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Abstract: In this paper, a new image encryption transmission algorithm based on the parallel mode
is proposed. This algorithm aims to improve information transmission efficiency and security based
on existing hardware conditions. To improve efficiency, this paper adopts the method of parallel
compressed sensing to realize image transmission. Compressed sensing can perform data sampling
and compression at a rate much lower than the Nyquist sampling rate. To enhance security, this
algorithm combines a sequence signal generator with chaotic cryptography. The initial sensitivity
of chaos, used in a measurement matrix, makes it possible to improve the security of an encryption
algorithm. The cryptographic characteristics of chaotic signals can be fully utilized by the flexible
digital logic circuit. Simulation experiments and analyses show that the algorithm achieves the goal
of improving transmission efficiency and has the capacity to resist illegal attacks.

Keywords: compressed sensing; initial sensitivity; parallel transmission; logic circuit

1. Introduction

With the rapid development of data networks and information technology, people’s productivity
and life are closely related to network technology, and the network has become the mainstream carrier
of information [1]. There is a large amount of data transmitted in the network at any time, especially
digital information, which is easy to store and forward, and noise is not cumulative, so the data can
be widely transmitted, stored, and processed in the network [2]. The era of big data requires faster
computing power and stronger storage capacity. Large amounts of data will bring about reliability
and scalability problems, users may store huge amounts of historical data, and the data scale will
continue to grow. Faced with such technical challenges, it is necessary to increase hardware speed,
but it is also very important to turn algorithms more efficient. Simultaneously, security problems
arising from data transmission are increasingly prominent. In the military and finance fields, there is a
high demand for information security [3]. In this context, data encryption technology is increasingly
researched by scholars. Digital images, with their unique characteristics compared to text information
and voice information, are widely used in the fields of national defense, education, medical treatment,
remote sensing, and environmental monitoring. Based on the above two problems, transmitting image
information efficiently and safely in the vulnerable transmission network is particularly important [4].

There are many kinds of image encryption methods according to different standards. Such as
static image encryption and adaptive image encryption algorithm; digital watermark image encryption
and chaotic image encryption. Ref. [5] proposed a novel watermarking scheme addressed for medical
image to ensure the security of functional magnetic resonance imaging (fMRI) data. In order to increase
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the hidden storage and enhance the robust of the image encryption algorithm. Yang et al. proposed
a simple but robust digital watermarking for color image on Euclidean norms and quick coefficient
alignment [6]. The above conventional encryption methods can guarantee security, in the process of
encryption/decryption, but how to combine security with transmission efficiency has become the
current problem.

In recent years, compressed sensing, as a cryptosystem, has attracted much attention owing to
its low complexity and compressibility in the sampling process [7]. It is not only a data compression
method but also a cryptographic system, which has attracted researchers’ attention. Compressed
sensing can sample the compressible signal at the frequency far lower than that specified by Nyquist’s
sampling theorem, and can ensure that the receiver can accurately reconstruct the original signal. It can
effectively avoid resource waste, with a low sampling rate. Simultaneously, due to the randomness
of the measurement matrix during the execution of compressed sensing, CS can provide a definite
encryption function. Rachlin and Baron researched the security of the measurement matrix, and they
proposed the computational notion of secrecy [8]. Orsemir and Altun proposed a cryptosystem based
on the selection of a random measurement matrix and examined the robustness of the CS-based
encryption algorithm and analyzed the algorithm based on compressed sensing is computationally
secure [9]. Color image encryption algorithm was introduced by using CS with Arnold transform.
The measurement matrix was scrambled by Anold [10]. Endra et al. compared the differences
between random sensing matrixes and the optimized sensing matrix of the reconstructed process,
and introduced a new CS algorithm [11]. Zhou et al. first compress the image and then encrypt the
image, through a cyclic shift operation controlled by a hyper-chaotic system, to obtain a final plaintext
image, and the cyclic shift operation is used to change the position of the pixels [12]. Currently,
due to the low plaintext relevance of the above algorithm, the security of the algorithm is weak.
George proposed an algorithm based on a linear feedback shift register and compressed sensing,
which was validated through different block-based image. The algorithm has better performance [13].
Ref. [14] Presents a system about scrambling the CS audio data which combine with two-dimensional
cellular automata.

