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Abstract: In the general framework of d1 × d2 mixed states, we derive an explicit bound for bipartite
negative partial transpose (NPT) entanglement based on the mixedness characterization of the
physical system. The derived result is very general, being based only on the assumption of finite
dimensionality. In addition, it turns out to be of experimental interest since some purity-measuring
protocols are known. Exploiting the bound in the particular case of thermal entanglement, a way to
connect thermodynamic features to the monogamy of quantum correlations is suggested, and some
recent results on the subject are given a physically clear explanation.

Keywords: entanglement; negativity

1. Introduction

In dealing with mixed states of a physical system, one has to be careful when speaking about
entanglement. The definition of bipartite mixed state entanglement is unique (although problems may
arise in dealing with multipartite entanglement [1]), but its quantification relies on several different
criteria and it is not yet fully developed: many difficulties have arisen in the definition of physically
sensible measures [2,3]. The main problem affecting a few known mixed state entanglement measures
is indeed the fact that extending a measure from a pure state case to a mixed state case usually
requires challenging maximization procedures over all its possible pure state decompositions [4–6].
Notwithstanding, the investigation of the connection between entanglement and mixedness exhibited
by a quantum system is of great interest, for example, in quantum computation theory [7,8] and in
quantum teleportation [9]. The threshold of mixedness exhibited by a quantum system compatible with
the occurrence of entanglement between two parties of the same system has been analyzed, leading
for example to the so-called Kus-Zyczkowski ball of absolutely separable states [10–13]. Quite recently,
possible links between entanglement and easily measurable observables have been exploited to define
experimental protocols aimed at measuring quantum correlations [14–16]. The use of measurable
quantities as entanglement witnesses for a wide class of systems has been known for some time [17,18],
but an analogous possibility amounting at entanglement measures is a recent and growing challenge.
To the present day, some bounds for entanglement are measured in terms of correlation functions in
spin systems [19] or using quantum quenches [20]. Indeed, an experimental measure of entanglement
is, generally speaking, out of reach because of the difficulty in addressing the local properties of
many-particle systems and of the fundamental non-linearity of entanglement quantifiers. For this
reason, the best one can do is to provide experimentally accessible bounds on some entanglement
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quantifiers [21]. The aim of this paper is to build a bound to the entanglement degree in a general
bipartition of a physical system in a mixed state. We are going to establish an upper bound to the
negativity N [22] in terms of the linear entropy SL. We are thus studying what is called negative
partial transpose (NPT) entanglement. It should however be emphasized that a non-zero negativity is
a sufficient but not necessary condition to detect entanglement, since positive partial transpose (PPT,
or bound) entanglement exists across bipartitions of dimensions higher than 2× 3, which cannot be
detected by means of the negativity criterion [23]. Our investigation contributes to the topical debate
concerning a link between quantum correlations and mixedness [24]. We stress that our result is of
experimental interest since the bound on N may easily be evaluated by measuring the linear entropy.

2. An Upper Bound to the Negativity in Terms of Linear Entropy

Consider a d-dimensional system S in a state described by the density matrix (0 ≤ pi ≤ 1, ∀i)

ρ = ∑
i

piσi, (1)

where each σi represents a pure state, and define a bipartition into two subsystems S1 and S2 with
dimensions d1 and d2 respectively (d = d1 · d2). It is common [19] to define negativity as

N =
‖ρT1‖ − 1

dm − 1
=

Tr
√

ρT1(ρT1)† − 1
dm − 1

, (2)

where dm = min{d1, d2}, ρT1 is the matrix obtained through a partial transposition with respect
to the subsystem S1 and ‖ · ‖ is the trace norm (‖O‖ ≡ Tr{

√
OO†}). In what follows we will call

dM = max{d1, d2}. By construction, 0 ≤ N ≤ 1, with N = 1 for maximally entangled states only.
Furthermore, the linear entropy SL in our system is defined as

SL =
d

d− 1
(1− Trρ2) =

d
d− 1

PE, (3)

where PE = 1− Trρ2 = 1− ‖ρ‖2
2 is a measure of mixedness in terms of the purity Trρ2 of the state,

‖ρ‖2 being the Hilbert–Schmidt norm of ρ (‖O‖2 ≡
√

Tr{OO†}). By definition, SL = 0 for any pure
state while SL = 1 for maximally mixed states. It is easy to see that there exists a link between the trace
norm of an operator O in a d-dimensional Hilbert space and its Hilbert–Schmidt norm. Such a link can
be expressed as

‖O‖2 = (
d

∑
i=1
|λi|)2 ≤ d

d

∑
i=1
|λi|2 = d‖O‖2

2, (4)

where λi is the i-th eigenvalue of O and the so-called Chebyshev sum inequality
(

∑d
i=1 ai

)2
≤

d ∑d
i=1 a2

i has been used. Since, in addition, the Hilbert–Schmidt norm is invariant under partial
transposition, one readily gets a first explicit link between negativity and mixedness PE, valid for
generic d-dimensional systems, in the form of an upper bound, which reads

N ≤
√

d
√

1− PE − 1
dm − 1

≡ Q1. (5)

Equation (5) provides an upper bound to the negativity N in terms of PE and thus, in view of
Equation (3), in terms of the linear entropy. This bound imposes a maximal zero value for N only
for a maximally mixed state, the maximum being taken over all bipartite quantum states of the same
purity. It is known [10,11], however, that no quantum state of S can exhibit bipartite entanglement
if its purity is smaller than or equal to (d− 1)−1. In other words, the noise due to the mixedness of
the state is too high for bipartite correlations to exist. Additionally, in the case of a pure (or almost
pure) state, the bound becomes useless as long as the bipartition is not “balanced” (by “balanced” we
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mean a bipartition where dm =
√

d). It indeed becomes greater than one (thus being unable to give

information about entanglement) for mixedness smaller than d − d2
m

d , which might even approach 1
in some specific cases (recall that, by definition, dm ≤ d). We however expect entanglement to be
unbounded only in the case of pure states (PE = 0). In the following we show that bound (5) can
be strengthened.

