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Abstract: High-dimensional data and high-dimensional representations of reality are inherent features
of modern Artificial Intelligence systems and applications of machine learning. The well-known
phenomenon of the “curse of dimensionality” states: many problems become exponentially difficult
in high dimensions. Recently, the other side of the coin, the “blessing of dimensionality”, has attracted
much attention. It turns out that generic high-dimensional datasets exhibit fairly simple geometric
properties. Thus, there is a fundamental tradeoff between complexity and simplicity in high
dimensional spaces. Here we present a brief explanatory review of recent ideas, results and hypotheses
about the blessing of dimensionality and related simplifying effects relevant to machine learning and
neuroscience.

Keywords: artificial intelligence; mistake correction; concentration of measure; discriminant; data
mining; geometry

1. Introduction

During the last two decades, the curse of dimensionality in data analysis was complemented
by the blessing of dimensionality: if a dataset is essentially high-dimensional then, surprisingly,
some problems get easier and can be solved by simple and robust old methods. The curse and the
blessing of dimensionality are closely related, like two sides of the same coin. The research landscape
of these phenomena is gradually becoming more complex and rich. New theoretical achievements
and applications provide a new context for old results. The single-cell revolution in neuroscience,
phenomena of grandmother cells and sparse coding discovered in the human brain meet the new
mathematical ‘blessing of dimensionality’ ideas. In this mini-review, we aim to provide a short guide to
new results on the blessing of dimensionality and to highlight the path from the curse of dimensionality
to the blessing of dimensionality. The selection of material and angle of view is based on our own
experience. We are not trying to cover everything in the subject of review, but rather fill in the gaps in
existing tutorials and surveys.

R. Bellman [1] in the preface to his book, discussed the computational difficulties of
multidimensional optimization and summarized them under the heading “curse of dimensionality”.
He proposed to re-examine the situation, not as a mathematician, but as a “practical man” [2], and
concluded that the price of excessive dimensionality “arises from a demand for too much information”.
Dynamic programming was considered a method of dimensionality reduction in the optimization
of a multi-stage decision process. Bellman returned to the problem of dimensionality reduction
many times in different contexts [3]. Now, dimensionality reduction is an essential element of the
engineering (the “practical man”) approach to mathematical modeling [4]. Many model reduction
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methods were developed and successfully implemented in applications, from various versions of
principal component analysis to approximation by manifolds, graphs, and complexes [5–7], and
low-rank tensor network decompositions [8,9].

Various reasons and forms of the curse of dimensionality were classified and studied, from
the obvious combinatorial explosion (for example, for n binary Boolean attributes, to check all the
combinations of values we have to analyze 2n cases) to more sophisticated distance concentration: in
a high-dimensional space, the distances between randomly selected points tend to concentrate near
their mean value, and the neighbor-based methods of data analysis become useless in their standard
forms [10,11]. Many “good” polynomial time algorithms become useless in high dimensions.

Surprisingly, however, and despite the expected challenges and difficulties, common-sense
heuristics based on the simple and the most straightforward methods “can yield results which
are almost surely optimal” for high-dimensional problems [12]. Following this observation, the
term “blessing of dimensionality” was introduced [12,13]. It was clearly articulated as a basis of
future data mining in the Donoho “Millenium manifesto” [14]. After that, the effects of the blessing
of dimensionality were discovered in many applications, for example in face recognition [15], in
analysis and separation of mixed data that lie on a union of multiple subspaces from their corrupted
observations [16], in multidimensional cluster analysis [17], in learning large Gaussian mixtures [18],
in correction of errors of multidimensonal machine learning systems [19], in evaluation of statistical
parameters [20], and in the development of generalized principal component analysis that provides
low-rank estimates of the natural parameters by projecting the saturated model parameters [21].

Ideas of the blessing of dimensionality became popular in signal processing, for example in
compressed sensing [22,23] or in recovering a vector of signals from corrupted measurements [24],
and even in such specific problems as analysis and classification of EEG patterns for attention deficit
hyperactivity disorder diagnosis [25].

There exist exponentially large sets of pairwise almost orthogonal vectors (‘quasiorthogonal’
bases, [26]) in Euclidean space. It was noticed in the analysis of several n-dimensional random vectors
drawn from the standard Gaussian distribution with zero mean and identity covariance matrix, that all
the rays from the origin to the data points have approximately equal length, are nearly orthogonal and
the distances between data points are all about

√
2 times larger [27]. This observation holds even for

exponentially large samples (of the size exp(an) for some a > 0, which depends on the degree of the
approximate orthogonality) [28]. Projection of a finite data set on random bases can reduce dimension
with preservation of the ratios of distances (the Johnson–Lindenstrauss lemma [29]).

