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Abstract: We supply corrected proofs of the invariance of completion and the chain rule for the
Shannon information measures of arbitrary fields, as stated by Dębowski in 2009. Our corrected
proofs rest on a number of auxiliary approximation results for Shannon information measures, which
may be of an independent interest. As also discussed briefly in this article, the generalized calculus
of Shannon information measures for fields, including the invariance of completion and the chain
rule, is useful in particular for studying the ergodic decomposition of stationary processes and its
links with statistical modeling of natural language.

Keywords: Shannon information measures; fields; invariance of completion; chain rule

MSC: 94A17

1. Introduction

As it was noticed by Dębowski [1–3], a generalized calculus of Shannon information measures for
arbitrary fields—initiated by Gelfand et al. [4] and later developed by Dobrushin [5], Pinsker [6], and
Wyner [7]—is useful in particular for studying the ergodic decomposition of stationary processes and
its links with statistical modeling of natural language. Fulfilling this need, Dębowski [1] has developed
the calculus of Shannon information measures for arbitrary fields, relaxing the requirement of regular
conditional probability, assumed implicitly by Dobrushin [5] and Pinsker [6]. He has done it unaware
of the classical paper by Wyner [7], which pursued exactly the same idea, with some differences due to
an independent interest.

Compared to exposition [7], the added value of the paper [1] was considering continuity and
invariance of Shannon information measures with respect to completion of fields. Unfortunately, the
proof of Theorem 2 in [1] establishing this invariance and the generalized chain rule contains some
mistakes and gaps, which we have discovered recently. For this reason, in this article, we would like to
provide a correction and a few new auxiliary results which may be of an independent interest. In this
way, we will complete the full generalization of Shannon information measures and their properties,
which was developed step-by-step by Gelfand et al. [4], Dobrushin [5], Pinsker [6], Wyner [7], and
Dębowski [1]. By the way, we will also rediscuss the linguistic motivations of our results.

The preliminaries are as follows. Fix a probability space (Ω,J , P). Fields are set algebras closed
under finite Boolean operations, whereas σ-fields are assumed to be closed also under countable
unions and products. A field is called finite if it has finitely many elements. A finite partition is a
finite collection of events

{
Bj
}J

j=1 ⊂ J which are disjoint and whose union equals Ω. The definition
proposed by Wyner [7] and Dębowski [1] independently reads as follows:
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Definition 1. For finite partitions α = {Ai}I
i=1 and β =

{
Bj
}J

j=1 and a probability measure P, the entropy
and mutual information are defined as

HP(α) :=
I

∑
i=1

P(Ai) log
1

P(Ai)
, IP(α; β) :=

I

∑
i=1

J

∑
j=1

P(Ai ∩ Bj) log
P(Ai ∩ Bj)

P(Ai)P(Bj)
. (1)

Subsequently, for an arbitrary field C and finite partitions α and β, we define the pointwise conditional entropy
and mutual information as

HP(α||C) := HP(·|C)(α), IP(α; β||C) := IP(·|C)(α; β), (2)

where P(E|C) is the conditional probability of event E ∈ J with respect to the smallest complete σ-field
containing C. Subsequently, for arbitrary fields A, B, and C, the (average) conditional entropy and mutual
information are defined as

HP(A|C) := sup
α⊂A

E PHP(α||C), IP(A;B|C) := sup
α⊂A,β⊂B

E P I(α; β||C), (3)

where the supremum is taken over all finite subpartitions and E PX :=
∫

XdP is the expectation. Finally,
we define the unconditional entropy HP(A) := HP(A| {∅, Ω}) and mutual information IP(A;B) :=
IP(A;B| {∅, Ω}), as it is generally done in information theory. When the probability measure P is clear
from the context, we omit subscript P from all above notations.

Although the above measures, called Shannon information measures, have usually been discussed
for σ-fields, the defining equations (3) also make sense for fields. We observe a number of identities,
such as H(A) = I(A;A) and H(A|C) = I(A;A|C). It is important to stress that Definition 1, in
contrast to the earlier expositions by Dobrushin [5] and Pinsker [6], is simpler—as it applies one
Radon–Nikodym derivative less—and does not require regular conditional probability, i.e., it does not
demand that conditional distribution (P(E|C))E∈J be a probability measure almost surely. In fact, the
expressions on the right-hand sides of the equations in (3) are defined for all A, B, and C. No problems
arise when conditional probability is not regular since conditional distribution (P(E|C))E∈E restricted
to a finite field E is a probability measure almost surely [8] (Theorem 33.2).

