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Abstract: In this paper, we give a definition for fuzzy Kolmogorov complexity. In the classical
setting, the Kolmogorov complexity of a single finite string is the length of the shortest program
that produces this string. We define the fuzzy Kolmogorov complexity as the minimum classical
description length of a finite-valued fuzzy language through a universal finite-valued fuzzy Turing
machine that produces the desired fuzzy language. The classical Kolmogorov complexity is extended
to the fuzzy domain retaining classical descriptions. We show that our definition is robust, that is to
say, the complexity of a finite-valued fuzzy language does not depend on the underlying finite-valued
fuzzy Turing machine.
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1. Introduction

Kolmogorov–Solomonoff–Chaitin (Kolmogorov, for short) complexity was introduced
independently by Solomonoff [1] and Kolmogorov [2] and later by Chaitin [3]. It is based on the
discovery of the universal Turing machine that can simulate any other Turing machine [4,5]. Kolmogorov
complexity of a single finite string is the length of the shortest program for a universal Turing machine
that correctly produces this string as its output. It also is a measure of the amount of information
contained in the string. It has been proved that, although there are many Turing machines, the length of
shortest programs are invariant, which can differ by at most an additive constant, under the choice of
the underlying Turing machine [6]. The theory of Kolmogorov complexity has been widely used on
areas such as question answering system [7], combinatorics [8], learning theory [9], bioinformatics [10]
and cryptography [11,12].

In 1985, Deutsch [13] introduced quantum Turing machines as theoretical models of quantum
computers. Quantum Turing machines expand the classical model of Turing machines since they allow
quantum interference to take place on their computation paths. Bernstein and Vazirani [14] showed
that a quantum Turing machine can be universal in the approximate sense. Recently, some quantum
versions of Kolmogorov complexity were proposed by several researchers. Vitányi [15] proposed
a definition for quantum Kolmogorov complexity, which measures the amount of classical information
necessary to approximate the quantum state. Berthiaume et al. [16] proposed a new definition of
quantum Kolmogorov complexity of a quantum bit string by the length of the shortest quantum input
for a universal quantum computer that outputs the desired string.

The first formulation of fuzzy computation was introduced by Zadeh [17], who defined the
notion of fuzzy algorithms based on a fuzzification of Turing machines and Markov algorithms.
Then, Lee and Zadeh [18] defined the concept of fuzzy languages. Santos [19] demonstrated the
equivalence between fuzzy algorithms and fuzzy Turing machines. Next, Wiedermann [20] considered
the computability and complexity of fuzzy computation. With Wiedermann’s work, Bedregal and
Figueira [21] proved that there is no universal fuzzy Turing machine that can simulate every fuzzy
Turing machine. Afterward, Li [22,23] studies some variants of fuzzy Turing machines. He showed that
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a universal fuzzy Turing machine exists in some approximate sense and also showed that a universal
fuzzy Turing machine exists in the frame of finite-valued logic. Li [24] subsequently studied the
lattice-valued fuzzy Turing machines where the lattice is a distributive lattice. In [24], He showed that
a universal lattice-valued fuzzy Turing machine exists if the distributive lattice is finite. Li et al. [25] also
showed that a universal orthomodular lattice-valued fuzzy Turing machine exists if the orthomodular
lattice is finite. More recently, Wu et al. [26] established a theory of Turing machines based on complete
residuated lattice-valued logic and also showed that a universal machine exists if the lattice is a finite
complete residuated lattice with universal bounds 0 and 1.

With the development of fuzzy computation, it is natural to ask how to define the Kolmogorov
complexity of fuzzy languages (or fuzzy sets). What are the problems when developing a theory of
fuzzy Kolmogorov complexity?

One problem is: which model of fuzzy computation? They are many formal models of fuzzy
computation such as fuzzy P systems, fuzzy labeled transition systems, and fuzzy Turing machines.
Similar to traditional Kolmogorov complexity, the fuzzy Turing machine model is the appropriate
one to consider. To define fuzzy Kolmogorov complexity by way of fuzzy Turing machines causes
two problems:

• There are continuously many fuzzy languages.
• There are continuously many fuzzy Turing machines.