To improve the computational efficiency of compressed sensing and the security of image
encryption, a parallel image encryption technique based on a sequence signal generator was
proposed. This algorithm is designed from the perspective of information security transmission
and integrates new data to maximize the security of encryption technology. In order to reduce the
encryption/decryption computation time and reducing the amount of information storage. A chaos
system combines with a sequence signal generator is introduced for designing the CS measurement
matrix. A chaotic system has initial value sensitivity and complex dynamic behavior, which can
provide good randomness, correlation, and complexity of a pseudo-random sequence. However,
when implemented on a finite precision computer, chaotic systems end up in dynamical degradation
of chaotic properties. Ref. [15] Proposes a novel image encryption using finite precision error.
The generated sequence has sufficient randomness to be used in image encryption. Ref. [16] Presents
an encryption scheme based on pseudo-orbits of 1D chaotic maps. By combining chaotic cryptography
with the classical cryptography concepts of scrambling and diffusion, chaotic systems have the
characteristics of cryptography. This paper focuses on how to use the cryptographic characteristics of
a chaotic system to optimize the process of CS. Additionally, the cryptographic characteristics of chaos
are used to expand the key spacing and to enhance the efficiency and security of compressed sensing
theory, to meet the requirements of image security and efficient transmission.

2. Theories and Methods

The theory of compressed perception was formally proposed by E.J. Candes, in 2004 [17],
and already had a definite theoretical foundation in the last century. This technology has been
applied in many fields, including image processing, medical imaging, geophysics, computer science,
signal processing, etc. CS is a technique that seeks sparse solutions of underdetermined linear systems.
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It breaks from the traditional Shannon sampling theorem and can obtain discrete samples under
conditions including far less than the Nyquist sampling rate [18]. CS has two cores. One is signal
sparsity, which means that a signal has a finite number of non-zero values, and the signal can be
determined using those values. The second core is the uncorrelated feature, where the information is
compressed by a non-adaptive sampling method [19], that the signal needs to be related to a set of
determined waveforms, and the sparse space where the required signal is irrelevant to the waveforms.
Figure 1 shows the CS implementation block diagram:

Sparse representation 

of signals

Search observation 

matrix

The observed value of 

the signal is obtained 

by using the 

observation matrix

Using observations to 

reconstruct the signal

Figure 1. Block diagram of compressed sensing implementation.

As can be seen from Figure 1, the compressed sensing process has three key steps. First, the original
signal needs to be sparse. Secondly, the choice of measurement matrix is also very important.
Different measurement matrices will produce different compression and encryption effects. Finally,
the selection of reconstruction algorithm will directly affect the recovery of the original signal in the
decryption process.

2.1. Mathematical Representation of Compressed Sensing

Suppose a two-dimensional signal X of size N × N is needed in the process of achieving
compressed sensing to make the signal sparse. Under the corresponding sparse space of the signal,
CS can achieve effective compression and sampling. Using Equation (1), CS can generate the sparse
representation of the signal X, under [20]

X =
N

∑
n=1

ψnsn = ψs, (1)

where ψ is the sparse basis matrix and s is the projection under the sparse basis ψ. In Equation (1),
if there are K(K ≤ N) non-zero coefficients, the signal X is said to be compressible under a sparse basis
ψ, and the sparsity is K. If there is a two-dimensional matrix φ of size M× N, then the original signal
X can be converted into a signal of size M× N by the following Equation (2):

Y = φX = φψS, (2)

where Y is called the measurement value and φ is called the measurement matrix. On the basis of the
known measurement value Y and measurement matrix phi, CS can obtain the original signal X by
solving the underdetermined equation. In the traditional underdetermined equation, there should be
infinite solutions; however, because s is sparse, conversion to an optimization problem is possible [21].
The unique optimal solution of the underdetermined equation can be found by obtaining the minimum
norm in the following Equation (3):

min‖s‖0 s.t. Y = φψs, (3)

where ‖m‖ represents L0 norm, s is the recovery signal, and Y is the measurement signal; and, because
s is obtained using a sparse basis transformation, the original signal X can be recovered from the signal
s through a single inverse transformation.

