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Abstract: In 2000, Kennedy and O’Hagan proposed a model for uncertainty quantification that
combines data of several levels of sophistication, fidelity, quality, or accuracy, e.g., a coarse and a
fine mesh in finite-element simulations. They assumed each level to be describable by a Gaussian
process, and used low-fidelity simulations to improve inference on costly high-fidelity simulations.
Departing from there, we move away from the common non-Bayesian practice of optimization and
marginalize the parameters instead. Thus, we avoid the awkward logical dilemma of having to choose
parameters and of neglecting that choice’s uncertainty. We propagate the parameter uncertainties by
averaging the predictions and the prediction uncertainties over all the possible parameters. This is
done analytically for all but the nonlinear or inseparable kernel function parameters. What is left is a
low-dimensional and feasible numerical integral depending on the choice of kernels, thus allowing
for a fully Bayesian treatment. By quantifying the uncertainties of the parameters themselves too, we
show that “learning” or optimising those parameters has little meaning when data is little and, thus,
justify all our mathematical efforts. The recent hype about machine learning has long spilled over to
computational engineering but fails to acknowledge that machine learning is a big data problem and
that, in computational engineering, we usually face a little data problem. We devise the fully Bayesian
uncertainty quantification method in a notation following the tradition of E.T. Jaynes and find that
generalization to an arbitrary number of levels of fidelity and parallelisation becomes rather easy.
We scrutinize the method with mock data and demonstrate its advantages in its natural application
where high-fidelity data is little but low-fidelity data is not. We then apply the method to quantify
the uncertainties in finite element simulations of impedance cardiography of aortic dissection. Aortic
dissection is a cardiovascular disease that frequently requires immediate surgical treatment and, thus,
a fast diagnosis before. While traditional medical imaging techniques such as computed tomography,
magnetic resonance tomography, or echocardiography certainly do the job, Impedance cardiography
too is a clinical standard tool and promises to allow earlier diagnoses as well as to detect patients that
otherwise go under the radar for too long.
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1. Introduction

While Uncertainty Quantification (UQ) has become a term on its own in the computational
engineering community, Bayesian Probability Theory is not widely spread yet. A comprehensive
collection of reviews on the various methods and aspects of UQ from the point of view of the
computational engineering and applied mathematics community can be found in Reference [1].
In References [2–4], a statistician’s perspective is discussed. The computational effort for performing
UQ with brute force is typically prohibitively large; thus, surrogate models such as Polynomial Chaos
Expansion (PCE) [5–8] or Gaussian Process (GP) regression [9–12] are used, the latter of which has had
its renaissance recently from within the machine learning community.

This work is inspired by the article of Kennedy and O’Hagan in 2000 [13]. They performed UQ by
making use of a computer simulation with different levels of “fidelity”, “sophistication”, “accuracy”,
or “quality”. In other words, a cheap, simplified simulation serves as a surrogate. We will refer to this
approach as Multi-Fidelity scheme (MuFi). The idea of MuFi [14], and MuFi with GPs specifically [15],
recently found increasing attention again. In contrast to previously reported MuFi-GPs , we do not
learn the parameters and subsequently neglect the parameter uncertainties but explicitly incorporate
them in a rigorous manner. We find that this is tractable analytically for all parameters but especially
for the ones that occur nonlinearly or inseparably in the GPs covariance.

While UQ in general has arrived fully in the biomedical engineering community [16], the Bayesian
approach has not. Biehler et al. [17] were, to the best knowledge of the authors, the first to apply a
Bayesian MuFi Scheme in the context of computational biomechanical UQ. We apply our method to
quantify the uncertainties in finite element simulations [18] of Impedance Cardiography (ICG) [19] of
Aortic Dissection (AD) [20]. The aorta is the largest blood vessel in the human body. In aortic dissection,
blood fluid dynamics force open a tear in a weakened aortic wall, dilate it, and fill the wall itself with
blood. This deforms the geometry of the aorta and, obviously, affects blood circulation unfavourably
(p. 459, [21]). Aortic Dissection is highly dangerous and likely lethal if untreated. Thus, a fast response
and, hence, a fast diagnosis are key to the treatment of patients. For diagnosis, physicians use a variety
of imaging techniques such as Magnetic Resonance Tomography (MRT), Computed Tomography (CT),
and Echocardiography [22]. Echocardiography performed by a trained cardiologist is comparably
cheap and fast, yet sound wave propagation might be hindered, e.g., by the rib cage or body fat. In CT
and MRT, the radiation fully penetrates the body. Still, they require a trained radiologist and long
measurement times and pose radiation risks and high costs. Most importantly, these examinations are
not performed without a specific reason.