We should admit that in the context of statistical language modeling, the respective probability
space is countably generated so regular conditional probability is guaranteed to exist. Thus, for
linguistic applications, one might think that expositions [5,6] are sufficient, although for a didactic
reason, the approaches proposed by Wyner [7] and Dębowski [1] lead to a simpler and more general
calculus of Shannon information measures. Yet, there is a more important reason for Definition 1.
Namely, to discuss the ergodic decomposition of entropy rate and excess entropy—some highly
relevant results for statistical language modeling, developed in [1] and to be briefly recalled in Section
3—we need the invariance of Shannon information measures with respect to completion of fields. But
within the framework of Dobrushin [5] and Pinsker [6], such invariance of completion does not hold
for strongly nonergodic processes, which seem to arise quite naturally in statistical modeling of natural
language [1–3]. Thus, the approach proposed by Wyner [7] and Dębowski [1] is in fact indispensable.

Thus, let us inspect the problem of invariance of Shannon information measures with respect
to completion of fields. A σ-field is called complete, with respect to a given probability measure
P, if it contains all sets of outer P-measure 0. Let σ(A) denote the intersection of all complete
σ-fields containing class A, i.e., σ(A) is the completion of the generated σ-field. Let A∧ B denote the
intersection of all fields that contain A and B. Assuming Definition 1, the following statement has
been claimed true by Dębowski [1] (Theorem 2):

Theorem 1. Let A, B, C, and D be subfields of J .
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1. I(A;B|C) = I(A; σ(B)|C) = I(A;B|σ(C)) (invariance of completion);
2. I(A;B ∧ C|D) = I(A;B|D) + I(A; C|B ∧ D) (chain rule).

The property stated in Theorem 1. 1 will be referred to as the invariance of completion. It was not
discussed by Wyner [7]. The property stated in Theorem 1. 2 is usually referred to as the chain rule or
the polymatroid identity. It was proved independently by Wyner [7].

As we have mentioned, the invariance of completion is crucial to prove the ergodic decomposition
of the entropy rate and excess entropy of stationary processes. But the proof of the invariance of
completion given by Dębowski [1] contains a mistake in the order of quantifiers, and the respective
proof of the chain rule is too laconic and contains a gap. For this reason, we would like to supplement
the corrected proofs in this article. As we have mentioned, the chain rule was proved by Wyner [7],
using an approximation result by Dobrushin [5] and Pinsker [6]. For completeness, we would like to
provide a different proof of this approximation result—which follows easily from the invariance of
completion—and to supply proofs of both parts of Theorem 1.

The corrected proofs of Theorem 1, to be presented in Section 2, are much longer than the original
proofs by Dębowski [1]. In particular, for the sake of proving Theorem 1, we will discuss a few other
approximation results, which seem to be of an independent interest. To provide more context for
our statements, in Section 3, we will also recall the ergodic decomposition of excess entropy and its
application to statistical language modeling.

2. Proofs

Let us write Bn ↑ B for a sequence (Bn)n∈N of fields such that B1 ⊂ B2 ⊂ · · · ⊂ B =
⋃

n∈N Bn.
(B need not be a σ-field.) Our proof of Theorem 1 will rest on a few approximation results and this
statement by Dębowski [1] (Theorem 1):

Theorem 2. Let A, B, Bn, and C be subfields of J .

1. I(A;B|C) = I(B;A|C);
2. I(A;B|C) ≥ 0 with the equality if and only if P(A ∩ B|C) = P(A|C)P(B|C) almost surely for all

A ∈ A and B ∈ B;
3. I(A;B|C) ≤ min(H(A|C), H(B|C));
4. I(A;B1|C) ≤ I(A;B2|C) if B1 ⊂ B2;
5. I(A;Bn|C) ↑ I(A;B|C) for Bn ↑ B.