3. Strengthening the Previous Bound

Observe firstly that the rank rρ of ρT1 is not greater than d2
m (equal to d) when ρ is pure (maximally

mixed). For this reason we write

r(SL) ≡ max
{ρ:Trρ2=1− d−1

d SL}
rρ. (6)

By construction, r(0) = d2
m since any pure state can be written in Schmidt decomposition

consisting of dm vectors, and r(1) = d because a maximally mixed state is proportional to identity.

Since by definition
(

∑d
i=1 |λi|

)2
=
(

∑
r(SL)
i=1 |λi|

)2
holds for any physical system, Equation (5) may be

substituted by the following inequality:

N ≤
√

r(SL)
√

1− PE − 1
dm − 1

. (7)

Note however that there are at least some physical systems for which the function in (6), due to
the maximization procedure involved in its definition, is always equal to d in the range SL ∈ (0, 1],
showing then a discontinuity at SL = 0 as

lim
SL→0

r(SL) = d 6= d2
m = r(0). (8)

Since we want our result to hold generally, independently of the particular system analyzed,
Equation (7) cannot improve Equation (5) because even for slightly mixed states (0 < SL << 1)
we have a priori no information on r(SL) which might be equal to d, tracing back Equation (7)
to Equation (5). Despite this, we may correct (7) exploiting the expectation that for very low
mixedness some of these eigenvalues are much smaller than the others. Indeed, for all the r(SL),
non-vanishing eigenvalues appearing in Equation (4) are treated on equal footing in going from ‖ρT1‖
to ‖ρT1‖2. To properly take into account the difference between them, go back to Equation (1) and
define a reference pure state σR at will among the ones having the largest occupation probability pR.
The spectrum of σT1

R consists of np non-zero eigenvalues {µ(R)
α }

(
max np = d2

m
)

and of nm = d− np zero

eigenvalues {ν(R)
β }.

We call the former α-class eigenvalues and the latter β-class eigenvalues, and obviously the
latter class does not contribute to ‖σT1

R ‖. In order to strengthen (5) we are interested in the spectrum
of ρT1 which generally consists of d non-zero eigenvalues. Unfortunately, then, we cannot directly
introduce analogous α- and β-classes to identify which eigenvalues contribute to the sum involved in
Equation (4) comparatively much less than the other ones, when the state ρ possesses a low
mixedness degree and is thus very close to a pure state. To overcome this difficulty, let us consider a
parameter-dependent class of density matrices associated to the given ρ

τ(x) = ∑
i

qi(x)σi (9)
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with 0 ≤ x ≤ 1, such that τ(0) = σR and τ(1) = ρ. This means that, for all i,

lim
x→0

qi(x) = δiR, (10)

lim
x→1

qi(x) = pi. (11)

In addition, we assume that all qi(x) are continuous functions of x. Thus, τ(x)T1 continuously
connects ρT1 and σT1

R and, as a consequence, any ν
(R)
β is continuously connected to a particular

eigenvalue of ρT1 , which will be the the corresponding mixed state β-class eigenvalue νβ. In this way
one can define the function νβ0(x) as the eigenvalue of τ(x)T1 having the property

lim
x→0

νβ0(x) = ν
(R)
β0

(12)

and so the β-class eigenvalue for ρT1 as

νβ0 ≡ lim
x→1

νβ0(x). (13)

We emphasize at this point that the results of this paper do not depend on the explicit functional
dependence of τ(x) on x, which can be chosen at will provided it satisfies conditions (11), nor on the
range of variability of x itself. Indeed, τ(x) and x are just mathematical tools, with (in general) no
physical meaning. To save some writing and in view of Equation (4), we put

A = ∑
α

µ2
α B = ∑

β

ν2
β (14)

and notice that Tr(ρT1)2 = Trρ2 = A + B. We can now state (see Appendix A for a proof) the following.

Lemma 1. Given a state ρ of a system in a d-dimensional Hilbert space, and the associated reference pure state
σR, for any set of states τ(t) satisfying (9) and (11) there exists a value δ ≥ 1 such that 1− A(t)− B(t) ≥
B(t)d for any t ∈ [0, δ]. This result is of course based on the possibility to define a reference pure state σR.
As previously explained, such a possibility rests on the assumed existence of one (or a subset of) pi in one
pure-state decomposition of ρ, such that pi > pj, j 6= i. In other words, one (or a subset of) pure state(s) must be
occupied with probability higher (and not equal to) the populations of the rest of the pure states. If this is verified,
then the reference pure state σR is well defined.