Such an intensive flux of works ensures us that we should not fear or avoid large dimensionality.
We just have to use it properly. Each application requires a specific balance between the extraction
of important low-dimensional structures (‘reduction’) and the use of the remarkable properties of
high-dimensional geometry that underlie statistical physics and other fundamental results [30,31].

Both the curse and the blessing of dimensionality are the consequences of the measure
concentration phenomena [30–33]. These phenomena were discovered in the development of the
statistical backgrounds of thermodynamics. Maxwell, Boltzmann, Gibbs, and Einstein found that
for many particles the distribution functions have surprising properties. For example, the Gibbs
theorem of ensemble equivalence [34] states that a physically natural microcanonical ensemble
(with fixed energy) is statistically equivalent (provides the same averages of physical quantities
in the thermodynamic limit) to a maximum entropy canonical ensemble (the Boltzmann distribution).
Simple geometric examples of similar equivalence gives the ‘thin shell’ concentration for balls: the
volume of a high-dimensional ball is concentrated near its surface. Moreover, a high-dimensional
sphere is concentrated near any equator (waist concentration; the general theory of such phenomena
was elaborated by M. Gromov [35]). P. Lévy [36] analysed these effects and proved the first general
concentration theorem. Modern measure concentration theory is a mature mathematical discipline
with many deep results, comprehensive reviews [32], books [33,37], advanced textbooks [31], and even
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elementary geometric introductions [38]. Nevertheless, surprising counterintuitive results continue to
appear and push new achievements in machine learning, Artificial Intelligence (AI), and neuroscience.

This mini-review focuses on several novel results: stochastic separation theorems and evaluation
of goodness of clustering in high dimensions, and on their applications to corrections of AI errors.
Several possible applications to the dynamics of selective memory in the real brain and ‘simplicity
revolution in neuroscience’ are also briefly discussed.

2. Stochastic Separation Theorems

2.1. Blessing of Dimensionality Surprises and Correction of AI Mistakes

D. Donoho and J. Tanner [23] formulated several ‘blessing of dimensionality’ surprises. In most
cases, they considered M points sampled independently from a standard normal distribution in
dimension n. Intuitively, we expect that some of the points will lie on the boundary of the convex hull
of these points, and the others will be inside the interior of the hull. However, for large n and M, this
expectation is wrong. This is the main surprise. With a high probability p > 1− ε all M random points
are vertices of their convex hull. It is sufficient that M < b exp(an) for some a and b that depend on
ε only [39,40]. Moreover, with a high probability, each segment connecting a pair of vertices is also
an edge of the convex hull, and any simplex with k vertices from the sample is a k− 1-dimensional
face of the convex hull for some range of values of k. For uniform distributions in a ball, similar
results were proved earlier by I. Bárány and Z. Füredi [41]. According to these results, each point
of a random sample can be separated from all other points by a linear functional, even if the set is
exponentially large.

Such a separability is important for the solution of a technological problem of fast, robust and
non-damaging correction of AI mistakes [30,39,40]. AI systems make mistakes and will make mistakes
in the future. If a mistake is detected, then it should be corrected. The complete re-training of the system
requires too much resource and is rarely applicable to the correction of a single mistake. We proposed
to use additional simple machine learning systems, correctors, for separation of the situations with
higher risk of mistake from the situations with normal functioning [19,42] (Figure 1). The decision
rules should be changed for situations with higher risk. Inputs for correctors are: the inputs of the
original AI systems, the outputs of this system and (some) internal signals of this system [39,40].
The construction of correctors for AI systems is crucial in the development of the future AI ecosystems.

Legacy AI System

Internal signalsInputs Outputs

Corrector

Decision about correction

Figure 1. A scheme of corrector. Corrector receives some input, internal, and output signals from
the legacy artificial intelligence (AI) system and classifies the situation as ‘high risk’ or ‘normal’ one.
For a high-risk situation, it sends the corrected output to users following the correction rules. The
high risk/normal situation classifier is prepared by supervised training on situations with diagnosed
errors (universal construction). The online training algorithm could be very simple like Fisher’s linear
discriminants or their ensembles [30,39,40,43,44]. Correction rules for high-risk situations are specific
to a particular problem.

Correctors should [30]:

• be simple;
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• not damage the existing skills of the AI system;
• allow fast non-iterative learning;
• correct new mistakes without destroying the previous fixes.

Of course, if an AI system made too many mistakes then their correctors could conflict. In such a
case, re-training is needed with the inclusion of new samples.

2.2. Fisher Separablity

Linear separation of data points from datasets [23,41] is a good candidate for the development
of AI correctors. Nevertheless, from the ‘practical man’ point of view, one particular case, Fisher’s
discriminant [45], is much more preferable to the general case because it allows one-shot and explicit
creation of the separating functional.