Alternatively, impedance cardiography is rather cheap and simple and, more importantly,
available in any clinic and many medical practices. In ICG, one places a pair of electrodes on the thorax
(upper body), injects a defined low-amplitude, alternates electric current into the body, and measures
the voltage drop. The specific resistance of blood is much lower than that of muscle, fat, or bone [23].
Since electric current seeks the path of least resistance, the current propagates through the aorta rather
than through, e.g., the spine. Thus, if the local blood volume changes due to aortic dissection, the
impedance signal changes as well. Impedance cardiography could therefore complement existing
clinical procedures and could detect aortic dissection when medical imaging is not performed, be
it due to the absence of suspicion or to the unavailablity of the device itself. We find a number of
parameters which are well defined but usually neither known precisely nor accessible in the clinical
setting, e.g., the size of the aortic dissection. A clinical trial is extremely difficult, and we resort to a
theoretical investigation instead, in which we account for the uncertainties as well.

In Section 2, we develop a Bayesian uncertainty quantification model based on Gaussian processes
using multi-fidelity data. We scrutinize the method with mock data in Section 3 and show that learning
regression parameters has little meaning when data is little. In Section 4, we apply our method to finite
element simulations of impedance cardiography of aortic dissection and show that low-fidelity data
can indeed decrease high-fidelity uncertainties.
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2. Bayesian Multi-Fidelity Scheme

2.1. Statistical Model

Let C be the conditional complex. Let t = 1, ..., Nt denote the ranked levels of fidelity of
a simulation, with level Nt being the highest fidelity. zt(xt) is a vector of simulation results of
fidelity-level t given input vector xt. We assume that zt(xt) is a realisation of a Gaussian Process (GP)
zt(x) with a Markov property of order 1, meaning that level t depends on level t− 1 only via the
following recursive relationship:

z1(x) = δ1(x) (1a)

zt(x) = ρt−1zt−1(x) + δt(x) ∀t ≥ 2 (1b)

⇒ zNt(x) =
Nt

∑
t=1

δt(x)
Nt−1

∏
l=t

ρl (1c)

with a “difference-GP” δt(x) and a proportionality constant ρt−1. Further, we assume that all
information about a level is contained in the data corresponding to the same pivot point at that

level and its previous level. Formally, that is Cov
(

zt(x), zt−1(x′) | zt−1(x)
)
= 0. The difference-GP

δt(x) shall be defined by the covariance matrix σ2
t Kt(x, x′) and the mean function ht(x)βt. ht(x) is a

matrix of regression functions h(k)t evaluated at x = (x(1), ..., x(j), ..., x(Nx))T with size Nx × Nβt
, where

Nx is the length of input vector x and Nβt
is the expansion power, i.e., number of regression functions,

at level t. βt = (β
(1)
t , ..., β

(Nβt )

t )T are the coefficients of level t’s regression functions, and αt is the set of
hyperparameters parametrizing the kernel function kt. Formally, this is

p
[
δt(x)|C

]
= N (ht(x)βt, σ2

t Kt(x, x)) (2a)[
ht(x)

]
jk = h(k)t (x(j)) (2b)[

ht(x)βt
]

j =
m

∑
k=1

h(k)t (x(j))β
(k)
t (2c)[

Kt(x, x)
]

ij = kt(x(i), x(j); αt) (2d)

At this point, neither have we chosen the basis functions h(k)t building the mean function nor have
we chosen the kernel functions kt building the covariance matrices. Let us subsume the parameters
as θ = {θt}, θt = {βt, σt, ρt−1, αt}, β = {βt}, βt = {β