In the process of CS, the following three actions are crucial:

1. Selection of a sparse basis: For a signal X of length N, select a sparse basis. If the K coefficient
is not zero, after sparse transformation and K ≤ N, then we say the signal X is K sparse under
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the sparse basis [22]. The original signal can be recovered, using the sparse signal; however,
the approximation of the original signal is obtained.

2. Design of a measurement matrix: in the design of a measurement matrix, the restricted isometry
property (RIP) needs to be satisfied in order to solve Y = φX, which is an underdetermined
solution problem. The RIP can guarantee the one-to-one mapping of original space to sparse
space. In the algorithm proposed here, a chaotic signal is used to generate a measurement
matrix, sequence signals generated by a sequence signal generator are then used to generate
multiple measurement matrixes, and then, images are compressed and encrypted using multiple
measurement matrixes.

3. Selection of a reconstruction algorithm: In the process of signal reconstruction, choosing an
optimal reconstruction algorithm is key to the reconstruction effort. Currently, the reconstruction
algorithm of CS is mainly divided into two categories: first, including a greedy algorithm,
matching tracking algorithm, orthogonal matching tracking algorithm, etc. The second category
includes a convex optimization algorithm, gradient projection method, basis tracking method,
minimum Angle regression method, etc.

2.2. Logistic-Tent Chaotic System

In past work, Yu proposed to construct the measurement matrix of CS using chaotic mapping,
and to generate chaotic sequences using logistic mapping and tent mapping [23]. Due to the
ergodic characteristics of chaotic systems, the measurement matrix constructed by a chaotic system
is essentially a sub-Gaussian random matrix. Additionally, the sub-Gaussian matrix can satisfy
the RIP characteristics, thus it can be said that the chaos measurement matrix has good statistical
characteristics. For a cryptography system based on the theory of CS, the chaotic system used to
generate the measurement matrix should not only have good statistical characteristics, but also have
good cryptography characteristics. Therefore, this paper adopts a compound chaotic logistic-tent
system (LTS) to enhance the security intensity of the chaos matrix.

The LTS is generated by the combination of a logistic system and a tent system,
both one-dimensional chaotic. By combining the logistic and tent subsystems expressed by
Equations (4) and (5), the LTS is obtained. The combined system can generate chaotic sequences
with chaotic characteristics. The combined system is expressed in Equation (6):

Zn+1 = µZn(1− Zn), (4)

Zn+1 =


Zn

p
, 0 < Zn < p

1− Zn

1− p
, p ≤ Zn < 1

(5)

Zn+1 =


[rZn(1− Zn) +

(4− r)Zn

2
]mod1 , Zn < 0.5

[rZn(1− Zn) +
(4− r)(1− Zn)

2
]mod1 , Zn ≥ 0.5

(6)

where the control parameters of the logistic system mapping are µ ∈ [3.57, 4], the control parameters
of the tent system are ρ ∈ (0, 1), and those of the composite system are r ∈ (0, 4]. For the above three
systems, all the initial values are Zn ∈ (0, 1).

3. Parallel Compressed Sensing Encryption Algorithm Based on Sequence Generator

3.1. Algorithm Principle

In the process of image encryption and transmission, transmission is usually by row or column,
with efficiency naturally depending on the dimension of the image. In order to improve the efficiency
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of encryption and transmission. This paper proposes a block partitioning, parallel compression
sensing, and encryption transmission algorithm. Based on the sensitivity to initial values and the
pseudo-randomness of the chaotic signals, the algorithm combines the cryptographic characteristics
of chaos with the theory of the compressed sensing to generate the measurement matrix. Therefore,
this algorithm can solve the problems of traditional compressed sensing’s low security, and the waste
of large storage resources in reconstruction.

In order to improve the efficiency of information transmission and expand the key space.
The algorithm will combine the theories of digital logic circuits and CS theory. The implementation of
this algorithm is mainly divided into the following steps.