Consider a finite data set Y without any hypothesis about the probability distribution. Let ( · , · )
be the standard inner product in Rn. Let us define Fisher’s separability following [39].

Definition 1. A point x is Fisher-separable from a finite set Y with a threshold α (0 ≤ α < 1) if

(x, y) ≤ α(x, x), for all y ∈ Y (1)

This definition coincides with the textbook definition of Fisher’s discriminant if the data set Y
is whitened, which means that the mean point is in the origin and the sample covariance matrix is
the identity matrix. Whitening is often a simple by-product of principal component analysis (PCA)
because, on the basis of principal components, whitening is just the normalization of coordinates to
unit variance. Again, following the ‘practical’ approach, we stress that the precise PCA and whitening
are not necessary but rather a priori bounded condition number is needed: the ratio of the maximal
and the minimal eigenvalues of the empirical covariance matrix after whitening should not exceed a
given number κ ≥ 1, independently of the dimension.

A finite set is called Fisher-separable, if each point is Fisher-separable from the rest of the set
(Definition 3, [39]).

Definition 2. A finite set Y ⊂ Rn is called Fisher-separable with threshold α ∈ (0, 1) if inequality (1) holds for
all x, y ∈ F such that x 6= y. The set Y is called Fisher-separable if there exists some α (0 ≤ α < 1) such that Y
is Fisher-separable with threshold α.

Inequality (1) holds for vectors x, y if and only if x does not belong to the ball (Figure 2):{
z
∣∣∣∣ ∥∥∥z− y

2α

∥∥∥ <
‖y‖
2α

}
. (2)

2.3. Stochastic Separation for Distributions with Bounded Support

Let us analyse the separability of a random point from a finite set in the n-dimensional unit ball
Bn. Consider the distributions that can deviate from the equidistribution, and these deviations can
grow with dimension n but not faster than the geometric progression with the common ratio 1/r > 1,
and, hence, the maximal density ρmax satisfies:

ρmax <
C

rnVn(Bn)
, (3)

where constant C does not depend on n.
For such a distribution in the unit ball, the probability ψ to find a random point x in the excluded

volume Vexcl (Figure 2) tends to 0 as a geometric progression with the common ratio b/(2rα) when
n→ ∞.
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Figure 2. Fisher’s separability of a point x from a set Y. Diameters of the filled balls (excluded
volume) are the segments [c, y/α] (y ∈ Y). Point x should not belong to the excluded volume to be
separable from y ∈ Y by the linear discriminant (1) with threshold α. Here, c is the origin (centre), and
Lx = {z | (x, z) = (x, x)} is the hyperplane. A point x should not belong to the union of such balls
(filled) for all y ∈ Y for separability from a set Y. The volume of this union, Vexcl, does not exceed
Vn(Bn)|Y|/(2α)n.

Theorem 1. (Theorem 1, [39]) Let Y ⊂ Bn, |Y| < bn, and 2rα > b > 1. Assume that a probability distribution
in the unit ball has a density with maximal value ρmax, which satisfies inequality (3). Then the probability p
that a random point from this distribution is Fisher-separable from Y is p = 1− ψ, where the probability of
inseparability

ψ < C
(

b
2rα

)n
.

Let us evaluate the probability that a random set Y is Fisher-separable. Assume that each point of
Y is randomly selected from a distribution that satisfies (3). These distributions could be different for
different y ∈ Y.

Theorem 2. (Theorem 2, [39]) Assume that a probability distribution in the unit ball has a density with
maximal value ρmax, which satisfies inequality (3). Let |Y| < bn and 2rα > b2 > 1. Then the probability p that
Y is Fisher-separable is p = 1− ψ, where the probability of inseparability

ψ < |Y|C
(

b
2rα

)n
< C

(
b2

2rα

)n

.

The difference in conditions from Theorem 1 is that here 2rα > b2 and in Theorem 1 2rα > b.
Again, |Y| can grow exponentially with the dimension as the geometric progression with the common
factor b > 0, while ψ→ 0 faster than the geometric progression with the common factor b2/2rα < 1.

For illustration, if Y is an i.i.d. sample from the uniform distribution in the 100-dimensional ball
and |Y| = 2.7× 106, then with probablity p > 0.99 this set is Fisher-separable [42].

