approach. This means that
we interpret formula (8) as a situation where a quantile function Q is fixed and we derive the entropy
generating function Φ such that Q represents the corresponding ME distribution. We want to apply
this approach to a quantile function considered by [67]. They introduced the so-called generalized
Tukey λ distribution with the help of the quantile function

Q(u) = λ4 +
1

λ3

(
uλ1 − 1

λ1
− (1− u)λ2 − 1

λ2

)
, u ∈ [0, 1].

Here, λ4 is a location parameter, λ3 is a scale parameter and λ1, λ2 determine the distribution’s
skewness. Freimer et al. [67] showed that the k-th moment exists iff min(λ1, λ2) > −1/k. This means
that the variance exists for min(λ1, λ2) > −1/2. Simple calculations lead to formulas for the mean

µ = λ4 +
1

λ3

(
1

λ1 + 1
− 1

λ2 + 1

)
and the variance

σ2 =
1

λ3

2 ( 1
(2λ1 + 1)(λ1 + 1)2 +

1
(2λ2 + 1)(λ2 + 1)2

− 2
λ1λ2

(
B(λ1 + 1, λ2) +

1
(λ1 + 1)(λ2 + 1)

))
.

In the following corollary, we show the entropy generating function for which the generalized
Tukey λ distribution is an ME distribution under the constraints of fixed mean and variance.

Corollary A4. Let Q be the quantile function of the generalized Tukey λ distribution. The entropy generating
function Φ, such that Q is the ME quantile function under the constraints of known mean and variance,
is given by

Φ(u) = −uλ1+1 − (λ1 + 1)u
λ1(λ1 + 1)

− (1− u)λ2+1 − (λ2 + 1)(1− u)
λ2(λ2 + 1)

− 1
λ2 + 1

(A7)

for u ∈ [0, 1], λ1 > 0, λ2 > 0.

Proof. It is µ(u) = −
∫ u

0 Q(v)du = −Φ(u). For µ(u) we get

µ(u) =
∫ u

0

vλ1 − 1
λ1

dv−
∫ u

0

(1− vλ2)− 1
λ2

dv

=
uλ1+1 − (λ1 + 1)u

λ1(λ1 + 1)
+

(1− u)λ2+1 − (λ2 + 1)(1− u)
λ2(λ2 + 1)

+
1

λ2 + 1
.

The setting λ = λ1 = λ2 results in the symmetric Tukey λ distribution (see Table 3 no. 9).
Klein et al. [34] identified this distribution as ME distribution for the entropy generating function
Φ(u) = −u(uλ − 1)/λ− ((1− u)λ − 1)/λ, u ∈ [0, 1]. This is (up to constant 1/(λ + 1)) identical with
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the entropy generating function (A7). In the upper two panels of Figure A4, we see the corresponding
entropy generating function and the ME density for several choices of λ. The range of distributional
properties for the Tukey λ distribution is much richer than it is for the ME distributions belonging to
the cumulative paired Mielke(r)-entropy. For negative values of λ, the support is the whole real line
R since the entropy generating function has a non-finite derivative at 0 and 1. For λ = 0, we get the
logistic distribution. For positive values of λ the support is a compact interval. λ = 1 and λ = 2 give
uniform distributions.

Figure A4. Entropy generating function and density for the Tukey λ (λ = 0.51, 0, 1, 2) and the
generalized Tukey λ distribution (λ1 = 0.51, 0, 1, 2; λ2 = 0).

To demonstrate the consequences of skewness, the lower panels of Figure A4 show the entropy
generating function and the density for λ1 6= λ2. We set λ2 = 0 and vary only the values of
λ1. Now, for λ1 6= 0 it is Φ(1) 6= 0. This can be explained by the skewness of the distribution.
Φ represents the cumulative mean function. For a skewed distribution, summing up the quantile
function over the positive part does not exactly compensate the sum of the quantile function over
the negative part. This latter part can be smaller for a left skewed and greater for a right skewed
distribution. Chalabi et al. [68] gave an excellent overview about the properties, parameter estimation,
and applications of the generalized Tukey λ distribution. We recommend to study the long list of
references in their paper. Also [55] discussed all these aspects in detail in his Ph.D. thesis from the
University of Pretoria. He mentioned several applications in distinct scientific fields ranging from
actuarial science over finance up to supply chain planning (pp. 127). Chalabi et al. [68] focused on
applications in finance. King and MacGillivray [69] discussed the ordering properties of skewness and
kurtosis for the generalized λ distribution. Concerned with estimation in this family were [70–72].