(k)
t }, σ = {σt}, ρ = {ρt}, and α = {αt} with

t = 1, 2, ..., Nt. The data shall be D = {Dt} with Dt =
{(

xt, zt(xt), zt−1(xt)
)}

, which comprises the
input vector at level t, namely xt, and its corresponding computer code outputs at level t, namely
zt(xt), and at the previous level t− 1, namely zt−1(xt). Further, we require a nested design of input
vectors, i.e., xNt ⊆ xNt−1 ⊆ ...xt ⊆ xt−1... ⊆ x1. We want to draw conclusions from the predictive
posterior probability of zNt(x) at a set of points x,

p
[
zNt(x)|D

]
=
∫ Nt

∏
t=1

dδt(x)
∫

dθ p
[
zNt(x)|{δt(x)}Nt

t=1, θ, D
]

p
[
{δt(x)}Nt

t=1|θ, D
]

p
[
θ|D

]

This thing is quite unhandy. We will instead just deal with its moments only, namely the posterior
mean

〈
zNt(x)

〉
and the posterior covariance Cov(zNt(x)) =

〈
zNt(x)zNt(x)T〉− 〈zNt(x)

〉〈
zNt(x)

〉T ,
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where the diagonal of the posterior covariance is the uncertainty band of the prediction. The moments
of zNt(x) follow from〈

f (zNt(x))
〉
=
∫

dzNt(x) f (zNt(x))p
[
zNt(x)|D

]
=
∫ Nt

∏
t=1

dδt(x)
∫ Nt

∏
t=1

dθt f
( Nt

∑
t=1

δt(x)
Nt−1

∏
l=t

ρl

) Nt

∏
t=1

p
[
δt(x)|θt, Dt

]
p
[
θt|Dt

]
(3)

We have used the fact that p
[
zNt(x)|{δt(x)}Nt

t=1, θ, D
]

reduces to Dirac’s delta-distribution since

zNt(x) is uniquely determined by Equation (1) and the knowledge of all difference-GPs, {δt(x)}Nt
t=1.

Thus, integration with respect to zNt(x) is merely a replacement of zNt(x) → ∑Nt
t=1 δt(x)∏Nt−1

l=t ρl .

Per construction, we can factor p
[
{δt(x)}Nt

t=1|θ, D
]

p
[
θ|D

]
= ∏t p

[
δt(x)|θt, Dt

]
p
[
θt|Dt

]
. Since δt(x)

is assumed to obey a GP, the prior probability of δt(xt) is multivariate normal. If the likelihood

p
[

Dt|δt(x), θt

]
is Gaussian, then the posterior probability of δt(xt), p

[
δt(xt)|θt, Dt

]
, is multivariate

normal as well. Integration with respect to δt(x) yields thus the standard result of the posterior mean
value (see, e.g., Reference [10]) and results in a replacement of the GP with its posterior mean.

2.2. Prediction and Its Uncertainty

To compute posterior mean and covariance, we are thus left with integration with respect to the
hyperparameters. This is done analytically with all parameters (β, σ , ρ) but the parameters of the
kernel function, α, since those usually occur nonlinearly in the kernel function. We are then left with
numerical integration of expectations and covariances, both conditioned on α. We assume flat priors

for β and ρ and Jeffreys’ prior for σ , i.e., p
[
σt|C

]
= 1

σt
. The prior of α needs to be chosen only after

the covariance kernel has been chosen. Let
〈
· | αt

〉
denote the expectation value conditioned on α.

Here, for ease of notation, we will instead write
〈
·
〉

only. The technicalities shall be detailed in the
Appendix A , and the result is as follows:

〈
zNt(x)

〉
=
∫ Nt

∑
t=1

〈
δt(x)

〉 Nt−1

∏
l=t

〈
ρl
〉

p
[
α|D

]
dα

〈
zNt(x)(zNt(x))T

〉
=
∫ Nt

∑
t=1

(〈
σ2

t
〉
Σt(x, x) +

〈
δt(x)

〉〈
δt(x)

〉T
) Nt−1

∏
l=t

〈
ρ2

l
〉

p
[
α|D

]
dα〈

δt(x)
〉
= ht(x)

〈
βt
〉
+ Kt(x, xt)Kt(xt, xt)

−1(δt(xt)− ht(xt)
〈

βt
〉)

Σt =
(

Kt(x, x)− Kt(x, xt)Kt(xt, xt)
−1Kt(xt, x)

)
p
[
α|D

]
=

2−Nt
√

Φ1

Γ(γ1)

Γ(γ1 − 1
2 )