We can finitely describe only a countable subset and a universal fuzzy Turing machine only exists
in the the frame of finite-valued logic, i.e., the truth values of membership degrees of fuzzy languages
are finite. So, in this paper, we consider to define the theory of fuzzy Kolmogorov complexity of
finite-valued fuzzy languages based on finite-valued fuzzy Turing machines.

One next problem is: what does “length” mean? In the classical setting, the amount of information
of a string is measured in bits. How to measure the amount of information of a fuzzy language?
For a fuzzy language, the size of its support is not an appropriate measure since it ignores the truth
value or membership degree of a string and the length differences between strings. Since the set of our
objects (finite-valued fuzzy languages) is countable. Hence, we consider classical descriptions of fuzzy
languages, i.e., measure the amount of information about fuzzy languages in bits.

The rest of this paper is organized as follows: In Section 2, we give basic notation that will be used
in the paper, and recall the definitions and some properties of finite-valued fuzzy Turing machines and
classical Kolmogorov complexity. In Section 3, we give our definition of fuzzy Kolmogorov complexity
and show the invariance theorem for this definition. Some properties of fuzzy Kolmogorov complexity
are given in Section 4. Some discussions on research of fuzzy Kolmogorov complexity are made in
Section 5. Conclusions are briefly summed up in Section 6.

2. Preliminaries

2.1. Notation

Let Σ = {0, 1}, the set of all finite binary strings is denoted by Σ∗
(
or {0, 1}∗

)
, and the set of

length m strings is denoted by Σm (
or {0, 1}m). Then, l(x) denotes the length of the string x in bits.

For the cardinality of a set A we write |A|. In general, we use x, y, z, · · · to denote finite binary strings.
ε denotes the empty string.

A language is just a set of finite strings, a fuzzy language can be defined as a fuzzy subset of finite
strings. In this paper, we only consider the fuzzy languages in the the frame of finite-valued logic, i.e,
the membership degrees of fuzzy languages are finite. Let Dn = {0, a1, a2, · · · , an−2, 1}. A n-valued
fuzzy language is a map L : Σ∗ → Dn. It is a n-valued fuzzy subset of Σ∗. We denote by Ln(Σ∗) the
set of n-valued fuzzy languages over Σ∗, and denote by Ln(Σm) the set of n-valued fuzzy languages
over Σm.
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Fuzzy languages also mean possibility distributions over Σ∗. For any L ∈ Ln(Σ∗), its support,
Supp(L), can be represented by {x|x ∈ Σ∗ ∧ L(x) 6= 0}. If the support of a n-valued fuzzy language is
the set {x1, x2, ..., xm} ⊆ Σ∗, we may write L in Zadeh’s notation [27] as

L =
L(x1)

x1
+

L(x2)

x2
+ · · ·+ L(xm)

xm
,

where L(xi)
xi

means that L(xi) is the truth value or membership grade of xi in L.

2.2. Finite-Valued Fuzzy Turing Machines

Our model of computation is finite-valued fuzzy Turing machines with three tapes: a one-way
infinite classical input (the program) tape, a one-way infinite auxiliary (conditional) tape containing
finite-valued fuzzy languages, and a one-way infinite output tape containing finite-valued fuzzy
languages. A finite-valued fuzzy Turing machine U with classical program p and auxiliary (classical
or fuzzy) input L computes until it halts with output U(p, L) on its output tape.

Definition 1. Define the output U(p, x) of a finite-valued fuzzy Turing machine U with classical program p
and auxiliary (classical or fuzzy) input x as the finite-valued fuzzy language L resulting from U computing until
it halts with output L on its output tape, denoted U(p, x) = L. When the auxiliary input is a fuzzy language
L′, we can write U(p, L′) = L. When the auxiliary input is the empty string ε, we simply write U(p) instead
of U(p, ε).

For simplicity, all finite-valued fuzzy Turing machines considered in this paper takes values in
Dn. As mentioned in [23–26], universal fuzzy Turing machine exists in the frame of finite-valued logic.
There are countably many n-valued fuzzy Turing machine, we can assign Gödel numbers to each
n-valued fuzzy Turing machine, and obtain M1, M2, · · · an enumeration of n-valued Turing machines.
By [23–26], there is a universal n-valued fuzzy Turing machine U simulates the others exactly

U
(
(iM, p), x

)
= Mi(p, x)

for all iM, p, x, where iM is the index of M in this enumeration.

