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Abstract: Numerous problems in many fields can be solved effectively through the approach of
modeling by complex network analysis. Finding key nodes is one of the most important and
challenging problems in network analysis. In previous studies, methods have been proposed to
identify key nodes. However, they rely mainly on a limited field of local information, lack large-scale
access to global information, and are also usually NP-hard. In this paper, a novel entropy and mutual
information-based centrality approach (EMI) is proposed, which attempts to capture a far wider
range and a greater abundance of information for assessing how vital a node is. We have developed
countermeasures to assess the influence of nodes: EMI is no longer confined to neighbor nodes,
and both topological and digital network characteristics are taken into account. We employ mutual
information to fix a flaw that exists in many methods. Experiments on real-world connected networks
demonstrate the outstanding performance of the proposed approach in both correctness and efficiency
as compared with previous approaches.
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1. Introduction

Complex network analysis has been used in many real-life networks, such as transportation
networks, power networks, biological networks, and other complex systems [1,2]. Ranking the key
nodes of complex networks is of great theoretical and practical significance for many applications.
For example, if a key individual species is accurately confirmed, researchers claim, then key animal
protection can assist with population renewal, sustainable production of a safe and varied food supply,
and the eventual repair of ecosystems that have been damaged due to illegal hunting [3,4]. In the
field of network security and cloud computing, research shows that the entire network will fall into
paralysis when 5%–10% of all key nodes are attacked [5]. Protecting key nodes can not only improve
the survivability and sturdiness of the entire network but also increase the network’s capacity to resist
conventional attacks. The present study may also help to combat crime, in [6], a forensic analysis
system called the ‘crime investigation system’, which uses the concept of ‘relative importance’, was
shown to help forensic investigators determine the most influential members of a criminal group,
who are related to the known members of the group, for the purposes of investigation. In this paper,
we present a novel model based on the theory of entropy to facilitate the spread of information by
choosing key nodes, which is of remarkable significance to many applications, such as floating rumors
and epidemics control [7,8], restoring a power supply in a timely manner [9], and creating product
promotion strategies [10].
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To date, many methods have been proposed to identify key nodes in complex networks. The
oldest and simplest method is degree centrality [11], which was proposed in 1979 by Freeman. This
method measures the importance of nodes by counting how many neighbors a node has. Degree
centrality has the merits of a simple calculation process and high calculation efficiency. However, it
only uses local information and does not consider some other characteristics of the network. In fact,
according to degree centrality, some nomadic nodes with many neighbors that are isolated from the
main part of the network will be ranked at the top by mistake. To deal with this problem, Sabidussi
and Chavdar proposed closeness centrality [12,13], which computes the mean distance that it takes a
node to reach every other node in the network. This measure performs well in small-scale networks,
but it is not suitable for processing large-scale networks because of its high computational complexity.
To obtain a more efficient and accurate algorithm, Kitsak then proposed the K-shell algorithm [7].
In this method, every node is assigned a K-shell index. At each step, the K-shell index increases
as the nodes in the outer layer are deleted from the remaining subnetwork. The core of a network
will have the highest K-shell index and will be believed to be the most important node in the entire
network. However, in practical terms, some nodes play a ‘ship and bridge’ role in the network; that is,
communications between any two nodes have to pass through these nodes. Even though these nodes
are not the core node, they still play a very important role. Therefore, betweenness centrality [14]
was proposed to measure the importance of a node by counting the number of times that a node is
located at the shortest path between any two other nodes. In addition, many excellent and effective
methods, such as eigenvector centrality [15], stress centrality [16], and eccentricity centrality [17], have
been proposed and widely used. However, the above-discussed methods often come into conflict with
each other; for example, a node may have high a centrality value in one method but a lower value
in another [18]. As can be seen in Figure 1, even in the same network, the centrality values that are
obtained by these methods have nothing in common with each other [19]. To be sure, all of these
methods have some limitations and specific application scenarios that are related to the way they
consider the problem. A valid method for ranking nodes in a complex network remains an open issue.
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Figure 1. Results of recognizing key nodes in an artificial network by (a) betweenness centrality; (b) 
closeness centrality; (c) eigenvector centrality; (d) degree centrality; (e) harmonic centrality; and (f) 
Katz centrality, respectively. These methods are applied in the same artificial network; however, the 
centralities are quite different from each other (see the red nodes, they are considered as the most 
important centralities of the network; and the deeper the blue, the less important the node.). 