Let Ac = Ω \ A. Subsequently, let us denote the symmetric difference

A4B := (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B). (4)

Symmetric difference satisfies the following identities, which will be used:

Ac4Bc = A4B, (5)

A4B ⊂ (A4C) ∪ (C4B), (6)

(A \ C)4B ⊂ (A4B) ∪ (C ∩ B), (7)(⋃
i∈C

Ai

)
4
(⋃

i∈C
Bi

)
⊂
⋃
i∈C

(Ai4Bi). (8)

Moreover, we will apply the Bonferroni inequalities

0 ≤ ∑
1≤i≤n

P(Ai)− P

( ⋃
1≤i≤n

Ai

)
≤ ∑

1≤i<j≤n
P(Ai ∩ Aj) (9)
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and inequality P(A) ≤ P(B) + P(A4B).
In the following, we will derive the necessary approximation results. Our point of departure is

the following folklore fact.

Theorem 3 (approximation of σ-fields). For any field K and any event G ∈ σ(K), there is a sequence of
events K1, K2, · · · ∈ K such that

lim
n→∞

P(G4Kn) = 0. (10)

Proof. Denote the class of sets G that satisfy (10) as G. It is sufficient to show that G is a complete
σ-field that contains the fieldK. Clearly, all G ∈ K satisfy (10) so G ⊃ K. Now, we verify the conditions
for G to be a σ-field.

1. We have Ω ∈ K. Hence, Ω ∈ G.
2. For A ∈ G, consider K1, K2, · · · ∈ K such that limn→∞ P(A4Kn) = 0. Then, A4Kn = Ac4Kc

n,
where Kc

1, Kc
2, · · · ∈ K. Hence, Ac ∈ G.

3. For A1, A2, · · · ∈ G, consider events Kn
i ∈ K such that P(Ai4Kn

i ) ≤ 2−n. Then,

P

((
n⋂

i=1

Ai

)
4
(

n⋂
i=1

Ki+n
i

))
≤

n

∑
i=1

P(Ai4Ki+n
i ) ≤ 2−n. (11)

Moreover,

P

((
∞⋂

i=1

Ai

)
4
(

n⋂
i=1

Ai

))
= P

(
n⋂

i=1

Ai

)
− P

(
∞⋂

i=1

Ai

)
. (12)

Hence,

P

((
∞⋂

i=1

Ai

)
4
(

n⋂
i=1

Ki+n
i

))

≤ P

((
∞⋂

i=1

Ai

)
4
(

n⋂
i=1

Ai

))
+ P

((
n⋂

i=1

Ai

)
4
(

n⋂
i=1

Ki+n
i

))

≤ P

(
n⋂

i=1

Ai

)
− P

(
∞⋂

i=1

Ai

)
− 2−n, (13)

which tends to 0 for n going to infinity. Since
⋂n

i=1 Ki+n
i ∈ K, we thus obtain that

⋂∞
i=1 Ai ∈ G.

Completeness of σ-field G is straightforward since, for any A ∈ G and P(A4A′) = 0, we obtain
A′ ∈ G using the same sequence of approximating events in field K as for event A.

The second approximation result is the following bound:

Theorem 4 (continuity of entropy). Fix an ε ∈ (0, e−1] and a field C. For finite partitions α = {Ai}I
i=1 and

α′ =
{

A′i
}I

i=1 such that P(Ai4A′i) ≤ ε for all i ∈ {1, . . . , I}, we have

∣∣H(α|C)− H(α′|C)
∣∣ ≤ I

√
ε log

I√
ε

. (14)

Proof. We have the expectation
∫

P(Ai4A′i|C)dP = P(Ai4A′i) ≤ ε. Hence, by the Markov inequality
we obtain

P(P(Ai4A′i|C) ≥
√

ε) ≤
√

ε. (15)
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Denote

B =
(

P(Ai4A′i|C) <
√

ε) for all i ∈ {1, . . . , I}
)

. (16)

From the Bonferroni inequality, we obtain P(Bc) ≤ I
√

ε. Subsequently, we observe that
|H(α||C)− H(α′||C)| ≤ log I holds almost surely. Hence,

∣∣H(α|C)− H(α′|C)
∣∣ = ∣∣∣∣∫ [H(α|C)− H(α′|C)

]
dP
∣∣∣∣

≤ P(Bc) log I +
∫

B

∣∣H(α||C)− H(α′||C)
∣∣ dP

≤ I
√

ε log I +
∫

B

∣∣H(α||C)− H(α′||C)
∣∣ dP. (17)

Function −x log x is subadditive and increasing for x ∈ (0, e−1]. In particular, we have
|(x + y) log(x + y)− x log x| ≤ −y log y for x, y ≥ 0. Thus, on the event B we obtain

∣∣H(α||C)− H(α′||C)
∣∣ = ∣∣∣∣∣ I

∑
i=1

P(A′i|C) log P(A′i|C)−
I

∑
i=1

P(Ai|C) log P(Ai|C)
∣∣∣∣∣

≤ −
I

∑
i=1

∣∣P(Ai|C)− P(A′i|C)
∣∣ log

∣∣P(Ai|C)− P(A′i|C)
∣∣

≤ −
I

∑
i=1

P(Ai4A′i|C) log P(Ai4A′i|C)

≤ −I
√

ε log
√

ε (18)

Plugging (18) into (17) yields the claim.