Lemma 1 allows us to find a function w(SL) such that w(0) = d2
m and

‖ρT1‖2 ≤ w(SL) = f (‖ρT1‖2
2). (15)

Starting from the identity

‖ρT1‖2 = (
d2

m

∑
α

|µα|)2 + (
d−1

∑
β

|νβ|)2 + 2
d2

m

∑
α

|µα|
d−1

∑
β

|νβ| (16)

and applying the Chebyshev sum inequality term-by-term, we obtain

‖ρT1‖2 ≤ (dm
√

A + B +

√
d− 1

d

√
1− A− B)2, (17)

where Lemma 1 has been exploited. Expressing Equation (17) in terms of negativity and purity,
we finally get
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N ≤
dm
√

1− PE +
√

d−1
d
√

PE − 1

dm − 1
≡ Q2. (18)

Bound (18) improves bound (7) for high purity when SL is small (i.e., Q2 < Q1), generally
becoming greater than Q1 at low purity. In addition, it still suffers the same drawback as Q1,
not vanishing when 1 − PE = 1

d − 1 . In such a case one has to consider the lower bound 1
d − 1

on purity, below which no entanglement survives. In order to take such a bound into account,
instead of distinguishing among α and β eigenvalues of ρT1 , we can divide them into non-negative
ones {ξi} and negative ones {χi}. In this way, calling n− and (d − n−) the numbers of negative
and non-negative eigenvalues, respectively, and applying the Lagrange multiplier method to the
function ‖ρT1‖ = ∑d−n−

i ξi +∑n−
j χj subjected to constraints ∑i ξ2

i +∑j χ2
j = 1− PE and ∑i ξi +∑j χj =

1, one finds

‖ρT1‖2 ≤ d− 2n− + 2
√

n−(d− n−)(d(1− PE)− 1)
d

. (19)

Bound (19) can be exploited to show that no entanglement can survive at purity lower than
1

d − 1 . Indeed, for entanglement to exist, at least one eigenvalue has to be negative. However, by
normalization, it always has to be true that ‖ρT1‖ ≥ 1 and this implies that, as long as n− ≥ 1,
purity 1− PE cannot be smaller than 1

d−1 as expected. However, in general, the number of negative
eigenvalues is not known. In these cases, the best one can do is to look for the maximum, with
respect to n−, of the right-hand side of (19), leading unfortunately once again to bound (5) on N.
However, since always N ≤ Θ( d−2

d−1 − PE) ≡ Q3, where Θ(x) is the Heaviside step function, defining
Q = min{Q1, Q2, Q3}, we state our final and main result as

N ≤ Q, (20)

valid for every possible bipartition of a quantum system, independent of its (finite) dimension,
its detailed structure, or its properties. It is worth stressing that computing negativity quickly becomes
a very hard task as the dimension of the Hilbert space grows, while the evaluation of purity can be
performed without particular efforts. We emphasize in addition that bound Q in Equation (20) only
depends on purity, and is completely determined once a bipartition of the physical system is fixed
and purity is known. This means that an experimental measure of purity allows the extraction of
information about the maximal degree of bipartite entanglement one can find in the system under
scrutiny. Some purity-measuring protocols, or at least purity estimations based on experimental
data, have been proposed. They are based on statistical analysis of homodyne distributions, obtained
measuring radiation field tomograms [25], on the properties of graph states [26], or on the availability
of many different copies of the state over which separable measurements are performed [27]. In all
cases where a measure of purity is possible, an experimental estimation of bipartite entanglement is
available thanks to Equation (20), which is then actually experimentally accessible.

4. Crossover between Q1 and Q2 and Numerical Results

As commented previously, bounds Q1 (Equation (5)) and Q2 (Equation (18)) can supply
information about bipartite entanglement in two different setups. Indeed, Q1 is accurate enough
for a balanced bipartition (i.e., when dm ∼

√
d) but fails when

√
d � dm since it rapidly becomes

greater than 1. To solve this problem, we obtained the bound Q2 which, by construction, provides
nontrivial information about bipartite entanglement in an unbalanced bipartition (

√
d� dm), but may

not work properly for a balanced one. In order to build the last bound Q2 in the previous section we
started with a more detailed analysis of the structure of the eigenvalues after partial transposition.
This analysis leads us, specifically, to study the rank of the partial transpose, as this is one key parameter
used in the Chebyshev inequality. In this section we demonstrate the existence of a special regime of
the purity wherein the helpfulness of Q2 against Q1 emerges in a very transparent way. It is actually a
very easy task to show that our new bound Q2 works better than the old one, Q1 (i.e., Q1 ≥ Q2), when
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the purity P is greater than a critical value given in terms of the total Hilbert space dimension and of
the subdimensions of the bipartition—that is, when

P(ρ) ≥ d− 1

d(
√

d− dm)2 + d− 1
= Pc. (21)

Two limiting cases are easily studied directly from Equation (21): for a perfectly balanced
bipartition (

√
d = dm), one gets Pc = 1 and, since by definition 1

d ≤ P(ρ) ≤ 1, in this case the bound
Q1 is smaller (and therefore works better) than the bound Q2 for any possible quantum state. In the
opposite limit, in a strongly unbalanced bipartition, one can roughly approximate (

√
d− dm)2 ∼ d and,

since by definition d ≥ 4, this leads to Pc ∼ d − 1
d2 + d − 1 < 1

d . Taking into account the natural bounds for
the purity of a quantum state, this in turn means that in such a limit Q1 > Q2 for any quantum state or,
in other words, our new bound always works better. This behavior can be clearly seen in Figure 1,
where the dependence of Pc on d and dm is shown together with the natural limiting values of P(ρ).

Figure 1. (Color online) Purity threshold Pc given in Equation (21) (green surface) and natural purity
limits 1 (blue upper surface) and 1

d (red lower surface) as functions of d ∈ [4, 1000] and dm ∈ [2, 25]
such that d2

m ≤ d. Values of purity below the green surface are such that Q1 < Q2, while values of
purity above the green surface yield Q2 < Q1. It is clear that when d2

m < d, Pc ∼ 1
d , meaning that

Q2 < Q1 for most quantum states. On the other hand, when d2
m ∼ d and Q1 < Q2 almost everywhere

in state space.