Nt

∏
t=1

a−
1
2

t

(
πΦt

)−γt+
1
2
Γ
(

γt −
1
2

)[ |Kt(xt, xt)|
|At|

]− 1
2

p
[
α|C

]
(4a)

where δt(xt) is determined from the data and Equation (2), Γ(·) is the complete Gamma-function, | · |
is the matrix determinant, and the conditional expectations of the hyperparameters are

〈
βt
〉
= AtBt

(
zt(xt)−

〈
ρt−1

〉
zt−1(xt)

) 〈
ρt−1

〉
=

bt

at〈
σ2

t
〉
=

Φt

2γt − 3 + 3δt1

〈
ρ2

t−1
〉
=

〈
σ2

t
〉

at
+
( bt

at

)2
(4b)



Entropy 2020, 22, 58 5 of 14

where δt1 = 1 for t = 1 and 0 otherwise and the abbreviations are

γt =
Nxt − Nβt

2
Φt = ct −

b2
t

at

Ct = Kt(xt, xt)
−1 − BT

t AtBt ct = (zt(xt))
TCtzt(xt)

Bt = (ht(xt))
TKt(xt, xt)

−1 bt = (zt(xt))
TCtzt−1(xt)

At =
(
(ht(xt))

TKt(xt, xt)
−1(ht(xt))

)−1
at = (zt−1(xt))

TCtzt−1(xt) (4c)

Nxt is the number of pivot points in input vector xt, and Nβt
is the expansion order of level t’s

mean function. For t = 1, we need to define ρ0 = 0, a1 = 1, and b1 = 0. Quite importantly, we find
following the requirement:

Nβ1
< Nx1 − 2

Nβt
< Nxt − 3 ∀t ≥ 2 (4d)

since otherwise the second moments of σt are not defined. The numerical evaluation of this result
merely involves a couple of matrix operations. The only input is the data, regression functions, and
covariance matrices. No parameters need to be tuned.

3. Algorithm and Mock Data Scrutiny

We test the method for the special case of two levels. Then, posterior mean and covariance
are simply

〈
z2(x)

〉
=
∫ 〈

δ1(x)
〉

p
[
α1|D1

]
dα1 +

∫ 〈
ρ1
〉〈

δ2(x)
〉

p
[
α2|D2

]
dα2〈

z2(x)(z2(x))T〉 = ∫ (〈
σ2

1
〉
Σ1(x, x) +

〈
δ1(x)

〉〈
δ1(x)

〉T
)

p
[
α1|D1

]
dα1

+
∫ 〈

ρ2
1
〉(〈

σ2
2
〉
Σ2(x, x) +

〈
δ2(x)

〉〈
δ2(x)

〉T
)

p
[
α2|D2

]
dα2

We generate mock data according to Equations (1) and (2) and compare the data analysis results
to the underlying truth. We have chosen as mean function bases the Legendre polynomials up to
orders 10 and 4 for Levels 1 and 2, respectively. This is convenient since this basis is both orthogonal as
well as normalized on [−1, 1] already and the map onto the desired domain is trivial. The covariance
kernel was chosen to be the squared exponential kernel, where α1 and α2 were defined as the inverse
of the correlation length squared. This choice was inspired by the typical form of signals encountered
in impedance cardiography, about which we will talk more in Section 4. The data set was one sample
drawn per level; see Figure 2 . We chose Jeffreys’ prior for αt. The integration bounds can be read from
Figure 1, and an integration grid of 100 × 100 equally sized volumes turned out to be well converged.
As an intermediate result, we compare the multi-fidelity estimates to the true parameter values in
Table 1. The posterior probabilities of βt, ρt, σt are Gaussian. Since α1 and α2 are not and thus cannot
be reasonably well described with mean and variance only, we additionally show their posterior
probabilities in Figure 1. The predictions and prediction uncertainties are compared to the true mean
in Figure 2. We find that both the parameter estimates as well as the predictions statistically match the
truth within their uncertainties. The mean function parameter uncertainties (β) clearly illustrate that
learning parameters by optimization has little meaning if there is little data. As the data set grows
big, the posterior will contract to the maximum likelihood solution. Still, and luckily, the prediction
uncertainties are kept low because the mean function parameter uncertainties do not appear in the
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prediction uncertainties directly. We emphasize that our proposed method naturally is applied to little
data problems.