2.4. Generalisations

V. Kůrková [46] emphasized that many attractive measure concentration results are formulated
for i.i.d. samples from very simple distributions (Gaussian, uniform, etc.), whereas the reality of
big data is very different: the data are not i.i.d. samples from simple distributions. The machine
learning theory based on the i.i.d. assumption should be revised, indeed [47]. In the theorems
above two main restrictions were employed: the probability of a set occupying relatively small
volume could not be large (3), and the support of the distribution is bounded. The requirement
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of identical distribution of different points is not needed. The independence of the data points
can be relaxed [39]. The boundedness of the support of distribution can be transformed to the
‘not-too-heavy-tail’ condition. The condition ‘sets of relatively small volume should not have large
probability’ remains in most generalisations. It can be considered as ‘smeared absolute continuity’
because absolute continuity means that the sets of zero volume have zero probability. Theorems 1
and 2 have numerous generalisations [39,40,48,49]. Let us briefly list some of them:

• Product distributions in a unite cube where coordinates Xi are independent random variables with
the variances separated from zero, var(Xi) > σ2

0 > 0 (Theorem 2, [42]); significantly improved
estimates are obtained by B. Grechuk [48].

• Log-concave distributions (a distribution with density ρ(x) is log-concave if the set
D = {x|ρ(x) > 0} is convex and g(x) = − log ρ(x) is a convex function on D). In this case,
the possibility of an exponential (non-Gaussian) tail brings a surprise: the upper size bound of
the random set |Y|, sufficient for Fisher-separability in high dimensions with high probability,
grows with dimension n as ∼ exp(a

√
n), i.e. slower than exponential (Theorem 5, [39]).

• Strongly log-concave distributions. A log concave distribution is strongly log-concave if there
exists a constant c > 0 such that

g(x) + g(y)
2

− g
(

x + y
2

)
≥ c‖x− y‖2, ∀x, y ∈ D.

In this case, we return to the exponential estimation of the maximal allowed size of |Y|
(Corollary 4, [39]). The comparison theorems [39] allow us to combine different distributions, for
example the distribution from Theorem 2 in a ball with the log-concave or strongly log-concave
tail outside the ball.

• The kernel versions of the stochastic separation theorem were found, proved and applied to some
real-life problems [50].

• There are also various estimations beyond the standard i.i.d. hypothesis [39] but the general
theory is yet to be developed.

2.5. Some Applications

The correction methods were tested on various AI applications for videostream processing:
detection of faces for security applications and detection of pedestrians [39,44,51], translation of Sign
Language into text for communication between deaf-mute people [52], knowledge transfer between
AI systems [53], medical image analysis, scanning and classifying archaeological artifacts [54], etc.,
and even to some industrial systems with relatively high level of errors [43].

Application of the corrector technology to image processing was patented together with industrial
partners [55]. A typical test of correctors’ performance is described below. For more detail of this test,
we refer to [44]. A convolutional neural network (CNN) was trained to detect pedestrians in images.
A set of 114,000 positive pedestrian and 375,000 negative non-pedestrian RGB images, re-sized to
128× 128, were collected and used as a training set. The testing set comprised of 10,000 positives and
10,000 negatives. The training and testing sets did not intersect.

We investigated in the computational experiments if it is possible to take one of cutting edge
CNNs and train a one-neuron corrector to eliminate all the false positives produced. We also look at
what effect, this corrector had on true positive numbers.

For each positive and false positive we extracted the second to last fully connected layer from
CNN. These extracted feature vectors have dimension 4096. We applied PCA to reduce the dimension
and analyzed how the effectiveness of the correctors depends on the number of principal components
retained. This number varied in our experiments from 50 to 2000. The 25 false positives, taken from
the testing set, were chosen at random to model single mistakes of the legacy classifier. Several such
samples were chosen. For data projected on more than the first 87 principal components one neuron
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with weights selected by the Fisher linear discriminant formula corrected 25 errors without doing any
damage to classification capabilities (original skills) of the legacy AI system on the training set. For 50
or less principal components this separation is not perfect.

Single false positives were corrected successfully without any increase of the true positive rates.
We removed more than 10 false positives at no cost to true positive detections in the street video data
(Nottingham) by the use of a single linear function. Further increasing the number of corrected false
positives demonstrated that a single-neuron corrector could result in gradual deterioration of the true
positive rates.

3. Clustering in High Dimensions

Producing a special corrector for every single mistake seems to be a non-optimal approach, despite
some successes. In practice, happily, often one corrector improves performance and prevents the system
from some new mistakes because they are correlated. Moreover, mistakes can be grouped in clusters
and we can create correctors for the clusters of situations rather than for single mistakes. Here we meet
another measure concentration ‘blessing’. In high dimensions, clusters are good (well-separated) even
in the situations when one can expect their strong intersection. For example, consider two clusters
and the distance-based clustering. Let r2

1 and r2
2 be the mean squared Euclidean distances between

the centroids of the clusters and their data points, and ρ be the distance between two centroids. The
standard criteria of clusters’ quality [56] compare ρ with r1 + r2 and assume that for ‘good’ clusters
r1 + r2 < ρ. Assume the opposite, r1 + r2 > ρ and evaluate the volume of the intersection of two balls
with radii r1, r2. The intersection of the spheres (boundaries of the balls) is a (n− 1)-dimensional
sphere with the centre c (Figure 3). Assume ρ2 > |r2