To better exemplify this behavior, we report here results of numerical simulations performed with
the aid of the QI package for Mathematica [28], by which random quantum states were generated in
different dimensions, uniformly distributed according to different metrics. On these states, we tested
bounds Q1 and Q2. Figures 2–4 show the differences ∆i = Qi − N (i = 1, 2) of the bounds with the
negativity of the state, once a bipartition was fixed. In particular, in a first run of simulations (Figure 2)
we generated 103 perfectly balanced bipartite states (such that dm = dM =

√
d), randomly choosing

the dimension of the two subsystems for each quantum state within the range dM = dm ∈ [2, 10].
The results in Figure 2 clearly show that ∆1 < ∆2 for all the analyzed states. The second run of
simulations was performed with dm randomly chosen in [2, 14] and dM = dm + 60. In this case, as
can be seen in Figure 3 the difference ∆1 − ∆2 has no fixed sign. The two subdimensions are, indeed,
such that the critical value of purity Pc in Equation (21) is neither extremely close to 1

d nor to 1. As can
be noticed from the inset of Figure 3 which shows the difference ∆1 − ∆2, however, on the average it is
still true that ∆1 < ∆2. The third set of numerical data, finally, was obtained generating 103 random
states with subdimensions dM = dm + 70 and dm randomly drawn in [2, 5]. In this limit the value
of Pc is very close to the minimum of purity and we therefore expect Q2 to work better than Q1 for
almost any state. This is indeed confirmed by the simulations shown in Figure 4, in which ∆2 < ∆1.
As an example application of our results, consider a single two-level system interacting with a spin
system composed of ns spins, each of which lives in a ds dimensional Hilbert space. Therefore, the
total system Hilbert space has dimension d = 2(ds)ns . Let us suppose the spin system is a chain of 10
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spin 1
2 (which is a relatively small system, very far from its thermodynamic limit). The total Hilbert

space dimension will then be d = 211, and considering the natural bipartition into the two-level system
and the spin chain, one has dm = 2 and dM = 210. For such a system, the critical value of purity Pc in
Equation (21) is

Pc =
211 − 1

211(
√

211 − 2)2 + 211 − 1
∼ 0.000534. (22)

The lower value of purity for which bipartite entanglement can survive is, as stated previously,
Pl =

1
d − 1 ∼ 0.00049. Therefore, for all the total states having purity 0.000534 ≤ P(ρ) ≤ 1, bound

Q2 in Equation (18) works better than Q1. Only for the small fraction of states having an extremely
low purity in the range [0.00049, 0.000534] bound Q1 gives better information than Q2. This again
shows that, for unbalanced bipartitions (and even in the case of a relatively small number of individual
components of the total system), Q2 works much better than Q1.

5

FIG. 2. (Color online) �1 (light red triangles) and �2 (dark
blue circles) evaluated for 1000 randomly generated bipartite
states, with dm = dM randomly chosen in [2, 10]. For these
perfectly balanced bipartite states �1 < �2 everywhere in
state space.

FIG. 3. (Color online) �1 (light red triangles) and �2 (dark
blue circles) evaluated for 1000 randomly generated bipartite
states, with dM = dm +60 and dm randomly chosen in [2, 10].
Since the bipartitions are no longer perfefctly balanced, there
is a much broader mixing of values of �1 and �2. In par-
ticular, �1 has a much wider distribution of values, while
�2 seems to have a much denser distribution around central
values. The inset shows the di↵erence �1 ��2.

As an example of application of our results, consider
a single two-level system interacting with a spin system
composed of ns spins, each of which lives in a ds dimen-
sional Hilbert space. Therefore the total system Hilbert
space has dimension d = 2 ⇥ (ds)

ns . Let us suppose the
spin system is a chain of 10 spin 1/2 (which is a rela-
tively “small” system, very far from its thermodynamic
limit). The total Hilbert space dimension will then be
d = 211, and considering the natural bipartition into the
two-level system and the spin chain, one has dm = 2 and

FIG. 4. (Color online) �1 (light red triangles) and �2 (dark
blue circles) evaluated for 1000 randomly generated bipartite
states, with dM = dm + 70 and dm randomly chosen in [2, 5].
For these strongly unbalanced bipartitions we always detect
�1 > �2. The inset shows the di↵erence �1 ��2.

dM = 210. For such a system, the critical value of purity
Pc in Eq. (22) is

Pc =
211 � 1

211
⇣p

211 � 2
⌘2

+ 211 � 1
⇠ 0.000534. (23)

The lower value of purity for which bipartite entan-
glement can survive is, as said before, Pl = 1

d�1 ⇠
0.00049. Therefore, for all the total states having purity
0.000534  P (⇢)  1, bound Q2 in Eq. (19) works bet-
ter than Q1. Only for the small fraction of states having
an extremely low purity in the range [0.00049, 0.000534]
bound Q1 gives better information than Q2.

This shows again that, for unbalanced bipartitions
(and even in the case of a relative small number of indi-
vidual components of the total system), Q2 works much
better than Q1.

IV. CONCLUSIONS

Incidentally, bounds like Eqs. (5), (19) and (21) show
the underlying physics behind results, such as those
shown in [24], connecting Negativity and heat capacity
in a thermal bipartite state. Heat capacity is, indeed, a
measure of the mixedness of energy levels within a Gibbs
state and is therefore strongly a↵ected by the purity it-
self.
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Pc in Eq. (22) is

Pc =
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211
⇣p

211 � 2
⌘2
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⇠ 0.000534. (23)

The lower value of purity for which bipartite entan-
glement can survive is, as said before, Pl = 1

d�1 ⇠
0.00049. Therefore, for all the total states having purity
0.000534  P (⇢)  1, bound Q2 in Eq. (19) works bet-
ter than Q1. Only for the small fraction of states having
an extremely low purity in the range [0.00049, 0.000534]
bound Q1 gives better information than Q2.