Recently, researchers have been attempting to solve this problem by using information entropy. 
Some excellent entropy-based methods have been proposed, such as entropy variation [20] and 
subgraph-entropy-based centrality [21]. Subgraph-entropy-based centrality was proposed in order 
to identify important nodes in weighted networks. It takes the weight into account, which is of 
great significance as it makes the result more accurate. However, this method only makes use of the 
neighbors of a node and is used in a weighted network. Entropy variation is one of the systems 

Figure 1. Results of recognizing key nodes in an artificial network by (a) betweenness centrality; (b)
closeness centrality; (c) eigenvector centrality; (d) degree centrality; (e) harmonic centrality; and (f)
Katz centrality, respectively. These methods are applied in the same artificial network; however, the
centralities are quite different from each other (see the red nodes, they are considered as the most
important centralities of the network; and the deeper the blue, the less important the node.).

Recently, researchers have been attempting to solve this problem by using information entropy.
Some excellent entropy-based methods have been proposed, such as entropy variation [20] and
subgraph-entropy-based centrality [21]. Subgraph-entropy-based centrality was proposed in order
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to identify important nodes in weighted networks. It takes the weight into account, which is of
great significance as it makes the result more accurate. However, this method only makes use of
the neighbors of a node and is used in a weighted network. Entropy variation is one of the systems
analysis methods that applies entropy to find key nodes. However, it only utilizes local information
to estimate the importance of nodes and only has application in directed networks. Some excellent
entropic indexes have been proposed and used to obtain some results in ranking key nodes. How can
we take full advantage of information entropy? We need to continue to explore.

In this paper, to provide a more efficient and extensible framework, we propose a novel entropy and
mutual information-based measure (EMI). A given complex network may have multiple morphological
features or its morphological features may not be completely clear, as a single index may not interpret
some morphological features [22]. In our method, we consider as many features as possible. For
weighted networks, we rank the nodes in two respects: structural features and parameter characteristics.
Here, structural features are no longer restricted to neighbors of a node; for directed networks, we
consider a greater range of information and the directions of the edges. In particular, our algorithm
has very low time complexity even though a wider range of features are involved in the computation.
Furthermore, we found that nodes can be overestimated by existing approaches, and the overestimation
is worse when the network consists of a large number of nodes with a dense distribution. For example,
consider node i and node j, two adjacent nodes, that have many neighbors in common. If we have
already offered node i a high ranking, then node j is not more important than node k who has less
followers than node j but is completely different from nodes i and j. To clear up this drawback, we
propose a method based on mutual information that can determine to what extent a node is overvalued.
Since plenty of possible factors are taken into account, EMI obtains outstanding performance.

The main contribution of this article can be stated as follows. First, we present a novel entropy
and mutual information-based algorithm. Second, EMI is the first method that can be applied to all
kinds of networks and obtain excellent results. Third, features in the network are fully captured and
the range of information that we adopt is wider than ever before, which makes the ranking more
accurate. Furthermore, we are the first to raise the issue of overvaluation and settle this question by
utilizing mutual information theory. Last but not least, the time complexity of our algorithm is far
lower than that of the existing methods.

The remainder of this paper is organized as follows. In Section 2, to help readers quickly understand
this field, we provide some required background knowledge and describe some well-known centrality
methods as a quick guide. In Section 3, some definitions are given and our method is introduced and
explained with a simple case in detail. Datasets and evaluation criteria are reported in Section 4. In
Section 4, we also describe six laboratory experiments that were done, and compare the effectiveness
and performance of EMI with that of some other famous methods. Finally, we conclude the paper in
Section 5.

2. Background

In this section, some famous and widely used centrality methods are introduced in detail. We
also choose some of them to be the benchmark algorithms for EMI. The degree centrality method
and the K-shell decomposition algorithm are classical local approaches that are based on neighbors.
Betweenness centrality and closeness centrality are representatives of the class of path-based methods.
Google’s famous page ranking algorithm, PageRank, is a well-known random walk method, which
also is one of the Eigenvector centrality methods. The susceptible-infected (SI) model is also introduced
in this section. It is employed to calculate the proposed model’s identification accuracy and the
benchmark methods.