First, binary sequence signals of appropriate length will be generated using a signal sequence
generator, and the binary sequence signals will be used as “modulation signals” to “slightly disturb”
the initial value of the chaotic system. Owing to the sensitivity of the initial value of the chaotic system,
any small change of the initial value will directly affect the entire chaotic matrix, such that the multiple
chaotic matrices generated are guaranteed to be different from each other. In this paper, according
to the modulation of the binary sequence, eight chaotic matrix will be needed to achieve the process,
and the security of the image encryption is improved. Meanwhile, the digital logic circuit is flexible.
By simply adjusting the structure of the logic circuit, different “modulation signals” can be generated
to change the key.

Then, the chaos matrix, after “adding disturbance”, is taken as the measurement matrix,
and compressed sensing is adopted for the image encryption. Here, the 256× 256 image is divided
into eight blocks according to the columns, and the image is segmented and compressed in parallel.
Appropriate partitioning can improve the security and transmission rate of the algorithm.

Finally, in order to show better cryptographic characteristics, the sampled cipher text images are
confused and scrambled. Thus, the energy blocks measured by the same measurement matrix can be
evenly distributed over the whole image, to achieve the efficient transmission and effective encryption
of the image information. The block diagram for this algorithm is given as Figure 2:

Sequence 

generator

chaotic system

Measurement 

matrix Φ

sequence 

signal

chaos 

sequence

Compressed 

sensing 

Y=ΦΧ 

Observed signal Y

Compressed 

sensing 

reconstruction

Scrambling  diffusion 

sequence 

signal

Original signal Χ 

Reconstruct signal Χ' 

Generating measurement matrix Compressed sensing process

Figure 2. Parallel compression sensing encryption algorithm based on sequence generator.

The left side of Figure 2 describes the measurement matrix generation process. Firstly, the logic
circuit generates the sequence signal, and the chaotic matrix is generated by the chaotic system under
the modulation of the sequence signal. The sequence signal is transmitted to the decryption end as
the key. The right part describes the process of measurement and reconstruction. Since the sparse
image is divided into eight blocks above, eight measurements are required in this part. The results of
multiple measurements are combined to form an observation signal. The signal is reconstructed using
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an orthogonal pursuit (OMP) algorithm. The sequence signal generator and the parallel compressed
sensing scheme in Figure 2 are described in detail below.

3.2. Sequence Signal Generator Mode

Here, the sequence signal generator shown in Figure 3 is designed and consists of the synchronous
hexadecimal addition counter 74LS161 and the 8-to-1 data selector 74LS152. For example, if one needs
to generate an eight-bit sequence signal 00010111 (the time sequence is from left to right), can use an
octal counter that can be used along with an 8-to-1 data selector. The octal counter is taken from the
lower three bits of counter 74ls161, a four-bit binary counter. Connecting the two parts provides the
circuit of the sequence signal generator, as shown in Figure 3:

CLK

EP     ET

CLK

D0

D1

D2

D3

RD   LD

Q0

Q1

Q2

Q3

C

A0

A2

D1

D3

D5

D7

A1

D0

D2

D4

D6

Y

Y’
Output sequential 

signal 

1

1

1

7
4
L

S
1

6
1

7
4

L
S

1
5

2

Figure 3. Circuit diagram of sequence signal generator.

Clock signals are continuously added to the counter, and the state of Q2Q1Q0 is continuously
cyclic according to the order in Table 1. The eight binary digits (1 or 0) of data selectors D0–D7 can
be used as keys to modulate the initial value of the chaotic system. It should be noted that only the
high and low bits of D0–D7 need to be modified to generate different sequence signals, thus the circuit
has flexible and convenient characteristics. The sequence signal generation in this paper is shown in
Table 1.

Table 1. Circuit state conversion table.