Now, we can prove the invariance of completion. Note that

I(α; β|C) = H(α|C) + H(β|C)− H(α ∧ β|C). (19)

Proof of Theorem 1. 1 (invariance of completion): Consider some measurable fields A, B, and C.
We are going to demonstrate

I(A;B|C) = I(A; σ(B)|C) = I(A;B|σ(C)). (20)

Equality I(A;B|C) = I(A;B|σ(C)) is straightforward since P(A|C) = P(A|σ(C)) almost surely for all
A ∈ J . It remains to prove I(A;B|C) = I(A; σ(B)|C). For this goal, it suffices to show that for any
ε > 0 and any finite partitions α ⊂ A and β′ ⊂ σ(B) there exists a finite partition β ⊂ B such that∣∣I(α; β|C)− I(α; β′|C)

∣∣ < ε. (21)

Fix then some ε > 0 and finite partitions α := {Ai}I
i=1 ⊂ A and β′ :=

{
B′j
}J

j=1
⊂ σ(B). Invoking

Theorem 3, we know that for each η > 0 there exists a class of sets
{

Cj
}J

j=1 ⊂ B which need not be a
partition, such that

P(Cj4B′j) ≤ η (22)

for all j ∈ {1, . . . , J}. Let us put B′J+1 := ∅ and let us construct sets D0 := ∅ and Dj :=
⋃j

k=1 Ck for
j ∈ {1, . . . , J}. Subsequently, we put Bj := Cj \ Dj−1 for j ∈ {1, . . . , J} and BJ+1 := Ω \ DJ . In this way,

we obtain a partition β :=
{

Bj
}J+1

j=1 ⊂ B.
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The next step of the proof is showing an analogue of bound (22) for partitions β and β′. To begin,
for j ∈ {1, . . . , J}, we have

P(Bj4B′j) = P((Cj \ Dj−1)4B′j) ≤ P(Cj4B′j) + P(Dj−1 ∩ B′j)

≤ η +
j−1

∑
k=1

P(Ck ∩ B′j)

≤ η +
j−1

∑
k=1

[
P(B′k ∩ B′j) + P((Ck ∩ B′j)4(B′k ∩ B′j))

]
≤ η +

j−1

∑
k=1

[
0 + P(Ck4B′k)

]
≤ jη. (23)

Now, we observe for j, k ∈ {1, . . . , J} and j 6= k that

P(Cj) ≥ P(B′j)− P(Cj4B′j) ≥ P(B′j)− η (24)

P(Cj ∩ Ck) ≤ P(B′j ∩ B′k) + P((Cj ∩ Ck)4(B′j ∩ B′k))

≤ 0 + P(Cj4B′j) + P(Ck4B′k) ≤ 2η. (25)

Hence, by the Bonferroni inequality we derive

P(BJ+14B′J+1) = P((Ω \ DJ)4∅) = P(Ω \ DJ) = 1− P(DJ)

≤ 1− ∑
1≤j≤J

P(Cj) + ∑
1≤j<k≤J

P(Cj ∩ Ck)

≤ 1− ∑
1≤j≤J

P(B′j) + Jη + ∑
1≤j<k≤J

2η = J2η. (26)

Resuming our bounds, we obtain

P((Ai ∩ Bj)4(Ai ∩ B′j)) ≤ P(Bj4B′j) ≤ J2η (27)

for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J + 1}. Then, invoking Theorem 4 yields∣∣I(α; β|C)− I(α; β′|C)
∣∣ ≤ ∣∣H(α ∧ β|C)− H(α ∧ β′|C)

∣∣+ ∣∣H(β|C)− H(β′|C)
∣∣

≤ I(J + 1)
√

J2η log
I(J + 1)√

J2η
+ (J + 1)

√
J2η log

J + 1√
J2η

. (28)

Taking η sufficiently small, we obtain (21), which is the desired claim. �

Some consequence of the above result is this approximation result proved by Dobrushin [5]
and Pinsker [6] and used by Wyner [7] to demonstrate the chain rule. Applying the invariance of
completion, we supply a different proof than Dobrushin [5] and Pinsker [6].