1 − r2
2|, which means that c is situated between the

centers of the balls (otherwise, the biggest ball includes more than a half of the volume of the smallest
one). The intersection of clusters belongs to a ball of radius R:

R2 =
r2

1 + r2
2

2
− ρ2

4
−

(r2
1 − r2

2)
2

4ρ2 . (4)

𝑟2𝑟1

𝜌

𝑅

𝑐

Figure 3. Measure of clustering quality. Intersection of two balls with the radii r1, r2 and the distance
between centres ρ < r1 + r2 is included in a ball with radius R (4) and centre c (colored in red).

R < r1,2 and the fractions of the volume of the two initial balls in the intersection is less then
(R/r1,2)

n. These fractions evaluate the probability to confuse points between the clusters (for uniform
distributions, for the Gaussian distributions the estimates are similar). We can measure the goodness
of high-dimensional clusters by

γ =

(
R
r1

)n
+

(
R
r2

)n
.

Note that γ exponentially tends to zero with n increase. Small γ means ‘good’ clustering.
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If γ � 1 then the probability to find a data point in the intersection of the balls (the ‘area
of confusion’ between clusters) is negligible for uniform distributions in balls, isotropic Gaussian
distributions and always when small volume implies small probability. Therefore, the clustering
of mistakes for correction of high-dimensional machine learning systems gives good results even if
clusters are not very good in the standard measures, and correction of clustered mistakes requires
much fewer correctors for the same or even better accuracy [43].

We implemented the correctors with separation of clustered false-positive mistakes from the set
of true positive and tested them on the classical face detection task [43]. The legacy object detector was
an OpenCV implementation of the Haar face detector. It has been applied to video footage capturing
traffic and pedestrians on the streets of Montreal. The powerful MTCNN face detector was used to
generate ground truth data. The total number of true positives was 21,896, and the total number of false
positives was 9372. The training set contained randomly chosen 50% of positives and false positives.
PCA was used for dimensionality reduction with 200 principal components retained. Single-cluster
corrector allows one to filter 90% of all errors at the cost of missing 5% percent of true positives. In
dimension 200, a cluster of errors is sufficiently well-separated from the true positives. A significant
classification performance gain was observed with more clusters, up to 100.

Further increase of dimension (the number of principal components retained) can even damage
the performance because the number of features does not coincide with the dimension of the dataset,
and the whitening with retained minor component can lead to ill-posed problems and loss of stability.
For more detail, we refer to [43].

4. What Does ‘High Dimensionality’ Mean?

The dimensionality of data should not be naively confused with the number of features. Let us
have n objects with p features. The usual data matrix in statistics is a 2D n× p array with n rows and p
columns. The rows give values of features for an individual sample, and the columns give values of a
feature for different objects. In classical statistics, we assume that n� p and even study asymptotic
estimates for n→ ∞ and p fixed. But, the modern ‘post-classical’ world is different [14]: the situation
with n < p (and even n� p) is not anomalous anymore. Moreover, it can be considered in some sense
as the generic case: we can measure a very large number of attributes for a relatively small number of
individual cases.

In such a situation the default preprocessing method could be recommended [57]: transform the
n× p data matrix with n < p into the square n× n matrix of inner products (or correlation coefficients)
between the individual data vectors. After that, apply PCA and all the standard machinery of machine
learning. New data will be presented by projections on the old samples. (Detailed description of this
preprocessing and the following steps is presented in [57] with an applied case study for n = 64 and
p ≈ 5× 105.) Such a preprocessing reduces the apparent dimension of the data_space to p ≤ n.

PCA gives us a tool for estimating the linear dimension of the dataset. Dimensionality reduction
is achieved by using only the first few principal components. Several heuristics are used for evaluation
of how many principal components should be retained:

• The classical Kaiser rule recommends to retain the principal components corresponding to the
eigenvalues of the correlation matrix λ ≥ 1 (or λ ≥ α where α < 1 is a selected threshold; often
α = 0.5 is selected). This is, perhaps, the most popular choice.

• Control of the fraction of variance unexplained. This approach is also popular, but it can retain
too many minor components that can be considered ‘noise’.

• Conditional number control [39] recommends to retain the principal components corresponding
to λ ≥ λmax/κ, where λmax is the maximal eigenvalue of the correlation matrix and κ is
the upper border of the conditional number (the recommended values are κ ≤ 10 [58]).
This recommendation is very useful because it provides direct control of multicollinearity.
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After dimensionality reduction, we can perform whitening of data and apply the stochastic
separation theorems. This requires a hypothesis about the distribution of data: sets of a relatively small
volume should not have a high probability, and there should be no ‘heavy tails’. Unfortunately, this
assumption is not always true in the practice of big data analysis. (We are grateful to G. Hinton and V.
Kůrková for this comment.).