2.1. Degree Centrality

The historically first and conceptually simplest method is degree centrality, which identifies the
importance of a node by the number of links incident upon a node. The degree can be regarded as



Entropy 2020, 22, 52 4 of 23

the communication exchange center that attracts any other node converges on it [23]. In a directed
network where ties have direction, degree centrality defines two separate indexes, namely the indegree
and the outdegree. Accordingly, the indegree is the number of nodes that point to the node and the
outdegree is the number of ties that the node directs to others. The degree centrality dc of a vertex v,
for a given graph, is defined as:

dc(v) =
n∑

i=1,i, j

ti j, (1)

where n is the total number of peers in the network, j stands for the operating node v, i represents the
rest of the nodes in the graph, and ti j is the number of ties between j and i, which equals 1 if a tie exists
or 0 otherwise.

2.2. Closeness Centrality

In a connected network, the standard closeness centrality of a node is defined as the average
length of the shortest path between the node and all other nodes in the graph. In this model, the more
centrally located a node is, the closer it is to all other nodes. Closeness centrality was proposed by Alex
Bavelas in 1950 as the reciprocal of the farness [24], that is:

C(x) =
1∑

y d(x, y)
, (2)

where d(x, y) expresses the distance between peers x and y. Taking distances from or to all other nodes
is not just relevant to path in weighted graphs. It can produce totally different results in weighted
graphs, for example, distances between pairs of neighbor nodes may be different.

2.3. K-Shell

The K-shell algorithm determines the importance of nodes based on their topological locations. It
defines the concept of a k-core as a subnetwork, which is obtained by removing the nodes until the
degree of the nodes in the subgraph is not less than k. The k-core algorithm first defines the nodes
whose degree is 1 as 1-core and deletes the connections of these nodes from the network. Then, the
algorithm continues identifying the nodes whose degree is 1 as 2-cores, and removes the connections
of these nodes. By repeating this step, the method finds the core of the network, which is the node
with the largest k-core value [7].

2.4. Betweenness Centrality

Betweenness centrality takes both the global features and the disconnected components into
account to quantify the number of times a node acts as a bridge along the shortest path between two
other nodes. It was reported as a method for measuring the control of a human over the communication
between other humans in a social network by Linton Freeman in 1977 [14]. The betweenness of a
vertex v can be computed using the following steps:

1. For each pair of vertices in the graph, compute the shortest paths between them.
2. For each pair of vertices, count the number of shortest paths that pass through node v.
3. Sum this number over all pairs of vertices.

More compactly, in a connected graph, betweenness can be represented as:

CB(v) =
∑

s,v,t∈V

σst(v)
σst

, (3)

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of those
paths that pass through v. Betweenness is commonly normalized by dividing the number of pairs
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of vertices excluding v, which for directed networks is (n− 1)(n− 2) and for undirected networks is
(n− 1)(n− 2)/2. Thus, the normalized betweenness of node v is computed as:

CNB(v) =
2

(N − 1)(N − 2)

∑
s,v,t∈V

σst(v)
σst

. (4)

2.5. Eigenvector Centrality

Eigenvector centrality [25] assigns voting scores to all nodes in the network based on the idea
that connections to high-scoring nodes contribute more to the score of the node than connections
to low-scoring nodes. Google’s PageRank [26] and Katz centrality [27] are based on the same idea.
In Eigenvector centrality, we often use the adjacency matrix to obtain the centrality score. Given a
network, let A = (av,t) be the adjacency matrix. av,t = 1 if vertex v is linked to vertex t, and av,t = 0
otherwise. The voting centrality score of node v can be defined as:

xv =
1
λ

∑
t∈M(v)

xt =
1
λ

∑
t∈G

av,txt, (5)

where M(v) is a set of the neighbors of v and λ is a constant. With a small rearrangement, this can be
rewritten in vector notation as the eigenvector equation Ax = λx [15].

PageRank, which is used by Google Search to rank web pages in their search engine results, is
an algorithm that is the most representative method based on Eigenvector centrality. According to
Google, PageRank works by counting the number and quality of links to a page to obtain a rough
estimate of how important the website is. The underlying assumption is that more important websites
are likely to receive more links from other websites. The PageRank value of a webpage is calculated by
two main steps. Firstly, the algorithm assigns every page an initial value adding up to 1. Secondly, the
PageRank values of every page are updated with:

PR(i) = AT
× PR(i− 1), (6)

where PR(i) is the matrix of the PageRank values in the ith iteration and PR(i− 1) is the matrix of the
PageRank values in the i− 1 iteration.