CLK Q2 Q1 Q0 Y ′

0 0 0 0 D0
′(0)

1 0 0 1 D1
′(0)

2 0 1 0 D2
′(0)

3 0 1 1 D3
′(1)

4 1 0 0 D4
′(0)

5 1 0 1 D5
′(1)

6 1 1 0 D6
′(1)

7 1 1 1 D7
′(1)

8 0 0 0 D0
′(0)

Here, the initial value of the chaotic LTS is chosen to be 0.32568749. When the output of the binary
sequence signal generator is 1, the small perturbation 10−8 of the initial value ensures that it is still in a
chaotic state within the image block.
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3.3. Parallel Compression Sensing

As above, the binary sequence generated by the sequence signal generator is used to fine-tune the
initial value of the chaotic system, and the generated chaotic matrix is then used as the measurement
matrix of the CS. A specific compression ratio is set to generate a measurement matrix, and the sparse
image is compressed and sampled. Here, the sparse plaintext image is evenly cut into eight blocks.
The size of each block is 256× 32, and the parallel transmission of the eight blocks is greatly improved
in efficiency, compared with the transmission, by 256 columns. The process of CS using the generated
measurement matrix is shown in Figure 4:
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generation
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Chaotic sequence 

generation
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generation
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sampling
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Compression and 

sampling
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Generation
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Controls parameter 

generation
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Chaotic sequence 

generation

Hn

Chaotic sequence 

generation

Hn

Compression and 

sampling

Compression and 

sampling

Secret key n

If key=0

If key=1

Yn

Yn

…

Figure 4. Parallel sampling compression of compressed sensing process.

Where P1, P2, ..., Pn is the control parameter of chaotic system. Under the influence of the
control parameter, the chaotic matrix is generated as the measurement matrix H1, H2, ..., Hn. In this
paper, eight measurement matrices will be generated for the corresponding eight plaintext images,
and parallel measurements will be made for each block to obtain the measurement value Y1, Y2, ..., Yn.

Converse to other chaotic compressed sensing systems, this algorithm does not need to transmit
the measurement matrix from the sending end in the reconstruction process. After using the
measurement matrix at the sending end, the algorithm does not need to store it. It only needs to use the
same sequence signal generator at the receiving end to fine-tune the initial value of the chaotic system,
so that the measurement matrix can be reproduced at the receiving end. Then, the reconstruction
process of the cipher text image can be completed. Therefore, this algorithm can greatly save storage
resources and effectively avoid resource waste.

It should be noted that the parallel-based compressed sensing image encryption scheme can
effectively and reliably complete image encryption, but it also has drawbacks. Since the block of
the plaintext image is sampled, the energy of each block in the measured value is stored intensively.
To overcome this defect, we use a diffusion and scrambling operation to force the energy of cipher text
image to be evenly distributed over the whole image.

4. Simulation Results and Security Analysis

We selected the gray image “pepper,” of size 256 × 256, from the standard test library.
First, discrete wavelet transform (DWT) was used to sparse the image, and then the image was
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divided into 8 parts of size 256× 32. Then, a sequence signal generator was designed to generate
sequence signal 00010111. According to this signal, the initial chaos value is fine-tuned, with step size
10−8, and the chaos matrix is taken as the measurement matrix. CS is used to compress and encrypt
the 8 sub-blocks in parallel. The dimension of the measurement matrix in the encryption process is
190× 256, i.e., the compression ratio is 74.2%. Finally, the encrypted cipher text image is diffused,
and the reference Formula (7) is given as follows:

Q∗(n) = Q(N)⊕ kd(n)⊕Q∗(n− 1) (7)

The simulation results for the above-proposed algorithm are shown in Figure 5:

(a) (b)

(c) (d)

Figure 5. Results of gray image parallel compression perception encryption. (a) Original image,
(b) compressed sensing encrypted image, (c) diffused cipher text image, (d) difference between (b)
and (c).

From the simulation results above, it can be seen that the encrypted image in this paper is like
a snowflake, and no valid information about plaintext can be distinguished visually by observation.
From the perspective of subjective judgment, it can be seen that the algorithm achieves the compression
and encryption of the plaintext image. Next, we will describe the reconstruction and restoration of the
image; compare the algorithm proposed here with other compression sensing encryption algorithms;
and, provide the algorithm’s ability to resist exhaustive attack, anti-differential attack, tailoring attack,
and noise attack.