The separability properties can be affected by various violations of i.i.d. structure of data,
inhomogeneity of data, small clusters and fine-grained lumping, and other peculiarities [59]. Therefore,
the notion of dimension should be revisited. We proposed to use the Fisher separability of data to
estimate the dimension [39]. For regular probability distributions, this estimate will give a standard
geometric dimension, whereas, for complex (and often more realistic) cases, it will provide a more
useful dimension characteristic. This approach was tested [59] for many bioinformatic datasets.

For analysis of Fisher’s separability and related estimation of dimensionality for general
distribution and empirical datasets, an auxiliary random variable is used [39,59]. This is the probability
that a randomly chosen point x is not Fisher-separable with threshold α from a given data point y by
the discriminant (1):

p = py(α) =
∫
‖z− y

2α‖≤ ‖y‖2α

ρ(z) dz, (5)

where ρ(z) dz is the probability measure for x.
If y is selected at random (not compulsory with the same distribution as x) then py(α) is a random

variable. For a finite dataset Y the probability pY(α) that the data point is not Fisher-separable with
threshold α from Y can be evaluated by the sum of py(α) for y ∈ Y:

pY(α) ≤ ∑
y∈Y

py(α). (6)

Comparison of the empirical distribution of py(α) to the distribution evaluated for the
high-dimensional sphere Sn−1 ⊂ Rn can be used as information about the ‘effective’ dimension
of data. The probability py(α) is the same for all y ∈ Sn−1 and exponentially decreases for large n. We
assume that y is sampled randomly from for the rotationally invariant distribution on the unit sphere
Sn−1 ⊂ Rn. For large n the asymptotic formula holds [39,59]:

py(α) ≈
(1− α2)(n−1)/2

α
√

2π(n− 1)
. (7)

Here f (n) ≈ g(n) means that f (n)/g(n) → 1 when n → ∞ (the functions here are strictly
positive). It was noticed that the asymptotically equivalent formula with the denominator α

√
2πn

performs better in small dimensions [59].
The introduced measure of dimension performs competitively with other state-of-the-art measures

for simple i.i.d. data situated on manifolds [39,59]. It was shown to perform better in the case of noisy
samples and allows estimation of the intrinsic dimension in situations where the intrinsic manifold,
regular distribution and i.i.d. assumptions are not valid [59].

After this revision of the definition of data dimension, we can answer the question from the title of
this section: What does ‘high dimensionality’ mean? The answer is given by the stochastic separation
estimates for the uniform distribution in the unit sphere Sn−1 ⊂ Rn. Let y ∈ Sn−1. We use notation Am

for the volume (surface) of Sm. The points of Sn−1, which are not Fisher-separable from y with a given
threshold α, form a spherical cap with the base radius r =

√
1− α2 (Figure 4). The area of this cap is

estimated from above by the lateral surface of the cone with the same base, which is tangent to the
sphere at the base points (see Figure 4). Therefore, the probability ψα that a point selected randomly
from the rotationally invariant distribution on Sn−1 is not Fisher-separable from y is estimated from
above as

py(α) <
An−2

An−1

(1− α2)(n−1)/2

α(n− 1)
. (8)
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𝛼 = cos𝜑

𝑟𝑛−2𝐴𝑛−2

𝜑 𝑦

𝑟 = sin𝜑

0

Figure 4. Estimation of the area of the spherical cap. A point of Sn−1 is Fisher-separable from y ∈ Sn−1

with the threshold α = cos φ if and only if it does not belong to the spherical cap with the base
radius r = sin φ and the base plane orthogonal to y. The surface of this spherical cap is less than the
lateral surface of the cone that is tangent to the base. The n− 2-dimensional surface of the base is
AB = rn−2 An−2. The lateral surface of the cone is lAB/(n− 1).

The surface area of Sn−1 is

An−1 =
2π

n
2

Γ
( n

2
) , (9)

where Γ is Euler’s gamma-function.
Rewrite the estimate (8) as

py(α) <
Γ
( n

2
)

Γ
(

n−1
2

) (1− α2)(n−1)/2

α
√

π
. (10)

Recall that Γ(x) is a monotonically increasing logarithmically convex function for x ≥ 3/2 [60].
Therefore, for n ≥ 4

Γ
( n

2
)

Γ
(

n−1
2

) <
Γ
(

n+1
2

)
Γ
( n

2
) .

Take into account that Γ
(

n+1
2

)
= n−1

2 Γ
(

n−1
2

)
(because Γ(x + 1) = xΓ(x)). After elementary

transforms it gives us
Γ2 ( n

2
)

Γ2
(

n−1
2

) <
n− 1

2
and

Γ
( n

2
)

Γ
(

n−1
2

) <

√
n− 1√

2
.