2.6. Susceptible-Infected Model

Susceptible-infected (SI) model is one of the most popular epidemic spreading models for analyzing
spreading processes such as infectious disease, rumors, and information. It is also one of the simplest
compartmental models. Many models are derivations of this basic form [28]. The model is reasonably
predictive of infectious diseases that are transmitted from human to human. All crowds are initially
classified into two categories: S for the number of susceptible people, and I for the number of infectious
people. These variables (S, I) represent the number of people in each compartment at a particular
time. To represent that the number of susceptible and infected individuals may vary over time, even if
the total population size remains constant, we make the precise numbers a function of t(time): S(t),
I(t). For a specific disease in a specific population, these functions may be applied to predict possible
outbreaks and bring them under control. The classical model SI also includes another category of
people: R, which stands for people who have been recovered and will never be infected again. In
this model, the infected people spread the disease and infect their neighbors with a probability of γ
and then become the recovered state R, where they are immunized and cannot be infected again. The
model with state R is suitable for the complicated propagation processes. In this paper, to efficiently
examine the identification accuracy of EMI and other methods, we employed the SI model without
state R to do this. The total number of infected peers could be considered as an indicator to evaluate
the influence of the initially infected node.
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3. Materials and Methods

3.1. Preliminaries

Given a directed, weighted network G = (V, E, W), where V =
{
v1, . . . , v|V|

}
denotes the set of

vertices, and E =
{
e1, . . . , e|E|

}
is the set of directed edges that often describes the relations between the

nodes, the set W =
{
w1, . . . , w|w|

}
corresponds to the weight on the edges. The number of nodes, edges,

and weights are expressed as |V|, |E|, and |W|, respectively. The number of edges that point to others of
a node is called the outdegree; similarly, the number of inbound edges of a node is called its indegree.
Nodes vi and v j are called neighbors to each other if there is an edge between them. In this paper,
we defined node vk, who is the neighbor of v j but not that of vi, to be the secondary neighbor of vi.
Since the secondary neighbors of a node are connected directly to its neighbors, the number of one’s
secondary neighbors can be obtained by counting the degrees of all its neighbors, then subtracting the
degree itself. Inspired by the data structure discipline, a node with a lot of secondary neighbors is
regarded as being just like the root node of a full binary tree, which means that more and more nodes
can be accessed from this node. The node can be regarded as the core of an incremental neighbor
network, and communications or information transmissions from this node can reach far and wide. It
possesses effective power over the nodes that are connected to it directly and mediately. Motivated
by the above discussions, we supposed that the topological influence of a node could be obtained by
employing the secondary neighbors properly.

The weights carried by the edge can also describe the importance or influence of a node. In a trust
network, for example, the weight between two users represents the degree of trust of one user to the
other. If one user is trusted deeply by some users with great weights received from other users, then
we believed that this user greatly influences other users. Analogously, weights were used to assess
interactive power. Based on these preliminaries, we presented our method for assessing the power of
each node via degree and weight-based entropy centralities.

3.2. Preliminaries for Information Entropy

We begin this subsection with the definition of information entropy. Information entropy is the
average rate at which information is produced by a stochastic source of data [29]. The measure of the
information entropy that is associated with each possible data value is the negative logarithm of the
probability mass function for the value. If E is a set of possible events e1 . . . en, and pi is the probability
that event ei occurs, and

∑n
i=1 pi = 1, the entropy of E is calculated by:

H = −
n∑

i=1

pi ∗ log(pi). (7)

When the data source produces a low probability value, in other words, a low-probability event
occurs, this low-probability event carries more information than when the source data produces a high
probability value. The amount of information that is conveyed by each event, when defined in this way,
becomes a random variable whose expected value is the information entropy. Intuitively speaking,
entropy refers to disorder and uncertainty; the definition of entropy that is used in information theory
is directly analogous to the definition that is used in statistical thermodynamics. The concept of
information entropy was introduced by Claude Shannon in 1948 [30]. The basic idea of information
theory is that the new event of a communicated message depends on the degree to which the content
of the message is surprising. If an event is very probable, it is no surprise when the event happens as
expected, and it has nothing to do with the system as a whole. Here, we measured the surprise and
importance of a node to the network by modeling information entropy.
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Definition 1. Let N = (v1, v2, . . . , vn) be a set of nonzero positive integers. This set forms a probability
distribution p = (p1, p2, . . . , pn), in which:

pi =
vi∑n

k=1 vk
, i = 1, 2, . . . , n. (8)

Therefore, the entropy of the set N = (v1, v2, . . . , vn) is calculated by:

H(v1, v2, . . . , vn) = −
n∑

i=1

vi∑n
k=1 vk

log
(

vi∑n
k=1 vk

)
. (9)

Definition 2. For a node vi in the network, a characteristic manipulation function f(vi) can be the function that
is used to calculate the degree or the weight. We define:

p(vi) =
f (vi)∑n

k=1 f (vk)
. (10)

Since 0 ≤ p(vi) ≤ 1, it can be regarded as a probability.