This shows again that, for unbalanced bipartitions
(and even in the case of a relative small number of indi-
vidual components of the total system), Q2 works much
better than Q1.

IV. CONCLUSIONS

Incidentally, bounds like Eqs. (5), (19) and (21) show
the underlying physics behind results, such as those
shown in [24], connecting Negativity and heat capacity
in a thermal bipartite state. Heat capacity is, indeed, a
measure of the mixedness of energy levels within a Gibbs
state and is therefore strongly a↵ected by the purity it-
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Figure 3. (Color online) ∆1 (light red triangles) and ∆2 (dark blue circles) evaluated for 1000 randomly
generated bipartite states, with dM = dm + 60 and dm randomly chosen in [2, 10]. Since the bipartitions
are no longer perfectly balanced, there is a much broader mixing of values of ∆1 and ∆2. In particular,
∆1 has a much wider distribution of values, while ∆2 seems to have a much denser distribution around
central values. The inset shows the difference ∆1 − ∆2.
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blue circles) evaluated for 1000 randomly generated bipartite
states, with dm = dM randomly chosen in [2, 10]. For these
perfectly balanced bipartite states �1 < �2 everywhere in
state space.

FIG. 3. (Color online) �1 (light red triangles) and �2 (dark
blue circles) evaluated for 1000 randomly generated bipartite
states, with dM = dm +60 and dm randomly chosen in [2, 10].
Since the bipartitions are no longer perfefctly balanced, there
is a much broader mixing of values of �1 and �2. In par-
ticular, �1 has a much wider distribution of values, while
�2 seems to have a much denser distribution around central
values. The inset shows the di↵erence �1 ��2.

As an example of application of our results, consider
a single two-level system interacting with a spin system
composed of ns spins, each of which lives in a ds dimen-
sional Hilbert space. Therefore the total system Hilbert
space has dimension d = 2 ⇥ (ds)

ns . Let us suppose the
spin system is a chain of 10 spin 1/2 (which is a rela-
tively “small” system, very far from its thermodynamic
limit). The total Hilbert space dimension will then be
d = 211, and considering the natural bipartition into the
two-level system and the spin chain, one has dm = 2 and

FIG. 4. (Color online) �1 (light red triangles) and �2 (dark
blue circles) evaluated for 1000 randomly generated bipartite
states, with dM = dm + 70 and dm randomly chosen in [2, 5].
For these strongly unbalanced bipartitions we always detect
�1 > �2. The inset shows the di↵erence �1 ��2.

dM = 210. For such a system, the critical value of purity
Pc in Eq. (22) is

Pc =
211 � 1

211
⇣p

211 � 2
⌘2

+ 211 � 1
⇠ 0.000534. (23)

The lower value of purity for which bipartite entan-
glement can survive is, as said before, Pl = 1

d�1 ⇠
0.00049. Therefore, for all the total states having purity
0.000534  P (⇢)  1, bound Q2 in Eq. (19) works bet-
ter than Q1. Only for the small fraction of states having
an extremely low purity in the range [0.00049, 0.000534]
bound Q1 gives better information than Q2.

This shows again that, for unbalanced bipartitions
(and even in the case of a relative small number of indi-
vidual components of the total system), Q2 works much
better than Q1.

IV. CONCLUSIONS

Incidentally, bounds like Eqs. (5), (19) and (21) show
the underlying physics behind results, such as those
shown in [24], connecting Negativity and heat capacity
in a thermal bipartite state. Heat capacity is, indeed, a
measure of the mixedness of energy levels within a Gibbs
state and is therefore strongly a↵ected by the purity it-
self.
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Figure 4. (Color online) ∆1 (light red triangles) and ∆2(dark blue circles) evaluated for 1000 randomly
generated bipartite states, with dM = dm + 70 and dm randomly chosen in [2, 5]. For these strongly
unbalanced bipartitions we always detect ∆1 > ∆2. The inset shows the difference ∆1 − ∆2.

5. Application to Thermal Entanglement

Of particular interest is the application of the results of this paper to the case of thermal
entanglement, where both linear entropy and its link to negativity acquire a much clearer meaning.
A recent result [29] indeed shows how the canonical ensemble description of thermal equilibrium
stems from the existence of quantum correlations between a system and its thermal bath. In view of
this it has been shown that it is possible, with a very small statistical error, to replace the system +
bath microcanonical ensemble with a pure state inside the suitable energy shell, still obtaining the
appropriate thermal statistics characterizing Gibbs distribution. In this context, then, the linear entropy
of the mixed Gibbs state provides a system/bath entanglement measure. The mixedness of a quantum
state can originate from the fact that the quantum system S is entangled to another, external system
E. If this is the case, the reduced state of the system S is mixed. Moreover, if S and E are maximally
entangled, the reduced state of S is maximally mixed. Hence, when one looks at the mixedness of
the state of S, one can see it as measuring the amount of entanglement across the S + E bipartition,
provided S + E is in a pure state. In this case (and in this case only), our bounds can be seen as resulting
from monogamy of quantum correlations: the more S is entangled to E (hence, the more mixed the
state of S is), the less subparts of S can create entanglement between them (because they are both
already strongly entangled with E). This gives an intuition of the physical origin of our bounds in
the case of S being coupled to another system E, and when the two can be considered to be in a pure
total state. This is exactly the situation suggested in [29] as being at the origin of Gibbs thermal states.
In this sense, thermal mixedness in S can be seen as the result of entanglement in a pure S + E state, E
being the thermal environment. Equation (20) can then be viewed as a monogamy relation, describing
the competition between two kinds of quantum correlations—internal ones measured by negativity
and external ones measured by entropy. On the other hand, it is known that some thermodynamic
quantities (e.g., heat capacity or internal energy) can be used as entanglement witnesses [18], and
recent works have shown an even closer link between heat capacity and entanglement for particular
systems [30,31]. The result of this paper suggests this link might hold very generally. Indeed, in the
case of a Gibbs equilibrium state, PE can be given by the expression