4.1. Encryption Performance Analysis

A histogram can directly reflect the distribution of the pixel intensity values in the image.
The histograms of the cipher images should possess a similar distribution when the encryption
algorithm is effective. Figure 6a,b present plaintext images and cipher text images, respectively,
while Figure 6c,d are the histograms of the two respective images.
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Figure 6. Histogram of encryption and decryption image. (a) Original image, (b) cipher image,
(c) histogram of plaintext image, (d) Histogram of cipher text image.

It can be seen that the pixel value of the cipher text image is evenly distributed in the interval
[0, 255], which is completely different from the normal image, indicating that the attacker cannot obtain
any valid information about the original image from the histogram of the encrypted image.

Information entropy can measure the distribution of the gray value in the image. The more
uniform the gray distribution is, the larger the information entropy of the image will be. When the
information entropy of the image is low, it is easy for the image to be maliciously attacked and
tampered with by criminals. Equation (8) which calculates information entropy is as follows:

H(m) = −
n

∑
i=1

p(mi) log2 p(mi), (8)

where m is the pixel collection. p(mi) is probability of occurrence of m and n is a total number of mi.
For encrypted images, the higher the information entropy, the more uniform the energy distribution in
the image, and the less useful information an attacker can get from the gray distribution. The entropy
of this algorithm is listed as Table 2:

Table 2. Information entropy of encrypted images.

Entropy Compression Ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cipher image 7.9903 7.9934 7.9939 7.9957 7.9958 7.9963 7.9974 7.9968

Table 2 shows the change of the image entropy, when the compression ratio changes, in the
process of compression and encryption. The image entropy value after encryption in this paper is close
to 8, which can achieve effective encryption.

The correlation of adjacent pixels in the original image can reflect the diffusion degree of pixels
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in the image, and the correlation of adjacent pixels in the encrypted image should be close to 0.
The correlation coefficients between adjacent pixels x and y is defined as Formula (9):

ρxy =
cov(x, y)√
D(x)D(y)

(9)

where cov(x, y) = E[x− E(x)][y− E(y)]; E(x) and E(y) are the average values of x and y. D(x) and
D(y) are the standard deviations of x and y.

In the literature [12], the image is compressed from two directions using the fractional-order
Merlin transform method, while as in [24], the image is encrypted from orthogonal directions using
the discrete fractional-order random measurement matrix. In this paper, the correlation of adjacent
pixels is compared with the above two literatures. It can be seen from Table 3 that this algorithm has
lower similarity and is better than the image encryption process in the literatures.

Table 3. Correlation between adjacent pixels of cipher text image.

Algorithm Horizontal Direction Vertical Direction Diagonal Direction

Proposed algorithm −0.0065 0.0073 0.0042
Ref. [12] 0.0586 −0.0021 0.0269
Ref. [24] 0.0597 −0.0766 0.0083

Figure 7 shows the correlation distribution between the adjacent pixels of the original image and
the adjacent pixels of the encrypted image. It can be seen from Figure 7 that in the original image,
the correlation between the adjacent pixels is very high, while the correlation between the adjacent
pixels of the encrypted image is very low. According to the results, using data and images, the algorithm
proposed here achieves good encryption in terms of the correlation degree of adjacent pixels.

 

(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

Figure 7. Distribution of adjacent pixels. (a) Plaintext horizontal adjacent pixels, (b) plaintext vertical
adjacent pixels, (c) plaintext diagonal adjacent pixels, (d) cipher text horizontal adjacent pixels, (e) cipher
text vertical adjacent pixels, (f) cipher text diagonal adjacent.

4.2. Decryption (Reconstruction) Performance Analysis

Image decryption can be regarded as the inverse operation of image encryption. Here, CS is
used to achieve encryption, and the decryption process is also called the reconstruction process.
First, an anti-diffusion operation should be carried out on the cipher text image. The expression is
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shown in Equation (10). The receiver uses the reconstructed measurement matrix to generate the
sequence signal, and the initial value control parameters of the chaos matrix, according to the key held,
to restore the chaos matrix and acquire the measurement matrix needed in the reconstruction process.
Finally, the sparse signal is reconstructed by the RIP optimization criterion given in Equation (11),
and the plaintext signal is recovered using Equation (12):

Q(n) = Q∗(n)⊕Q∗(n− 1)⊕ kd(n) (10)

ŝi = arg min
si∈RN

‖si‖1 s.t. ŷi = φixi = φiψisi i = 1, ...N (11)

x̂i = ψŝi. (12)

Accordingly, the reconstruction results are shown in Figure 8:

(a) (b)

Figure 8. Encrypted image reconstruction. (a) Original image, (b) reconstructed image.