2.3. Classical Kolmogorov Complexity

Some relevant definitions and properties of classical Kolmogorov complexity are recalled below.
For more details and attributions we refer to [6].

Definition 2. (Classical Kolmogorov complexity). Let T be a fixed Turing machine. For any pair of strings
x, y ∈ {0, 1}∗, the conditional Kolmogorov complexity KT(y|x) of y given x (with respect to T) is defined by

KT(y|x) = min
{

l(p) : T(p, x) = y
}

.

When x is the empty string ε, we simply write KT(y) instead of KT(y|ε).

Theorem 1. (Classical invariance theorem). There is a universal Turing machine T such that for any other
Turing machine T′ there is a constant cT′ with

KT(y|x) ≤ KT′(y|x) + cT′

for all strings x and y, where the constant cT′ depends on T′ but not on strings x and y.



Entropy 2020, 22, 66 4 of 10

This result shows that the length of the shortest programs does not depend on more than
an additive constant on the underlying Turing machine. So this definition of Kolmogorov complexity
is robust.

A crucial fact of Kolmogorov complexity is the existence of incompressible strings, which is the
so-called incompressibility theorem. It is a simple but powerful tool used frequently in the theory and
application of classical Kolmogorov complexity. It can be stated as follows.

Theorem 2. (Classical incompressibility). For any length m, there is a length m string x such that K(x) ≥ m.

Its proof is based on the pigeonhole principle. For each m, there are 2m binary strings of length m,
but the number of programs of length smaller than m is 2m − 1 in total. Therefore, there is at least one
length m string x with K(x) ≥ m.

3. Classical Descriptions of Fuzzy Languages

In this section, we define the fuzzy Kolmogorov complexity of fuzzy languages and show that
our definition is robust.

3.1. Definitions

Suppose that all finite-valued fuzzy languages and finite-valued fuzzy Turing machines
considered in this paper taking values in Dn, denoted n-valued fuzzy languages and n-valued fuzzy
Turing machines respectively. We can naturally define the fuzzy Kolmogorov complexity of a n-valued
fuzzy language (with respect to a n-valued fuzzy Turing machine) as follows.

Definition 3. (Fuzzy Kolmogorov complexity). For any n-valued fuzzy Turing machine U and pair of n-valued
fuzzy languages L, L′, the conditional fuzzy Kolmogorov complexity FKU(L|L′) of the fuzzy language L with
respect to U with given auxiliary (conditional) input L′ is the length of the smallest bit string p such that
U(p, L′) = L, i.e.,

FKU(L|L′) = min
{

l(p) : U(p, L′) = L
}

.

The (unconditional) fuzzy Kolmogorov complexity FKU(L) of L is defined as FKU(L|ε), if auxiliary
(conditional) input L′ is the empty string.

Note that a program is a classical input for a fuzzy Turing machine in our definition. l(p) is
the number of bits in the program p. Therefore, we measure the amount of information of a fuzzy
language in bits. This definition gives a classical description of finite-valued fuzzy languages through
universal finite-valued fuzzy Turing machines.

3.2. Invariance

To show that our definition is robust we must show that the complexity of a n-valued fuzzy
language does not depend on the underlying n-valued fuzzy Turing machine.

We use the existence of a universal n-valued fuzzy Turing machine to prove the invariance
theorem for our definition.

Theorem 3. (Invariance theorem). There is a universal n-valued fuzzy Turing machine U such that for any
n-valued fuzzy Turing machine M and n-valued fuzzy language L

FKU(L) ≤ FKM(L) + cM,

where cM is a constant depending only on M.
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Proof. The proof of this theorem follows from the existence of a universal n-valued fuzzy Turing
machine, as proven in [23–25]. We fix M1, M2, · · · as a standard enumeration of n-valued fuzzy
Turing machines using Gödel numbers. Let U be a universal n-valued fuzzy Turing machine in this
enumeration that simulates the others exactly. Let p be the program that witnesses that FKM(L) = l(p).
U can simulate the behavior of M, U(iM, p) = M(p), where iM is the index of M in this enumeration.
Let q be the program that witnesses that FKU(L) = l(q). By the definition of fuzzy Kolmogorov
complexity, l(q) ≤ l(p) + cM, where cM is the length of the description of the index of M in the
enumeration. This completes the proof of the invariance theorem.