Finally, we got an elementary estimate for py(α) from above

py(α) <
(1− α2)(n−1)/2

α
√

2π(n− 1)
. (11)

Compared to (7), this estimate from above is asymptotically exact.
Estimate from above a probability of a separability violations using (11) and an elementary rule:

for any family of events U1, U2, . . . , Um,

P(U1 ∨U2 ∨ . . . ∨Um) ≤ P(U1) + P(U2) + . . . + P(Um). (12)
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According to (11) and (12), if 0 < ψ < 1, Y is an i.i.d. sample from a rotationally invariant
distribution on Sn−1 and

|Y| (1− α2)(n−1)/2

α
√

2π(n− 1)
< ψ, (13)

then all sample points with a probability greater than 1− ψ are Fischer-separable from a given point y
with a threshold α. Similarly, if

|Y|2 (1− α2)(n−1)/2

α
√

2π(n− 1)
< ψ, (14)

then with probability greater than 1− ψ each sample point is Fisher-separable from the rest of the
sample with a threshold α.

Estimates (13) and (14) provide sufficient conditions for separability. The Table 1 illustrates these
estimates (the upper borders of |Y| in these estimates are presented in the table with three significant
figures). For an illustration of the separability properties, we estimated from above the sample size
for which the Fisher-separability is guaranteed with a probability 0.99 and a threshold value α = 0.8
(Table 1). These sample sizes grow fast with dimension. From the Fisher-separability point of view,
dimensions 30 or 50 are already large. The effects of high-dimensional stochastic separability emerge
with increasing dimensionality much earlier than, for example, the appearance of exponentially large
quasi-orthogonal bases [28].

Table 1. Stochastic separation on n− 1-dimensional spheres. For a sample size less than M1,99, all
points of an i.i.d. sample with a probability greater than 0.99 are Fischer-separable from a given point y
with a threshold α = 0.8. For a sample size less than M2,99, with probability greater than 0.99 an i.i.d.
sample is Fisher-separable with a threshold α = 0.8 (that is, each sample point is Fisher-separable from
the rest of the sample with this threshold).

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80

M1,99 5 1.43× 103 2.94× 105 5.91× 107 1.04× 1010 1.89× 1012 3.38× 1014 5.98× 1015

M2,99 2 37 542 7.49× 103 1.02× 105 1.37× 106 1.84× 107 7.73× 107

5. Discussion: The Heresy of Unheard-of Simplicity and Single Cell Revolution in Neuroscience

V. Kreinovich [61] summarised the impression from the effective AI correctors based on Fisher’s
discriminant in high dimensions as “The heresy of unheard-of simplicity” using quotation of the
famous Pasternak poetry. Such a simplicity appears also in brain functioning. Despite our expectation
that complex intellectual phenomena is a result of a perfectly orchestrated collaboration between
many different cells, there is a phenomenon of sparse coding, concept cells, or so-called ‘grandmother
cells’ which selectively react to the specific concepts like a grandmother or a well-known actress
(‘Jennifer Aniston cells’) [62]. These experimental results continue the single neuron revolution in
sensory psychology [63].

The idea of grandmother or concept cells was proposed in the late 1960s. In 1972, Barlow
published a manifest about the single neuron revolution in sensory psychology [63]. He suggested:
“our perceptions are caused by the activity of a rather small number of neurons selected from a very
large population of predominantly silent cells.” Barlow presented many experimental evidences of
single-cell perception. In all these examples, neurons reacted selectively to the key patterns (called
‘trigger features’). This reaction was invariant to various changes in conditions.

The modern point of view on the single-cell revolution was briefly summarised recently by
R. Quian Quiroga [64]. He mentioned that the ‘grandmother cells’ were invented by Lettvin “to
ridicule the idea that single neurons can encode specific concepts”. Later discoveries changed the
situation and added more meaning and detail to these ideas. The idea of concept cells was evolved
during decades. According to Quian Quiroga, these cells are not involved in identifying a particular
stimulus or concept. They are rather involved in creating and retrieving associations and can be
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seen as the “building blocks of episodic memory”. Many recent discoveries used data received from
intracranial electrodes implanted in the medial temporal lobe (MTL; the hippocampus and surrounding
cortex) for patients medications. The activity of dozens of neurons can be recorded while patients
perform different tasks. Neurons with high selectivity and invariance were found. In particular, one
neuron fired to the presentation of seven different pictures of Jennifer Aniston and her spoken and
written name, but not to 80 pictures of other persons. Emergence of associations between images was
also discovered.