As can be seen from Figure 8, the reconstructed image can show the effective information of the
original image. Subjectively, we can allow that the algorithm in this paper achieves image restoration.
Natural images have very high structural similarity, which is reflected in the strong correlation between
the pixels of images, and structural similarity is an index to measure the similarity of two images.
The value range of structural similarity is 0 to 1. When the similarity is close to 1, the two images are
more similar; otherwise, the two pictures are quite different. It is calculated as follows:

SSIM =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y)(σ
2
X + σ2

Y + C2)
, (13)

where C1 = (k1 × L)2, C2 = (k2 × L)2, k1 = 0.03, k2 = 0.03, L=255, and µX, µY, σX, σY, σXY represent
the mean, variances and covariance of the plain image and cipher image. Table 4 shows the degree
of structural similarity between the original image and the reconstructed image, under different
compression rates.

Table 4. Information entropy of encrypted images.

SSIM Compression Ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reconstructed image 0.4302 0.6129 0.7349 0.8388 0.9033 0.9424 0.9645 0.9801
Cipher image 0.0028 0.0032 0.0045 0.0047 0.0065 0.0071 0.0076 0.0085

As can be seen from Table 4, as the compression ratio of the plaintext image increases, the image
similarity also increases, indicating that the image has been effectively restored. However, the similarity
of cipher text images is very low, which proves that the cipher text images meet the requirements of
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image encryption.
The peak signal-to-noise ratio (PSNR) represents the ratio between the maximum possible power

of a signal and the destructive noise power that affects its signal accuracy. It can be defined by the
mean squared error (MSE), and its equation is as Formula (14):

PSNR = 10 log10
L2

MSE
, (14)

where L is the value range of the gray scale in the image. For an eight-bit image the value range is
L = 256. Generally, the higher the PSNR of the image, the lower is its distortion degree. Figure 9 shows
the PSNR of the image, reconstructed by the algorithm in this work for different compression rates.

 

Figure 9. PSNR of reconstructed image.

As can be seen from Figure 9, the value of PSNR increases with the increase of the compression
rate. Moreover, the PSNR of the images reconstructed by this algorithm can meet the requirements
of image recovery. When the compression ratio is greater than 50%, the algorithm can achieve a
better recovery effect. Therefore, the compression rate can be set reasonably according to different
requirements.

4.3. Key Sensitivity Analysis

Key sensitivity refers to the degree to which the cipher text changes when the initial key changes
slightly. The sensitivity of the initial value of the chaos can be used to detect the sensitivity of
the algorithm. When the initial value of the chaotic system is small, changing the key means the
reconstructed image at the receiving end will be greatly different from the original. Figure 10a is
the reconstructed image when the order of magnitude of the key changes by 10−14, Figure 10b is the
recovered image when the order of magnitude changes by 10−15, and Figure 10c is the image when the
order of magnitude changes by 10−16.

It can be seen that, although the initial value in the reconstruction process only changes very
slightly, we can no longer observe any effective information from the original image in the reconstructed
image, which proves that this algorithm has good key sensitivity.
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Figure 10. Key sensitivity analysis. (a) Initial value change 10−14, (b) initial value change 10−15,
(c) initial value change 10−16.

4.4. Safety Analysis

In image encryption, the key spacing should be large enough to resist various violent attacks.
The above key sensitivity experiment also shows that the encryption algorithm needs to have a strong
dependence on the key. If the decryption key changes slightly, the decrypted image will be greatly
different from the original image. As an important reference for evaluating an encryption algorithm,
the key spacing directly determines the algorithm’s ability to resist an exhaustive attack.