Moreover, we have the following result.

Theorem 4. For every pair of universal n-valued fuzzy Turing machines U, U′, there is a fixed constant cU,U′

such that for any n-valued fuzzy language L, we have∣∣FKU(L)− FKU′(L)
∣∣ ≤ cU,U′ ,

where cU,U′ is a constant depending only on U and U′.

Proof. To prove this, substitute U′ for M in the Theorem 3, we have FKU(L) ≤ FKU′(L) + cU′ ,
where cU′ is a constant depending only on U′. Conversely, substitute U′ for U and U for M in the
Theorem 3, we have FKU′(L) ≤ FKU(L) + cU , where cU is a constant depending only on U. Let
cU,U′ = max{cU′ , cU}, and combine the two resulting inequalities, we have

∣∣FKU(L)− FKU′(L)
∣∣ ≤

cU,U′ , where cU,U′ is a constant depending only on U and U′.

The same holds true for the conditional fuzzy Kolmogorov complexity of fuzzy languages.

Theorem 5. There exists a universal n-valued fuzzy Turing machine U such that for all n-valued fuzzy Turing
machines M and n-valued fuzzy languages L1, L2 we have

FKU(L1|L2) ≤ FKM(L1|L2) + cM,

where cM is a constant depending only on M.

Theorem 6. For every pair of universal n-valued fuzzy Turing machines U, U′, there is a fixed constant cU,U′

such that for any pair of n-valued fuzzy languages L1, L2, we have∣∣FKU(L1|L2)− FKU′(L1|L2)
∣∣ ≤ cU,U′ ,

where cU,U′ is a constant depending only on U and U′.

Our results are based on the existence of a universal finite-valued fuzzy Turing machine. Since
the existence of universal finite-valued fuzzy Turing machine in Ref. [23–26], the truth value domain
Dn could be fixed as a complete residuated lattice, a distributive lattice or a orthomodular lattice. Here,
we do not discuss the fuzzy Kolmogorov complexity in these logic frames further.

We have shown that our definition is independent of the particular choice of the n-valued fuzzy
Turing machine. That is, changing the fuzzy Turing machine will change the complexity at most by
an additive constant.

Henceforth, we will fix a universal n-valued fuzzy Turing machine U and call U the reference
machine. Then we simply write FK(L) instead of FKU(L), and FK(L1|L2) instead of FKU(L1|L2).

Based on the Invariance theorems, we have the following two results.
First, we have the following relationship between conditional fuzzy Kolmogorov complexity and

(unconditional) fuzzy Kolmogorov complexity.
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Theorem 7. There is a constant c, such that for each pair of n-valued fuzzy languages L1, L2,

FK(L1|L2) ≤ FK(L1) + c.

Proof. To prove this inequality, construct a n-valued fuzzy Turing machine U′ that for all L2, L3

computes output L1 on input (L2, L3) if and only if the universal ref n-valued fuzzy Turing machine
U computes output L1 on input (L2, ε). Then KFU′(L1|L2) = KFU(L1). By the Theorem 5, there is
a constant c such that KFU(L1|L2) ≤ KFU′(L1|L2) + c = KFU(L1) + c. Thus, we have FK(L1|L2) ≤
FK(L1) + c.

Second, we have the following relationship between classical Kolmogorov complexity and fuzzy
Kolmogorov complexity for a classical string.

Theorem 8. There is a constant c, such that for every finite, classical string x, it holds that FK(x) ≤ K(x) + c.
The constant c depends only on the underlying universal Turing machine.

Proof. This is clear: the universal n-valued fuzzy Turing machine can also simulate any classical
Turing machine.

4. Properties of Fuzzy Kolmogorov Complexity

In this section, we introduce some properties of the fuzzy Kolmogorov complexity. We find that
many of the properties of the classical Kolmogorov complexity, or natural analogs thereof, also hold
for the fuzzy Kolmogorov complexity.