Theorem 5 (split of join). Let A, B, C, and D be subfields of J . We have

I(A;B ∧ C|D) = sup
α⊂A,β⊂B,γ⊂C

E I(α; β ∧ γ||D), (29)

where the supremum is taken over all finite subpartitions.
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Proof. Define class

E :=
⋃

β⊂B,γ⊂C
σ(β ∧ γ). (30)

It can be easily verified that E is a field such that σ(E) = σ(B ∧ C). Thus, for all finite partitions β ⊂ B
and γ ⊂ C we have β ∧ γ ⊂ E . Moreover, by definition of E , for each finite partition ε ⊂ E there exists
finite partitions β ⊂ B and γ ⊂ C such that partition β ∧ γ is finer than ε. Hence, by Theorem 2.4, we
obtain in this case,

E I(α; ε||D) ≤ E I(α; β ∧ γ||D) ≤ I(α; E|D). (31)

In consequence, by Theorem 1. 1, we obtain the claim

I(A;B ∧ C|D) = I(A; E|D) = sup
α⊂A,ε⊂E

E I(α; ε||D)

= sup
α⊂A,β⊂B,γ⊂C

E I(α; β ∧ γ||D). (32)

The final approximation result which we need to prove the chain rule is as follows:

Theorem 6 (convergence of conditioning). Let α = {Ai}I
i=1 be a finite partition and let C be a field. For

each ε > 0, there exists a finite partition γ′ ⊂ σ(C) such that for any partition γ ⊂ σ(C) finer than γ′ we have

|H(α|C)− H(α|γ)| ≤ ε. (33)

Proof. Fix an ε > 0. For each n ∈ N and A ∈ J , partition

γA := {((k− 1)/n < P(A|C) ≤ k/n) : k ∈ {0, 1, . . . , n}} (34)

is finite and belongs to σ(C). If we consider partition γ′ :=
∧I

i=1 γAi , it remains finite and still satisfies
γ′ ⊂ σ(C). Let a partition γ ⊂ σ(C) be finer than γ′. Then,

|P(Ai|C)− P(Ai|γ)| ≤ 1/n (35)

almost surely for all i ∈ {1, . . . , I}. We also observe

|H(α|C)− H(α|γ)| ≤
∫
|H(α||C)− H(α||γ)| dP. (36)

We recall that function −x log x is subadditive and increasing for x ∈ (0, e−1]. In particular, we have
|(x + y) log(x + y)− x log x| ≤ −y log y for x, y ≥ 0. Hence, for n ≥ e we obtain almost surely

|H(α||C)− H(α||γ)| =
∣∣∣∣∣ I

∑
i=1

P(Ai|C) log P(Ai|C)−
I

∑
i=1

P(Ai|γ) log P(Ai|γ)
∣∣∣∣∣

≤ −
I

∑
i=1
|P(Ai|C)− P(Ai|γ)| log |P(Ai|C)− P(Ai|γ)|

≤ I log n
n

. (37)

Taking n so large that n−1 I log n ≤ ε yields the claim.
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Taking the above into account, we can demonstrate the chain rule. Our proof essentially follows
the ideas of Wyner [7], except for invoking Theorem 6.

Proof of Theorem 1. 2 (chain rule): Let A, B, C, and D be arbitrary fields, and let α, β, γ, and δ be
finite partitions. The point of our departure is the chain rule for finite partitions [9] (Equation 2.60)

I(α; β ∧ γ) = I(α; β) + I(α; γ|β). (38)

By Definition 1 and Theorems 1. 1, 5, and 6, conditional mutual information I(A;B|C) can be
approximated by I(α; β|γ), where we take appropriate limits of refined finite partitions with a certain
care.