Appendix A.5. Fechner Approach of Skewness and Entropy Generating Function Φ

There are many other proposals to introduce a skewness parameter into a symmetric distribution
next to those presented in Appendix A.3. One proposal can be traced back to [73], p. 295. He proposed
to use different values of a scale parameter for the left and the right half of a symmetric distribution.
Klein and Fischer [74] showed that such a split of the scale parameter leads to a skewed distribution
such that the skewness parameter attains the skewness ordering of [75]. Arellano-Valle et al. [76] picked
up the Fechner proposal and introduced one parameter of skewness γ by considering functions f1(γ)

and f2(γ) as different scale parameters for both halves of a symmetric distribution. This approach
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includes the proposal made by [77] with f1(γ) = 1/γ) and f2(γ) = γ, γ > 0. Let f be a density that is
symmetric around 0. Then a density with skewness parameter γ is given by

f (x, γ) =
2γ

1 + γ2 ( f (x/γ)I(x < 0) + f (xγ)I(x ≥ 0)) (A8)

for x ∈ R, γ > 0. The corresponding distribution function is

F(x, γ) =

{
2γ2/(1 + γ2)F(x/γ, γ = 1) for x < 0

2/(1 + γ2)(F(0, γ = 1)(γ2 − 1) + F(xγ, γ = 1)) for x ≥ 0
(A9)

In this section, we follow the generalized maximum cumulative Φ entropy approach. This means
to identify the entropy generating function Φ such that (A8) is an ME distribution under the constraints
of fixed mean and variance.

Corollary A5. Let f be a density, which is symmetric around 0 and Q the corresponding quantile function.
Constraints are given by fixing mean and variance. Then, (A8) is the density of the ME distribution with entropy
generating function

Φ(u) =

{
−2γ3/(1 + γ2)

∫ u
0 Q(v)dv for u ≤ γ2/(1 + γ2)

−2/(γ(1 + γ2))
∫ 0.5(1+γ2)u+0.5(1−γ2)

0.5 Q(z)dz for u > γ2/(1 + γ2)
(A10)

Proof. By inverting the distribution function (A9), we get the quantile function

Q(u, γ) =

{
γQ((1 + γ2)/(2γ2)u, γ = 1) for u < γ2/(1 + γ2)

1/γQ((1 + γ2)/2u, γ = 1) + (1− γ2)/2 for u ≥ γ2/(1 + γ2)

Summing up this quantile function leads to the partial mean function

µ(u, γ) =
∫ u

0
Q(v, γ)dv =


2γ3/(1 + γ2)

∫ u
0 Q(v)dv

for u ≤ γ2/(1 + γ2)

2/(γ(1 + γ2))
∫ 0.5(1+γ2)u+0.5(1−γ2)

0.5 Q(z)dz
for u > γ2/(1 + γ2)

(A11)

The negative of the partial mean function determines the entropy generating function Φ such that (A5)
is an ME distribution under the constraints of given man and variance.

As an illustrating example, we consider the skewed normal distribution in the following.

Example A1. Let fN (F−1
N ) be the density (quantile function) of the standard normal distribution.

From
∫ u

0 F−1
N (v)dv = fN(F−1

N (u)), u ∈ [0, 1] we get

µ(u, γ) =


2γ3/(1 + γ2) fN(F−1

N (u)) for u ≤ γ2/(1 + γ2)

2/(γ(1 + γ2))
(

fN(F−1
N (0.5((1 + γ2)u + 1− γ2))− 1/

√
2π)

)
for u > γ2/(1 + γ2).

(see Table 3 no. 10).
Figure A5 shows the entropy generating function and the density of the skewed normal distribution for

different values of the skewness parameter γ. The symmetric standard normal distribution (γ = 1) serves as a
point of reference.
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Figure A5. Entropy generating function and density for the skewed normal distribution with parameter
values γ = 0.5, 1.0, 1.5, 2.

Appendix A.6. Cumulative Residual Shannon Entropy and the Weibull Distribution

Up to now, there was no constraint on the ME distribution’s support e.g., in the form Q(0) = 0.
Therefore, we could always apply Theorem 1. However, as in the literature the ME task was considered
mainly for situations with support [0, ∞), we will consider this situation in the following two Sections.
Thus, in this Section and Appendix A.7, the support of the ME distribution has to be non-negative
and the property Q(0) = 0 will be required as an additional constraint for the ME task. Due to the
non-negativity, it is possible to derive ME distributions under the constraints of a given mean and
more general under a given k-th power moment for k ≥ 2.

At first, following the maximum cumulative Φ entropy approach, we consider the entropy
generating function Φ(u) = −(1 − u) ln(1 − u), u ∈ [0, 1] with Φ(1) = Φ(0) = 0 and Φ′(u) =

ln(1 − u) − 1, u ∈ [0, 1] such that Φ′(0) = −1 and −Φ′(u) + Φ′(0) = − ln(1 − u), u ∈ [0, 1] of
the cumulative residual Shannon entropy and receive the Weibull distribution as ME solution. In a
modified form, this result is known from [5].

Corollary A6. Let Φ(u) = −(1 − u) ln(1 − u), u ∈ [0, 1], be the entropy generating function and the
constraints are that the mean µ and the k-th power moment µ′k are fixed. Then the corresponding ME distribution
is given by a Weibull distribution with scale parameter λ = µ/Γ(1 + 1/(k − 1)) and shape parameter
r = (k− 1) if

µ′k
µk =

Γ(1 + k/(k− 1))
Γ(1 + 1/(k− 1))k

(see Table 3 no. 11).