Since on level 2 we only have 11 data points, the expansion order of the mean function is limited
to a maximum of 7 according to Equation (4d). Unsurprisingly, the solution rapidly worsens as we
approach this constraint and entirely breaks down as we reach it because the posteriors become
nonconclusive. This is exactly where we find the strength of our multi-fidelity approach. We can
choose a high-order mean function on a level where data is abundant and a low-order mean function
on a level which we are actually interested in but where data is scarce. The trick is thus actually that
the difference of the levels can be modeled by a low-order mean function.

Figure 1. Mock data analysis: Posterior probability density functions of the nonlinear kernel parameters
α1 and α2. Black dashed line: True value

Table 1. Mock data analysis: Comparison of the hyperparameter estimates with their true values.

Hyperparameter Estimate (Multi-Fidelity) Truth

β
(1)
1 0.30± 0.07 0.32

β
(2)
1 −0.30± 0.09 −0.40

β
(3)
1 0.02± 0.08 0.1

β
(4)
1 0.34± 0.06 0.35

β
(5)
1 −0.50± 0.04 −0.51

β
(6)
1 0.35± 0.02 0.33

β
(7)
1 −0.033± 0.008 −0.034

β
(8)
1 −0.146± 0.005 −0.142

β
(9)
1 0.1745± 0.0008 0.1750

β
(10)
1 −0.1031± 0.0004 −0.1034

β
(1)
2 0.42± 0.59 0.3̇

β
(2)
2 −0.17± 0.55 0.15

β
(3)
2 0.11± 0.17 0.016̇

β
(4)
2 0.03± 0.10 0

σ1 0.133± 0.096 0.1
σ2 0.47± 0.58 0.01
ρ1 2.97± 0.02 3
α1 8.6± 0.9 10.1
α2 10± 3 20.1
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Figure 2. Mock data analysis: Prediction. Note that the uncertainties have been multiplied by a factor
of 10 for illustrative purposes.

For the sake of completeness, we report the converged log-evidence to be 430± 10. In real-life
applications of the method, one should and could compare different choices of mean function
expansions and covariance kernel functions by Bayesian model comparison [24], i.e., compute each

choice’s evidence. Let Nαt be the number of hyperparameters in kernel function kt. Since p
[
α|D

]
factorizes, the integrals are Nαt -dimensional each rather than one single integral of dimension ∏t Nαt ,
making the computation of the evidence relatively easy. In our case, numerical Riemann integration
was good enough. When choosing more sophisticated kernel functions with more hyperparameters,
one might need to use statistical integration methods such nested sampling [25], which conveniently
and automatically yields the evidence as well.

For the sake of numerical stability, it is advisable to rescale the data. Further, one might want to
improve the condition numbers of the prior covariance matrices, σ2

t Kt(x, x), by adding a small term
proportional to the identity matrix, where the proportionality constant should be several orders of
magnitude smaller than σ2

t .
Finally, we would like to point out that Equation (4) suggests trivial parallelisation of the code

levels. This is not easily recognizable in the presentation of Kennedy and O’Hagan [3] but was found
by Le Gratiet and Garnier [26] already.

The algorithm, implemented in Matlab (R2019a), shall be available on https://github.com/Sranf/
Bayesian-MuFi-GP.git.

4. Application to Finite Element Simulations of Impedance Cardiography of Aortic Dissection

In this section, we quantify the uncertainties of real simulation data. We compare the uncertainties
of our Bayesian MuFi-GP with normal Bayesian GP neglecting the additional LoFi data, that is, the
special case of Nt = 1 in Equation (4). We have described the physical and physiological model in our
previous work [20,27] but shall restate a brief summary here for the reader’s convenience.

We solve Laplace’s equation:

∇ ·
(
(σ + iωε)∇V

)
= 0 ,

with finite elements on a geometry depicted in Figure 3, where V is the electric potential, σ is the
electrical conductivity (not to be confused with the regression parameter in the GP kernel), ω is the
angular current frequency, ε is the permittivity, and i is the imaginary unit. We had von-Neumann
boundary conditions, where V = const. on the top electrode and V = 0 on the bottom electrode,
where the surface integral of the current was held constant at 4 mA and air was assumed to be
perfectly insulating. The current had a frequency of 100 kHz. We considered one cardiac cycle that
spans one second. The dynamics were modelled via a time-dependent radius of the aorta and its

https://github.com/Sranf/Bayesian-MuFi-GP.git
https://github.com/Sranf/Bayesian-MuFi-GP.git
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dissection, which arises from pressure waves in a pulsatile flow. Further, the blood conductivity is
parametrized in time via its dependence on flow velocity. In the dissected aorta, we assume flow to be
stagnant [20,28]. The voltage drop is then measured from just below the top electrode to just above the
bottom electrode. The impedance is then the ratio of voltage over current, and the admittance is the
inverse of the impedance. We used Comsol Multiphysics for the modelling [29].