PE = ∑
i 6=j

e−βEi e−βEj

Z2 = ∑
i 6=j

Pij
E , (23)

where Ei is the i-th energy level of the system and Z is its partition function, β being the inverse
temperature in units of kB. Heat capacity in a finite dimensional system reads



Entropy 2020, 22, 62 9 of 13

CV ≡ β2(〈H2〉 − 〈H〉2) = β2 ∑
i 6=j

Pij
E

Ei − Ej

2
. (24)

There is then a similarity between PE and CV as given by Equations (23) and (24), suggesting how
a measure of the latter, together with little knowledge about the energy spectrum of the physical system,
might supply significant information on the linear entropy of the system and, as a consequence, on its
maximal degree of internal bipartite entanglement. This triggers interest in further future investigation
on a detailed analysis of the relation between PE and CV which, in turn, might supply us with an easily
experimentally measurable entanglement bound as well as highlight how the origin of thermodynamic
properties is strongly related to non-classical correlations and monogamy effects. Such a connection,
and the usefulness of the bounds derived in the previous sections, can be exemplified with a simple
three-qutrit system with a parameter-dependent Hamiltonian

Hl = ω Jz + τJ1 · J2 + (J1 · J2)
2 + kJ0 · (J1 + J2), (25)

where Ji is the spin operator of the i-th particle, J = J0 + J1 + J2, and ω, τ, k are real interaction
parameters. This effective Hamiltonian operator describes a system consisting of two ultracold atoms
(spins labeled as 1 and 2) in a two-well optical lattice and in the Mott insulator phase, where thus the
tunneling term in the usual Bose–Hubbard picture is accounted for as a second-order perturbative
term, both coupled with a third atom (labeled as 0) via a Heisenberg-like interaction. An external
magnetic field is also present, uniformly coupled to the three atoms. Such a system is a generalization
of the one studied in [31], where a deep connection between thermal entanglement and heat capacity
in parameter space has been shown. Hamiltonian (25) is analytically diagonalizable, thus allowing us
to obtain explicit expressions for thermodynamic quantities characterizing the Gibbs equilibrium state
of the three-atom system, together with the negativity of the reduced state of the two quadratically
coupled spins.

The mathematical origin of the connection between heat capacity and negativity was already
discussed in [31] and is ultimately due to the presence of level crossing in the low-lying energy
eigenvalues of the system. Here we want to show how the existence of the strong connection between
purity and negativity, expressed by bound (20), can give some hints for a physical explanation of such
an effect, and moreover to exemplify how bound (20) can often supply important information on the
amount of thermal entanglement. Figure 5 shows how the connection between thermal entanglement
and heat capacity highlighted in [31] is still present despite the interaction with a third atom.
Figures 6 and 7 show bounds (5) and (18), together with the negativity of the reduced state of two
atoms, versus a certain interaction parameter in the Hamiltonian. Figure 8 finally shows the same
quantities versus temperature for fixed Hamiltonian parameters. All energies in the plots are expressed
in units of ω. It is worth stressing here that, in all these plots, bound Q3 = Θ( d − 2

d − 1 − PE) is not shown.
The reason is that, in order to preserve thermal entanglement, the temperature in our simulations had
to be kept at most of the same order of magnitude of spin–spin interactions, and in such a regime
PE has not yet crossed the threshold d − 2

d − 1 so Q3 was constantly equal to one. It is clearly shown in
Figures 6 and 8 how bound Q1 given in (5) can become, as discussed, larger than 1. In all these cases
(except for a small temperature range in Figure 8, however, (18) is still able to sensibly bound negativity.
In all the plots shown, and in general every time the bounds (5) and (18) are applied to the particular
system analyzed here, one always gets useful information about bipartite entanglement in the form, of
course, of an upper bound. However, such a bound gets very close to zero in some particular cases
(e.g., Figures 7 and 8), strongly restricting the allowed range of values for the negativity. It is then
shown that (20) is able to produce non-trivial results. It is worth noting that in Figure 5 there are ranges
of the parameter γ where the negativity and the heat capacity exhibit simultaneous plateaus. This fact,
also previously shown and commented in [31], in view of Equation (20) and the strong link between
heat capacity and the mixedness PE of a quantum state, legitimizes the deduction that in the parameter
regions of very low negativity the heat capacity may be assumed as almost constant.
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Bounds on mixed state entanglement

zero in some particular cases (see, for example, Figures 3
and 4), strongly restricting the allowed range of values for
the Negativity. It is then shown that (19) is able to pro-
duce non-trivial results. Moreover, exploiting in particular
the fact that a plateau in the Negativity is, as previously
shown and commented [25] and as can be seen in Figure
1, associated to a phase of almost constant Heat Capacity,
any time (19) reveals a very low Negativity for a range of
parameter values then one has strong arguments in claim-
ing that such a range is associated to a well defined, almost
unchanged value of Heat Capacity.

Fig. 1: Negativity of reduced state of the two ultracold atoms
(full line) and Heat Capacity of the system (dashed line) versus
quadratic interaction parameter �. The other parameters have
been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 2: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus quadratic interaction parameter �. The other parame-
ters have been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 3: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus Heisenberg interaction parameter k. The other param-
eters have been fixed as kBT = 10, ⌧ = 3 and � = 1.