Proof. The Weibull distribution is defined by a quantile function

QW(u) = λ(− ln(1− u))1/r, u ∈ [0, 1], r > 0.

The support is given by [QW(0, γ) = 0, QW(1, γ) = ∞) and the mean is λΓ(1 + 1/r). From (12) we get
the quantile function

Q(u) =
(− ln(1− u))1/(k−1)∫ 1

0 (− ln(1− u))1/(k−1)du
µ, u ∈ [0, 1].



Entropy 2020, 22, 91 28 of 33

This means that Q(u) is proportional to the quantile function QW of a Weibull distribution with shape
parameter r = (k− 1). With

∫ 1

0
(− ln(1− u))1/(k−1)du = Γ (1 + 1/(k− 1))

and λ ≡ µ/Γ(1 + 1/(k− 1)) we get the searched for quantile function of a Weibull distribution with
scale parameter λ and shape parameter r = (k− 1). It is easy to verify that

µ′k
µk =

Γ(1 + k/(k− 1))
Γ(1 + 1/(k− 1))k .

For k = 2 we get an exponential distribution with scale parameter λ = µ if µ′2/µ2 = Γ(1 +

2)/Γ(2)2 = 2.

Appendix A.7. Cumulative Residual Havrda & Charvát Entropy and the Extended Burr XII Distribution

Now, we substitute the generating function of the cumulative residual Shannon entropy by the
more general generating function of the cumulative residual Havrda & Charvát entropy. This will lead
to a generalized Weibull distribution, also known as extended Burr XII distribution. Again, following
the maximum cumulative Φ entropy approach, the task is to search for the ME distribution while Φ
is given.

The entropy generating function of the cumulative residual Shannon entropy can be generalized to

Φ(u) = (1− u)((1− u)α−1 − 1)/(1− α), u ∈ [0, 1], α 6= 1. (A12)

Again, we get Φ(1) = Φ(0) = 0. The derivative Φ′ is

Φ′(u) =
1

1− α
(1− α(1− u)α−1) = 1− 1

1− α

(
α((1− u)α−1 − 1)

)
, u ∈ [0, 1]

such that Φ′(0) = 1 and

−Φ′(u) + Φ′(0) =
1

1− α

(
α((1− u)α−1 − 1)

)
, u ∈ [0, 1].

Now, we look for the corresponding ME distribution if Q(0) = 0 and µ, µ′k are fixed. The following
corollary states that this ME distribution generalizes the Weibull distribution (see Table 3 no. 12).
For the sake of simple notation, we introduce a two-parametric generalization of the complete Γ
function as

Γ2(r, λ) =
∫ 1

0

(
−uλ − 1

λ

)r−1

du, r > 0.

Notice that Γ2(r, λ)→ Γ(r) for λ→ 0.

Corollary A7. Let Φ(u) = (1− u)((1− u)α−1 − 1)/(1− α), u ∈ [0, 1], α 6= 1 be the entropy generating
function and the constraints are that the mean µ and the k-th power moment µ′k are fixed. Then the corresponding
ME distribution is given by the quantile function

Q(u) =

(
1

1−α

(
(1− u)α−1 − 1

))1/(k−1)

Γ2(1 + 1/(k− 1), α− 1)
µ, u ∈ [0, 1], α 6= 1 (A13)
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if the following relation holds between µ and µ′k:

µ′k
µk =

Γ2(1 + k/(k− 1), α− 1)
Γ2(1 + 1/(k− 1), α− 1)k . (A14)

The EBXII density is given by

f (x) =
k− 1

λ

(x/λ)k−2(
1 + (1− α)(x/λ)k−1

)1−1/(α−1)
, x > 0,

with λ = µ/Γ2(1 + 1/(k− 1), α− 1), k > 1, α 6= 1. The support is (0, λ(1/(α− 1)1/(k−1)) for α > 1
and (0, ∞) for α < 1.

Figure A6 shows the entropy generating function (A12) as well as ME densities under the
constraint of a fixed power moment µ′k for k = 2, 4, 8. The setting k = 2 leads to a density with a shape
similar to an exponential distribution. The constraint (A14) refers to a fixed coefficient of variation [4].

Figure A6. Entropy generating function and densities for the extended Burr XII distribution with
parameter values α = 0.5, 1, 2 and k = 2, 4, 8.

Proof. With

∫ 1

0

(
1

1− α

(
α((1− u)α−1 − 1)

))1/(k−1)
du = α1/(k−1)Γ2(1 + 1/(k− 1), α− 1)

the assertion follows immediately.

Mudholkar et al. [78] introduced the quantile function (A13) with a different parametrization and
called the corresponding distribution ’generalized Weibull distribution’. Due to the fact that the Burr
XII distribution [79] is a special case (in our parametrization for α = 2), [80] use the term ’extended
Burr XII distribution’ (EBXII). A more recent paper that discussed this distribution is [81]. They were
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concerned with parameter estimation (see also [82–84]). Applications are lifetimes of devices with a
bathtub hazard rate [78], flood frequency, and duration analysis [81–83].
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