4.1. Incompressibility

First, we are going to prove a fuzzy analog of the classical incompressibility theorem. It is
a fuzzification of a classical incompressibility.

Theorem 9. (Incompressibility). Let x ∈ {0, 1}M and n = 2N . There is an incompressible n-valued fuzzy
string L(x)

x , i.e., FK
( L(x)

x
)
≥ M + N.

Proof. The number of programs of length less than M + N is ∑M+N−1
i=0 = 2M+N − 1 in total. But there

are 2M+N such n-fuzzy strings. Which is impossible. Hence, there is at least one n-valued fuzzy string
such that FK

( L(x)
x

)
≥ M + N. This proves the theorem.

By a simple counting argument there exist fuzzy languages that are incompressible. Then, how
many fuzzy languages are incompressible? It depends on both the length of strings and the domain of
truth values, which can be obtained by the same counting argument as follows.

Theorem 10. Let x ∈ {0, 1}M and n = 2N . At least 2M+N(1− 2c) n-fuzzy strings have complexity at least
M + N − c.

Proof. Similarly to Theorem 9.

We fix the L(x) = 1 for the classical setting. Then we only consider the string x itself and can
obtain the classical incompressibility theorem (Theorem 2) in a similar way.

In above Theorems, we only consider the single n-fuzzy string, i.e., the language L ∈ Ln
(
ΣM)

with
∣∣Supp(L)

∣∣ = 1 or L = ε. In a similar way, we have the following results for n-fuzzy languages.

Theorem 11. Let x ∈ {0, 1}M and n = 2N . There is a n-valued fuzzy language L ∈ Ln
(
{0, 1}M)

such that
FK(L) ≥ M · N.
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Proof. The number of programs of length less than M · N is ∑M·N−1
i=0 = 2M·N − 1 in total. But there

are 2M·N such n-fuzzy languages. Which is impossible. Hence, there is at least one n-valued fuzzy
language such that FK(L) ≥ M · N. This proves the theorem.

Theorem 12. Let x ∈ {0, 1}M and n = 2N . At least 2M·N(1− 2c) n-fuzzy languages of the set Ln
(
{0, 1}M)

have complexity at least M · N − c.

Proof. Similarly to Theorem 11.

4.2. Subadditivity

Now we consider the subadditivity property of fuzzy Kolmogorov complexity. It can be stated
as follows.

Theorem 13. Let Σ1, Σ2 ⊆ {0, 1}∗ and Σ1 ∩ Σ2 = ∅, L1 ∈ Ln(Σ1) and L2 ∈ Ln(Σ2). There is constants c
and c′ such that

FK(L1) ≤ FK(L1, L2) + c

and

FK(L1, L2) ≤FK(L1) + FK(L2) + 2 log2 min
(

FK(L1), FK(L2)
)
+ c′.

Proof. The first inequality is obvious. To prove the second inequality. Suppose p is a shortest
program to produce L1, and q is a shortest program to produce L2. Then there is a constant c′ for
some machine U to schedule the two programs. However, any such U will have to know where to
divide its input to identify p and q. We can use input p′pq or q′qp, where p′ is the description of p
with length l(p) and q′ is the description of q with length l(q). In this way, we have FK(L1, L2) ≤
FK(L1) + FK(L2) + 2 log2 min

(
FK(L1), FK(L2)

)
+ c′ for some constant c.

Remark 1. From above theorem, the inequality FK(L1, L2) ≤ FK(L1) + FK(L2) hold within a logarithmic
term. We cannot eliminate this term for the general case, since we do not define the prefix-free complexity of
fuzzy languages, i.e., no program is a proper prefix of another program.

Theorem 14. Let Σ1, Σ2 ⊆ {0, 1}∗ and Σ1 ∩ Σ2 = ∅, L1 ∈ Ln(Σ1) and L2 ∈ Ln(Σ2). We have

FK(L1, L2) ≤ FK(L1) + FK(L2|L1) + O
(

log
(

FK(L1)
))

.