Fig. 4: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus temperature T (in units of kB). The interaction param-
eters have been fixed as ⌧ = 4, k = 5 and � = 1.

Appendix: Proof of Lemma 1. – Let us first no-
tice that both B(t) and 1 � A(t) � B(t) go to zero when
the state ⌧(t) is pure. Indeed A + B = Tr⌧2 equals the
purity, while B by construction vanishes when ⌧ is pure
(see equations (9)-(13)). Notice further that both A(t)
and B(t) are quadratic in ⌫�(t) and µ↵(t) and then the
statement of Lemma 1 is independent of their sign. Such
a statement can be rewritten as

1 � A � B

d
� B = l(A, B) � 0 (23)

The function l(A, B) at the extremal points of its domain
(corresponding to a pure and a maximally mixed state)
satisfies (23). For a maximally mixed state, calling n↵ (n�)
the number of ↵� (��) class eigenvalues (n↵ + n� = d),
one gets A = n↵/d2 and B = n�/d2 and thus l = n↵�1

d2 � 0

p-5

Figure 5. Negativity of the reduced state of the two ultracold atoms(full line) and heat capacity of the
system (dashed line) versus quadratic interaction parameter γ. The other parameters were fixed as
kBT = 2, τ = 3, and k = 1.

Bounds on mixed state entanglement

zero in some particular cases (see, for example, Figures 3
and 4), strongly restricting the allowed range of values for
the Negativity. It is then shown that (19) is able to pro-
duce non-trivial results. Moreover, exploiting in particular
the fact that a plateau in the Negativity is, as previously
shown and commented [25] and as can be seen in Figure
1, associated to a phase of almost constant Heat Capacity,
any time (19) reveals a very low Negativity for a range of
parameter values then one has strong arguments in claim-
ing that such a range is associated to a well defined, almost
unchanged value of Heat Capacity.

Fig. 1: Negativity of reduced state of the two ultracold atoms
(full line) and Heat Capacity of the system (dashed line) versus
quadratic interaction parameter �. The other parameters have
been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 2: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus quadratic interaction parameter �. The other parame-
ters have been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 3: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus Heisenberg interaction parameter k. The other param-
eters have been fixed as kBT = 10, ⌧ = 3 and � = 1.

Fig. 4: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus temperature T (in units of kB). The interaction param-
eters have been fixed as ⌧ = 4, k = 5 and � = 1.

Appendix: Proof of Lemma 1. – Let us first no-
tice that both B(t) and 1 � A(t) � B(t) go to zero when
the state ⌧(t) is pure. Indeed A + B = Tr⌧2 equals the
purity, while B by construction vanishes when ⌧ is pure
(see equations (9)-(13)). Notice further that both A(t)
and B(t) are quadratic in ⌫�(t) and µ↵(t) and then the
statement of Lemma 1 is independent of their sign. Such
a statement can be rewritten as

1 � A � B

d
� B = l(A, B) � 0 (23)

The function l(A, B) at the extremal points of its domain
(corresponding to a pure and a maximally mixed state)
satisfies (23). For a maximally mixed state, calling n↵ (n�)
the number of ↵� (��) class eigenvalues (n↵ + n� = d),
one gets A = n↵/d2 and B = n�/d2 and thus l = n↵�1

d2 � 0

p-5

Figure 6. Negativity of the reduced state of the two ultracold atoms (full line), bound Q1 (dotted line),
and bound Q2 (dashed line) versus the quadratic interaction parameter γ. The other parameters were
fixed as kBT = 2, τ = 3, and k = 1.

Bounds on mixed state entanglement

zero in some particular cases (see, for example, Figures 3
and 4), strongly restricting the allowed range of values for
the Negativity. It is then shown that (19) is able to pro-
duce non-trivial results. Moreover, exploiting in particular
the fact that a plateau in the Negativity is, as previously
shown and commented [25] and as can be seen in Figure
1, associated to a phase of almost constant Heat Capacity,
any time (19) reveals a very low Negativity for a range of
parameter values then one has strong arguments in claim-
ing that such a range is associated to a well defined, almost
unchanged value of Heat Capacity.

Fig. 1: Negativity of reduced state of the two ultracold atoms
(full line) and Heat Capacity of the system (dashed line) versus
quadratic interaction parameter �. The other parameters have
been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 2: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus quadratic interaction parameter �. The other parame-
ters have been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 3: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus Heisenberg interaction parameter k. The other param-
eters have been fixed as kBT = 10, ⌧ = 3 and � = 1.

Fig. 4: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus temperature T (in units of kB). The interaction param-
eters have been fixed as ⌧ = 4, k = 5 and � = 1.

Appendix: Proof of Lemma 1. – Let us first no-
tice that both B(t) and 1 � A(t) � B(t) go to zero when
the state ⌧(t) is pure. Indeed A + B = Tr⌧2 equals the
purity, while B by construction vanishes when ⌧ is pure
(see equations (9)-(13)). Notice further that both A(t)
and B(t) are quadratic in ⌫�(t) and µ↵(t) and then the
statement of Lemma 1 is independent of their sign. Such
a statement can be rewritten as

1 � A � B

d
� B = l(A, B) � 0 (23)

The function l(A, B) at the extremal points of its domain
(corresponding to a pure and a maximally mixed state)
satisfies (23). For a maximally mixed state, calling n↵ (n�)
the number of ↵� (��) class eigenvalues (n↵ + n� = d),
one gets A = n↵/d2 and B = n�/d2 and thus l = n↵�1

d2 � 0

p-5

Figure 7. Negativity of the reduced state of the two ultracold atoms (full line), bound Q1 (dotted line),
and bound Q2 (dashed line) versus the Heisenberg interaction parameter k. The other parameters were
fixed as kBT = 10, τ = 3, and γ = 1.
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Bounds on mixed state entanglement

zero in some particular cases (see, for example, Figures 3
and 4), strongly restricting the allowed range of values for
the Negativity. It is then shown that (19) is able to pro-
duce non-trivial results. Moreover, exploiting in particular
the fact that a plateau in the Negativity is, as previously
shown and commented [25] and as can be seen in Figure
1, associated to a phase of almost constant Heat Capacity,
any time (19) reveals a very low Negativity for a range of
parameter values then one has strong arguments in claim-
ing that such a range is associated to a well defined, almost
unchanged value of Heat Capacity.