Figure 3. Right: Mesh-converged HiFi model with 100,000–550,000 degrees of freedom. Left: LoFi
model with 9000–15,000 with labels of the geometrical objects. Adapted from Reference [27]

For the uncertainty quantification, we chose to expand the mean functions in Legendre
polynomials up to order 8 and 2 for HiFi and LoFi, respectively. We choose the squared exponential
kernel for both covariance matrices. In principle, one should compute the evidence for a number of
plausible choices and choose the one with the most evidence. For the mean function, that would most
simply be different expansion orders, while the covariance kernel could be taylored to the PDE at hand
to enforce physical behaviour, as suggested in References [30,31].

For uncertain parameters, we consider the radius of the dissected aorta and perform a number
of simulations with sensible values within the physiological and physical range, i.e., 1.0–24.0 mm.
The LoFi data set consisted of 24 time series, each with 21 pivot points in time. The HiFi data set
consisted of 3 time series (5 mm, 11 mm, and 18 mm), each with 11 pivot points in time.

In Figure 4, we show the posterior of the kernel parameters, which turns out to be quite conclusive.
In Figure 5, we plot the HiFi predictions and uncertainties which are enhanced by LoFi data and
compare them to HiFi predictions and uncertainties which are not enhanced by LoFi data as well as to
the test data set.

Figure 4. Posterior probability of the nonlinear kernel parameters.
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Figure 5. Data, prediction, and prediction uncertainty of the absolute value of the admittance, i.e.,
the inverse impedance in units of inverse Ohm: z1(x2) denotes LoFi data at the same pivot points as
HiFi data.

5. Conclusions

We devised a fully Bayesian multi-level Gaussian process model to improve uncertainty
quantification of expensive and little high-fidelity simulation data by augmenting the data set with
low-fidelity simulations. Our proposed method is rigorous and logically consistent, no ad hoc
assumptions have been made, and the user is spared the embarrassment of having to tune any
parameters. The method was scrutinized with mock data and shown to work with as little data as where
simple Bayesian Gaussian process regression is not conclusive at all. We applied the method to finite
element simulations of impedance cardiography of aortic dissection and quantified the uncertainty
due to the unknown size of the aortic dissection. By using meshes of both high fidelity (defined by
mesh convergence) and low fidelity, we reduced the uncertainty significantly. We have thus further
shown that uncertainties due to geometrical parameters can be described with Gaussian processes on
each level of fidelity. With a coarsened mesh, the result is qualitativelybut not quantitatively similar.
Usually, that is not good enough and the low-fidelity data is entirely useless to the engineer. Here we
show that this is not necessarily true in the context of uncertainty quantification. Ultimately, we want
to diagnose aortic dissection from impedance cardiography signals, i.e., in the parlance of probability
theory, we need to compare the evidences of healthy and diseased aortae. Unambiguous judgement
will most likely, if at all, be possible only with several electrodes at once.
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Appendix A. Mathematical Proofs

We start from Equation (3) and want to compute Equation (4) from it. We reintroduce the notation
of conditional expectations, where 〈Q | P〉 is the expectation of Q given some P, i.e., the integration is
done with respect to all parameters but P.

p
[
δt(xt)|xt, θt

]
= N

[
δt(xt)|δ̄t(xt), Kt(xt, xt)

]
δ̄t(x) = ht(x)βt + Kt(x, xt)Kt(xt, xt)

−1(δt(xt)− ht(xt)βt
)

⇒ p
[
θ|D

]
= ∏

t
p
[
θt|Dt

]
p
[

Dt|θt

]
= N

[
δt(xt)|δ̄t(xt), Kt(xt, xt)

]
Thus, in the moments of zNt(x), by integration with respect to δt(x), we can replace δt(x) by its

posterior mean:

〈
zNt(x)