In particular, by Theorems 1. 1, 5, and 6, taking sufficiently fine finite partitions of arbitrary fields
B and C, the chain rule (38) for finite partitions implies

I(α;B ∧ C) = I(α;B) + I(α; C|B), (39)

where all expressions are finite. Hence, we also obtain

0 = [I(α;B ∧ C ∧D)− I(α;D)− I(α;B ∧ C|D)]
− [I(α;B ∧D)− I(α;D)− I(α;B|D)]
− [I(α;B ∧ C ∧D)− I(α;B ∧D)− I(α; C|B ∧ D)]

= I(α;B|D) + I(α; C|B ∧ D)− I(α;B ∧ C|D),

where all expressions are finite. Having established the above claim for a finite partition α, we
generalize it to

I(A;B ∧ C|D) = I(A;B|D) + I(A; C|B ∧ D) (40)

for an arbitrary field A, taking its appropriately fine finite partitions. �

3. Applications

This section borrows its statements largely from Dębowski [1–3] and is provided only to sketch
some context for our research and justify its applicability to statistical language modeling. Let
(Xi)i∈Z be a two-sided infinite stationary process over a countable alphabet X on a probability space
(XZ,X Z, P), where Xk((ωi)i∈Z) := ωk. We denote random blocks Xk

j := (Xi)j≤i≤k and complete

σ-fields Gk
j := σ(Xk

j ) generated by them. By the generalized calculus of Shannon information measures,
i.e., Theorems 1 and 2, we can define the entropy rate hP and the excess entropy EP of process (Xi)i∈Z
as

hP := lim
n→∞

HP(G0|G−1
−n) = HP(G0|G−1

−∞) if X is finite, (41)

EP := lim
n→∞

IP(G−1
−n;Gn−1

0 ) = IP(G−1
−∞;G∞

0 ), (42)

see [10] for more background.
Let T((ωi)i∈Z) := (ωi+1)i∈Z be the shift operation and let I :=

{
A ∈ X Z : T−1(A) = A

}
be the

invariant σ-field. By the Birkhoff ergodic theorem [11], we have σ(I) ⊂ σ(G−∞) ∩ σ(G∞) for the
tail σ-fields G−∞ :=

⋂∞
n=1 G−n

−∞ and G∞ :=
⋂∞

n=1 G∞
n . Hence, by Theorems 1 and 2 we further obtain

expressions

hP = HP(G0|G−1
−∞) = HP(G0|G−1

−∞ ∧ I) if X is finite, (43)

EP = IP(G−1
−∞;G∞

0 ) = HP(I) + IP(G−1
−∞;G∞

0 |I). (44)
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Denoting the conditional probability F(A) := P(A|I), which is a random stationary ergodic
measure by the ergodic decomposition theorem [12], we notice that HP(G0|G−1

−∞ ∧I) = E PHF(G0|G−1
−∞)

and IP(G−1
−∞;G∞

0 |I) = E P IF(G−1
−∞;G∞

0 ), and consequently we obtain the ergodic decomposition of the
entropy rate and excess entropy, which reads

hP = E PhF if X is finite, (45)

EP = HP(I) + E PEF. (46)

Formulae (45) and (46) were derived by Gray and Davisson [13] and Dębowski [1] respectively.
The ergodic decomposition of the entropy rate (45) states that a stationary process is asymptotically
deterministic, i.e., hP = 0, if and only if almost all its ergodic components are asymptotically
deterministic, i.e., hF = 0 almost surely. In contrast, the ergodic decomposition of the excess
entropy (46) states that a stationary process is infinitary, i.e., EP = ∞, if some of its ergodic components
are infinitary, i.e., EF = ∞ with a nonzero probability, or if HP(I) = ∞, i.e., if the process is strongly
nonergodic in particular, see [14,15].

The linguistic interpretation of the above results is as follows. There is a hypothesis
by Hilberg [16] that the excess entropy of natural language is infinite. This hypothesis can be
partly confirmed by the original estimates of conditional entropy by Shannon [17], by the power-law
decay of the estimates of the entropy rate given by the PPM compression algorithm [18], by
the approximately power-law growth of vocabulary called Heaps’ or Herdan’s law [2,3,19,20],
and by some other experiments applying neural statistical language models [21,22]. In parallel,
Dębowski [1–3] supposed that the very large excess entropy in natural language may be caused by
the fact that texts in natural language describe some relatively slowly evolving and very complex
reality. Indeed, it can be mathematically proved that if the abstract reality described by random texts
is unchangeable and infinitely complex, then the resulting stochastic process is strongly nonergodic,
i.e., HP(I) = ∞ in particular [1–3]. Consequently, its excess entropy is infinite by formula (46). We
suppose that a similar mechanism may work for natural language, see [23–26] for further examples of
abstract stochastic mechanisms leading to infinitary processes.
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