Proof. To prove this inequality. Suppose p is a shortest program to produce L1, and q is a shortest
program to produce L2 from L1. Similar to the above theorem, we have to identify p and q. Hence,
we can obtain this inequality.

Remark 2. This is different from quantum Kolmogorov complexity in [16] since the no-cloning theorem. In the
quantum case, producing a quantum state from another quantum state may destroy the original quantum state.

We have the following corollary for the classical case.

Corollary 1. For each pair of classical strings x, y, we have

K(x, y) ≤ K(x) + K(y|x) + O
(

log(K(x))
)
.

This corollary is the property of classical Kolmogorov complexity in [6].
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4.3. Upper Bound on Complexity

In the classical case, we have the following upper bound of classical Kolmogorov complexity.

Theorem 15. For each classical strings x, there is a constant c such that

K(x) ≤ l(x) + c.

For the definition of fuzzy Kolmogorov complexity to be useful, the complexity of a fuzzy string
should have an upper bound. Similar to the results in Incompressibility (Section 4.1), such upper
bound depends on both the length of the string and the domain of truth values, which can be obtained
as follows.

Theorem 16. Let x ∈ {0, 1}M and n = 2N . There exists a constant c such that for each n-valued fuzzy string,
FK( L(x)

x ) ≤ M + N + 2 log2 min
(

M, N
)
+ c.

Proof. Suppose p is a shortest program to produce L(x), q is a shortest program to produce x, and
a shortest program r to identify p and q. Since x ∈ {0, 1}M and n = 2N , using Theorem 15, we have
l(p) ≤ M + c′ and l(q) ≤ N + c′′. Using Theorem 13, we obtain this inequality.

5. Discussion

Many classical quantities, e.g the Shannon entropy, have been successfully generalized to
quantum information and have become useful and powerful tools to understand and further develop
quantum information theory. In the case of Kolmogorov complexity, though, the way to do so is not
straightforward. There are many authors doing some work on the fuzzy Turing machines, this paper
uses fuzzy Turing machine to describe the complexity of fuzzy languages. Of course, many works
should be done on the theory of fuzzy Kolmogorov complexity. Some of the research questions are the
following.

(1) How to define the complexity of infinite-valued fuzzy languages? A good definition of fuzzy
Kolmogorov complexity should be robust, i.e., invariant under the choice of the underlying
fuzzy Turing machine. Our invariance theorem (Theorem 3) is proved based on the existence
of a universal fuzzy Turing machine in the frame of finite-valued logic. However, a universal
infinite-valued fuzzy Turing machine exists in the approximate sense. Some methods of quantum
Kolmogorov complexity in [15,16] may provide some referential suggestions.

(2) What is the difference between fuzzy versions of Kolmogorov complexity in different logics
(or variants of fuzzy Turing machines)? There are several types of fuzzy logics: Łukasiewicz logic,
Gödel logic, product logic and so on [28]. Different types of fuzzy logic have different axioms and
rules. Are there different variants of fuzzy Kolmogorov complexity based on different choices of
logic systems?

(3) What is the relation between fuzzy Kolmogorov complexity and fuzzy information theory?
The expected value of classical Kolmogorov complexity equals the Shannon entropy (up to
a constant) for any recursive probability distribution [6]. Many classical information measures
have been successfully generalized to fuzzy information theory, such as non-probabilistic entropy
[29,30], hybrid entropy [31], Yager Entropy [32,33] and Kolmogorov–Sinai Entropy [34,35]. They
have become useful tools in theoretical and applied research of fuzzy information theory. What is
the relationship between fuzzy Kolmogorov complexity and these entropy measures?

(4) What is the relation between fuzzy Kolmogorov complexity and fuzzy computational complexity?
In this paper, the computation time of the fuzzy Turing machine is not limited. It is interesting to
develop a time-bounded version of fuzzy Kolmogorov complexity and consider its relationship
to fuzzy computational complexity theory [24].
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6. Conclusions

In this research, we proposed a fuzzy version of Kolmogorov complexity, which defined as the
minimum classical description length of a finite-valued fuzzy language through a finite-valued fuzzy
Turing machine. We showed the invariance theorem for our definition. Several properties of classical
Kolmogorov complexity are generalized to the case of fuzzy Kolmogorov complexity.
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