〉
=
∫

dθ
( Nt

∑
t=1

δ̄t(x)
Nt−1

∏
l=t

ρl

)
p
[
θ|D

]
dθ

〈
zNt(x)zNt(x)T

〉
=
∫

dθ
( Nt

∑
t=1

δ̄t(x)
Nt−1

∏
l=t

ρl

)( Nt

∑
t=1

δ̄t(x)
Nt−1

∏
l=t

ρl

)T
p
[
θ|D

]
dθ

Appendix A.1. Parameter Posterior and Parameter Estimates

We need the posterior of the parameters:

N
[
δt(xt)|δ̄tt, Kt(xt, xt)

]
=

1
Zt

e
− ψt

2σ2
t

ψt = (δt(xt)− ht(xt)βt)
TKt(xt, xt)

−1(δt(xt)− ht(xt)βt)

Zt = (2πσ2
t )

Nxt /2|Kt(xt, xt)|1/2 (A1a)

The exponent of this Gaussian is a quadratic form in βt, and we rewrite it as

− ψt

2σ2
t
= − 1

2σ2
t
(βt −

〈
βt | αt, ρt−1

〉
)T A−1

t (βt −
〈

βt | αt, ρt−1
〉
)− 1

2σ2
t

δt(xt)
TCtδt(xt)〈

βt | αt, ρt−1
〉
= AtBt(zt(xt)− ρt−1zt(xt−1))

Ct = Kt(xt, xt)
−1 − BT

t AtBt

Bt = (ht(xt))
TKt(xt, xt)

−1

At =
(
(ht(xt))

TKt(xt, xt)
−1(ht(xt))

)−1

From this form, we can read the (conditional) expectation and covariance of βt. We can now
integrate with respect to βt. We assume a flat prior for βt:

p
[
αt, σt, ρt−1|Dt

]
=
∫

p
[
αt, σt, ρt−1, βt|Dt

]
dβt

= exp
(
− 1

2σ2
t

δt(xt)
TCtδt(xt)

)[ |Kt(xt, xt)|
|At|

]−1/2

(2πσ2
t )
−γt

with γt =
Nxt−Nβt

2 , Nxt as the number of pivot points in input vector xt, and Nβt
as the number of

basis functions of level t. Apparently, the expectation of β is independent of σ and the covariance of β
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is independent of ρ. We will next tend to integrating with respect to ρt−1. We find ρt−1 in δt(xt) only
and thus as a quadratic form again:

− 1
2σ2

t
δt(xt)

TCtδt(xt) = −
1

2σ2
t
(ct −

b2
t

at
)− 1

2σ2
t

at(ρt−1 −
〈
ρt−1 | αt, σt

〉
)2

〈
ρt−1 | αt, σt

〉
=

bt

at

var(ρt−1 | αt, σt) =
σ2

t
at

ct = (zt(xt))
TCtzt(xt)

bt = (zt(xt))
TCtzt−1(xt)

at = (zt−1(xt))
TCtzt−1(xt)

We can now integrate with respect to ρt−1. We assume a flat prior:

p
[
αt, σt|Dt

]
=
∫

p
[
αt, σt, ρt−1|Dt

]
dρt−1

= exp
(
− 1

2σ2
t

(
ct −

b2
t

at

))[ |Kt(xt, xt)|
|At|

]−1/2

(2πσ2
t )
−γt

√
2πσ2

t
at

The last random variable we can treat analytically is σt. With Jeffrey’s prior p
[
σt|C

]
= 1

σt
, we have

p
[
αt|Dt

]
=
∫

p
[
αt, σt|Dt

]
dσt

=
∫

Λt exp
(
− Φt

2σ2
t

)
(σ2

t )
−γt+

1
2

dσt

σt

Φt = ct −
b2

t
at

Λt =

[
|Kt(xt, xt)|
|At|

]−1/2

(2π)−γt

√
2π

at

With the substitution v = Φt
2σ2

t
, we find this to be a Γ-integral:

p
[
αt|Dt

]
=

Λt

2

(Φt

2

)−γt+
1
2
∫

e−vv(γt− 1
2 )−1dv︸ ︷︷ ︸

=Γ(γt− 1
2 )

The moments of σt are Γ-integrals as well, and we find〈
σν

t | αt
〉〈

σ0
t | αt

〉 =
√

Φt
ν Γ(γt − 1

2 −
ν
2 )

Γ(γt − 1
2 )

For the above Γ-integral and the σ-moments to exist, we require γt − 1
2 −

ν
2 > 0, i.e., Equation (4d).