For the algorithm proposed here, without considering the placement and diffusion process,
and only considering the impact of the measurement matrix on decryption. There are a total of two
encryption algorithm keys. One is the sequence generator with a total of eight parameters. So the
key 1 is {Y

′
0, Y

′
1, Y

′
2, Y

′
3, Y

′
4, Y

′
5, Y

′
6, Y

′
7}. The other is the control parameters of the chaos is the key 2 {µ}.

Since there are nine parameters in the key space in this paper. According to the international standard
IEEE 754, the index portion is expressed as a positive value to simplify the comparison. The significant
digit of a double-precision floating-point type is 52 bits. The key space is greater than 252×9 = 2468,
and it can be seen from the key space analysis that this key space is highly resistant to exhaustive
attack and has high encryption security.

The sensitivity of the encryption algorithm to the plaintext can determine the ability of the
algorithm to resist differential attacks. The parameters used to measure this sensitivity can be the
number of pixels change rate (NPCR), for normalized pixels, or the description of unified average
changing intensity (UACI). The equations for NPCR and UACI are given as Equations (15) and (16):

NPCR =
1

N ×M

M

∑
i=1

N

∑
j=1

E(i, j)× 100% (15)

UACI =
1

N ×M

M

∑
i=1

N

∑
j=1

|M1(i, j)−M2(i, j)|
255

× 100%, (16)

where M and N are the number of rows and columns of image pixels. The NPCR and UACI values of
the proposed algorithm are calculated in Table 5.

Table 5. Correlation between adjacent pixels of cipher text image.

Index Our Scheme Ref. [25] Ref. [26] Ref. [27]

NPCR (100%) 99.6094 99.6075 99.6063 99.6198
UACI (100%) 33.4635 33.4195 33.3437 32.8014
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In literature [25], the chaotic generation key is used as the index of the row and column
replacements in the image encryption process, and the encryption method of row and column
replacement is adopted to encrypt the image. The work in literature [26] adopts a hyper chaotic
system based on a closed-loop modulation to replace image pixels. In literature [27], piecewise linear
chaotic mapping is adopted to exchange binary elements in the original image sequence, using a
chaotic sequence to scramble and encrypt the image. The NPCR and UACI evaluation criterion
given in literature [28]. As seen in Table 5 and the NPCR and UACI values of the image encrypted
by the proposed algorithm were close to the critical values: N∗0.05 = 99.5693%, N∗0.01 = 99.5527%,
N∗0.001 = 99.5341%; where the critical values of UACI are U∗+0.05 = 33.6447%, U∗−0.05 = 33.2824%,
U∗+0.01 = 33.7016%, U∗−0.01 = 33.2255%.

Therefore, compared with other algorithms, the algorithm in this work can resist differential
attacks more effectively.

5. Conclusions

In this paper, an image parallel encryption technology based on sequence generator and chaotic
measurement matrix is proposed, combines the stochastic characteristics of chaotic signals with a
compressed sensing algorithm, which greatly expands the key spacing. By combining a digital logic
circuit, this algorithm has more flexibility and security. At the same time, it also provides a new idea
for the implementation of traditional encryption methods on hardware. The feasibility of the algorithm
is verified by simulation, and the experimental results are analyzed comprehensively. This algorithm
has a very high key sensitivity and can encrypt the image information very well. At the same time,
the security analysis verifies that this algorithm can resist a brute force attack, such as an exhaustive
attack or a differential attack.

In order to calculate the time required for the implementation of this algorithm. The experiment
was repeated for 20 times, then average the results of the above experiments to avoid outliers.
The algorithm encryption process takes 0.53 s, and the use of common compression perception
algorithm encryption requires approximately 1 s. The algorithm decryption process takes 8.2 s, and the
ordinary compression perception algorithm decryption requires 10 s; thus, the proposed algorithm uses
the method of parallel transmission to effectively improve the efficiency of information transmission.
Furthermore, the influence of noise on the algorithm is not considered in this paper. If there is
noise interference, with different distribution characteristics, it remains to be studied whether the
compressive sensing has a certain anti-noise capability, or whether the compressive sensing framework
can improve the anti-noise capability through an optimization algorithm.
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