Fig. 1: Negativity of reduced state of the two ultracold atoms
(full line) and Heat Capacity of the system (dashed line) versus
quadratic interaction parameter �. The other parameters have
been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 2: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus quadratic interaction parameter �. The other parame-
ters have been fixed as kBT = 2, ⌧ = 3 and k = 1.

Fig. 3: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus Heisenberg interaction parameter k. The other param-
eters have been fixed as kBT = 10, ⌧ = 3 and � = 1.

Fig. 4: Negativity of reduced state of the two ultracold atoms
(full line), bound Q1 (dotted line) and bound Q2 (dashed line)
versus temperature T (in units of kB). The interaction param-
eters have been fixed as ⌧ = 4, k = 5 and � = 1.

Appendix: Proof of Lemma 1. – Let us first no-
tice that both B(t) and 1 � A(t) � B(t) go to zero when
the state ⌧(t) is pure. Indeed A + B = Tr⌧2 equals the
purity, while B by construction vanishes when ⌧ is pure
(see equations (9)-(13)). Notice further that both A(t)
and B(t) are quadratic in ⌫�(t) and µ↵(t) and then the
statement of Lemma 1 is independent of their sign. Such
a statement can be rewritten as

1 � A � B

d
� B = l(A, B) � 0 (23)

The function l(A, B) at the extremal points of its domain
(corresponding to a pure and a maximally mixed state)
satisfies (23). For a maximally mixed state, calling n↵ (n�)
the number of ↵� (��) class eigenvalues (n↵ + n� = d),
one gets A = n↵/d2 and B = n�/d2 and thus l = n↵�1

d2 � 0

p-5

Figure 8. Negativity of reduced state of the two ultracold atoms (full line), bound Q1 (dotted line) and
bound Q2 (dashed line) versus temperature T (in units of kB). The interaction parameters have been
fixed as τ = 4, k = 5 and γ = 1.

6. Conclusions

In this paper we derived a bound on the degree of information storable as bipartite quantum
entanglement within an open d-dimensional quantum system in terms of its linear entropy. Our result is
quite general, holding for arbitrary bipartitions of an also arbitrary system. Indeed, our work concerns
any bipartite quantum system of finite dimension. Examples may include coupled quantum dots,
interacting atoms or molecules, different degrees of freedom of photons, or superconducting circuits,
but this is a very limited list of examples of typical experimental realization of quantum systems that are
easy to manipulate. The same is true for the states considered: our results apply to any quantum state of
finite-sized bipartite quantum systems. As a matter of fact, as shown in this paper, all we need to specify
is the purity of such states, which is well-defined for any quantum state. We emphasize that our result
is experimentally appreciable in view of quite recently proposed protocols aimed at measuring the
purity of a state of a quantum system. Inspired by the seminal paper of Popescu, Short, and Winter [29],
our conclusions highlight the interplay between quantum entanglement inside a thermalized system
and its physical properties. Our results are of interest not only for quantum information researchers,
but also for the growing cross-community of theoreticians and experimentalists investigating the
subtle underlying link between quantum features and thermodynamics.
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Appendix A

Proof of Lemma 1. Let us first notice that both B(t) and 1− A(t)− B(t) go to zero when the state τ(t)
is pure. Indeed, A + B = Trτ2 equals the purity, while B by construction vanishes when τis pure (see
Equations (9)–(13)). Notice further that both A(t) and B(t) are quadratic in νβ(t) and µα(t) and then
the statement of Lemma 1 is independent of their sign. Such a statement can be rewritten as

1− A− B
d

− B = l(A, B) ≥ 0. (A1)
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The function l(A, B) at the extremal points of its domain (corresponding to a pure and a maximally
mixed state) satisfies (A1). For a maximally mixed state, calling nα (nβ) the number of α- (β-)class
eigenvalues (nα + nβ), one gets A = nα

d2 and B =
nβ

d2 and thus l = nα −1
d2 ≥ 0 since nα ≥ 1. Let us now

express l(A, B) as

h({µα}, {νβ}) =
1
d

(
1−

nα

∑
α

µ2
α −

nβ

∑
β

ν2
β

)
−

nβ

∑
β

ν2
β. (A2)

We can address the investigation on internal points using the Lagrange multiplier method,
taking into account the trace condition ∑nα

α µ2
α + ∑

nβ

β ν2
β = 1. From this method, only one stationary

point results, characterized by values of νβ and µα such that the corresponding state is mixed. It is
straightforward to check that at this point the function (A2) is positive. We then deduce that l(A, B) ≥ 0,
from which Lemma 1 directly follows. Finally, the range δ of validity of Lemma 1 is given by the
requirement qR(t) ≥ qi 6=R(t), such a property being necessary for the sensible definition of the reference
pure state σR which guarantees, in turn, that B(t) vanishes on pure states.
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