Note that, in the case of t = 1, we have no integration with respect to ρ0 and thus find one power of√
σ1 less in the above Γ-integral, i.e., we need to substitute γ1 − 1

2 → γ1. The constraint is accordingly
weakened for t = 1, which is due to the absence of the single parameter ρ0. For most choices of the
covariance kernel, we cannot go further analytically.
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Now, we have everything we need to marginalize σt in the conditional expectations of ρt−1.

〈
ρν

t−1 | αt
〉
=
∫ 〈

ρν
t−1 | αt, σt

〉
p
[
αt, σt|Dt

]
dσt

which is now relatively easy.

〈
ρ1

t−1 | αt
〉
=

bt

at〈
ρ2

t−1 | αt
〉
=

〈
σ2

t | αt
〉

at
+
( bt

at

)2

The expected mean function parameters are simply

〈
βt | αt

〉
=
∫ 〈

βt | αt, ρt−1, σt
〉

p
[
αt, ρt−1, σt|Dt

]
dρt−1dσt

= AtBt(zt(xt)−
〈
ρt−1 | αt

〉
zt(xt−1))

The variance we read from the quadratic form in βt is as follows:

var(β
(k)
t | αt) =

〈
σ2

t | αt
〉
· (At)kk

with (At)kk as the kth diagonal element of At.

Appendix A.2. Predictive Mean

We rewrite δ̄t such that

δ̄t(x) = Kt(x, xt)Kt(xt, xt)
−1(zt(xt)− ρt−1zt(xt−1))︸ ︷︷ ︸

ut

+
(
ht(x)− Kt(x, xt)Kt(xt, xt)

−1ht(xt)
)︸ ︷︷ ︸

gt

βt

The first term, ut, assumes a rather simple form and only depends on ρt−1 and α. Since we found

p
[
ρ, α|D

]
= ∏k p

[
ρk, αt|Dk

]
previously, and each ρk occurs linearly. We find

〈
∏

k
ρk

∣∣∣α〉 = ∏
k

〈
ρk | αt

〉
⇒
〈

ut

Nt−1

∏
l=t

ρl

∣∣∣α〉 = Kt(x, xt)Kt(xt, xt)
−1(zt(xt)−

〈
ρt−1 | αt

〉
zt(xt−1)

) Nt−1

∏
l=t

〈
ρl | αt

〉
The second term is rather trivial.

〈
gtβt

Nt−1

∏
l=t

ρl | αt
〉
= gt

〈
βt | αt

〉 Nt−1

∏
l=t

〈
ρl | αt

〉
We have thus shown the predictive mean in Equation (4).

Appendix A.3. Predictive Covariance

We easily find

( Nt

∑
t=1

δt(x)(x)
Nt−1

∏
l=t

ρl

)( Nt

∑
t=1

δt(x)(x)
Nt−1

∏
l=t

ρl

)T
=

Nt

∑
tt′

δt(x)δt′(x)T
Nt−1

∏
ll′

ρlρl′

Due to the assumption of independence of the levels or each levels’ parameters, formally δt(x) ⊥
zt−1(x), the cross-terms mixing different levels vanish in the expectation value and it suffices to reduce
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the double sum to a single sum. Further, we can factor the expectation of the product of ρl and the
expectation of the sum.

〈 Nt

∑
tt′

δt(x)δt′(x)T
Nt−1

∏
ll′

ρlρl′
〉
=
〈 Nt

∑
t=1

δt(x)δt(x)T
〉 Nt−1

∏
l=t

〈
ρ2

l
〉

The first factor on the right-hand side can be expressed via the GP’s posterior covariance and mean:

Nt

∑
t=1

〈
δt(x)δt(x)T

〉
=

Nt

∑
t=1

Σt(x, x) +
〈
δt(x)

〉〈
δt(x)

〉T

where

Σt(x, x) = σ2
t

(
Kt(x, x)− Kt(x, xt)Kt(xt, xt)

−1Kt(xt, x)
)

is the GPs’ posterior covariance and the predictive mean we already know as follows:〈
δt(x) | αt

〉
=
〈
ut | αt

〉
+ gt

〈
βt | αt

〉
We have thus shown everything we claimed.
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