Some important memory functions are performed by stratified brain structures, such as the
hippocampus. The CA1 region of the hippocampus includes a monolayer of morphologically similar
pyramidal cells oriented parallel to the main axis (Figure 5). In humans, CA1 region of the hippocampus
contains 1.4× 107 of pyramidal neurons. Excitatory inputs to these neurons come from the CA3 regions
(ipsi- and contra-lateral). Each CA3 pyramidal neuron sends an axon that bifurcates and leaves multiple
collaterals in the CA1 (Figure 5b). This structural organization allows transmitting multidimensional
information from the CA3 region to neurons in the CA1 region. Thus, we have simultaneous
convergence and divergence of the information content (Figure 5b, right). A single pyramidal cell
can receive around 30,000 excitatory and 1700 inhibitory inputs (data for rats [65]). Moreover, these
numbers of synaptic contacts of cells vary greatly between neurons [66]. There are nonuniform and
clustered connectivity patterns. Such a variability is considered as a part of the mechanism enhancing
neuronal feature selectivity [66]. However, anatomical connectivity is not automatically transferred
into functional connectivity and a realistic model should decrease significantly (by several orders of
magnitude) the number of functional connections (see, for example, [67]). Nevertheless, even several
dozens of effective functional connections are sufficient for the application of stochastic separation
theorems (see Table 1).

Figure 5. Organisation of encoding memories by single neurons in laminar structures: (a) laminar
organization of the CA3 and CA1 areas in the hippocampus facilitates multiple parallel synaptic
contacts between neurons in these areas by means of Schaffer collaterals; (b) axons from CA3
pyramidal neurons bifurcate and pass through the CA1 area in parallel (left) giving rise to the
convergence-divergence of the information content (right). Multiple CA1 neurons receive multiple
synaptic contacts from CA3 neurons; (c) schematic representation of three memory encoding schemes:
(1) selectivity. A neuron (shown in green) receives inputs from multiple presynaptic cells that code
different information items. It detects (responds to) only one stimulus (purple trace), whereas rejecting
the others; (2) clustering. Similar to 1, but now a neuron (shown in blue) detects a group of stimuli
(purple and blue traces) and ignores the others; (3) acquiring memories. A neuron (shown in red)
learns dynamically a new memory item (blue trace) by associating it with a known one (purple trace).
((Figure 13, [40]), published under CC BY-NC-ND 4.0 license.).

For sufficiently high-dimensional sets of input signals a simple enough functional neuronal
model with Hebbian learning (the generalized Oja rule [40,68]) is capable of explaining the
following phenomena:



Entropy 2020, 22, 82 13 of 16

• the extreme selectivity of single neurons to the information content of high-dimensional data
(Figure 5(c1)),

• simultaneous separation of several uncorrelated informational items from a large set of stimuli
(Figure 5(c2)),

• dynamic learning of new items by associating them with already known ones (Figure 5(c3)).

These results constitute a basis for the organization of complex memories in ensembles of
single neurons.

Re-training large ensembles of neurons is extremely time and resources consuming both in the
brain and in machine learning. It is, in fact, impossible to realize such a re-training in many real-life
situations and applications. “The existence of high discriminative units and a hierarchical organization
for error correction are fundamental for effective information encoding, processing and execution, also
relevant for fast learning and to optimize memory capacity” [69].

The multidimensional brain is the most puzzling example of the ‘heresy of unheard-of simplicity’,
but the same phenomenon has been observed in social sciences and in many other disciplines [61].

There is a fundamental difference and complementarity between analysis of essentially
high-dimensional datasets, where simple linear methods are applicable, and reducible datasets for which
non-linear methods are needed, both for reduction and analysis [30]. This alternative in neuroscience
was described as high-dimensional ‘brainland’ versus low-dimensional ‘flatland’ [70]. The specific
multidimensional effects of the ‘blessing of dimensionality’ can be considered as the deepest reason for the
discovery of small groups of neurons that control important physiological phenomena. On the other hand,
even low dimensional data live often in a higher-dimensional space and the dynamics of low-dimensional
models should be naturally embedded into the high-dimensional ‘brainland’. Thus, a “crucial problem
nowadays is the ‘game’ of moving from ‘brainland’ to ‘flatland’ and backward” [70].

C. van Leeuwen formulated a radically opposite point of view [71]: neither high-dimensional
linear models nor low-dimensional non-linear models have serious relations to the brain.

The devil is in the detail. First of all, the preprocessing is always needed to extract the relevant
features. The linear method of choice is PCA. Various versions of non-linear PCA can be also useful [6].
After that, nobody has a guarantee that the dataset is either essentially high-dimensional or reducible.
It can be a mixture of both alternatives, therefore both extraction of reducible lower-dimensional subset
for nonlinear analysis and linear analysis of the high dimensional residuals could be needed together.
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