Definition 3. The entropy of node vi with the characteristic manipulation function f is defined as:

H = −
n∑

i=1

f (vi)∑n
k=1 f (vk)

log
f (vi)∑n

k=1 f (vk)
. (11)

3.3. Description of the Method

In a directed and weighted network, we separated structural entropy centrality into two parts:
indegree entropy centrality and outdegree entropy centrality. These two centralities can be very helpful
to identify key nodes. A simple example to illustrate this state is as follows: suppose that there is a
website network. If page A follows lots of pages, there will be many links from page A to other pages.
If there are thousands of pages that cite page B, then page B will receive a high inbound degree. Thus,
the outbound degree of a node refers to its vitality and the inbound degree of a node interprets its
authority and popularity. Based on the above idea, the following definitions of structural entropy
centrality are given.

The indegree of node vi is denoted by din
i and, correspondingly, dout

i is the outdegree of node vi.
Ni = (v1, v2, . . . , vn) represents the set of all the neighbors of vi. The total indegree and outdegree of
Ni are defined as EXDin

i and EXDout
i , respectively. They are calculated as follows:

EXDin
i =

n∑
j=1

din
j , (12)

EXDout
i =

n∑
j=1

dout
j , (13)

where, din
j and EXDin

i originate from Definitions 1 and 2. In the formula, the characteristic manipulation

function computes the indegree of node v j. din
j equates to f (v j) and EXDin

i is equivalent to
n∑

k=1
f (vk).
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Based on Definition 3, the indegree and outdegree entropy centralities, namely Sin
i and Sout

i , of node vi
are calculated by the following formulas:

Sin
i = −

n∑
j=1

din
j

EXDin
i

log
din

j

EXDin
i

. (14)

Sout
i = −

n∑
j=1

dout
j

EXDout
i

log
dout

j

EXDout
i

. (15)

The final structural entropy centrality Si is:

Si = Sin
i + Sout

i . (16)

Notably, in a complex network, there are other characteristics than structural features that describe
the importance of a node [31]. For example, in an airport network, each edge represents an air route
from one airport to another, and the weight of an edge shows the number of flights on that route in the
given direction. In addition, the weight of an edge often describes the trust, strength, popularity, and
willingness of a node in a particular network. Therefore, we proposed that weights on the connection
of two nodes could reflect the status of nodes and weight-based entropy centralities as follows.

Node v j is one of the neighbors of vi. win
j is defined as the sum of the weights on the inbound

edges of node v j. Similarly, wout
j is defined as the sum of the weights on the outbound edges. The total

weights of the indegree and the outdegree of vi’s neighbors are computed by:

EXWin
i =

n∑
j=1

win
j . (17)

EXWout
i =

n∑
j=1

wout
j . (18)

Then, the components of interactive entropy can be obtained by:

Iin
i = −

n∑
j=1

win
j

EXWin
i

log
win

j

EXWin
i

. (19)

Iout
i = −

n∑
j=1

wout
j

EXWout
i

log
wout

j

EXWout
i

. (20)

Naturally, the value that is measured by interactive entropy is:

Ii = Iin
i + Iout

i . (21)

As was discussed above, using traditional methods usually causes a redundant influence to occur.
In other words, nodes’ influence may be overrated in a dense network. In this paper, we employed
mutual information to solve this problem. Intuitively, mutual information measures the information
that events X and Y share. It measures the degree to which knowing one of these variables reduces
uncertainty about the other [32]. For example, if X and Y are independent, then knowing X does not
provide any information about Y; that is, their mutual information is zero. At the other extreme, if X is
a deterministic function of Y and Y is a deterministic function of X, then all information conveyed by X
is shared with Y, which means that knowing X determines the value of Y and vice versa. As shown in
Figure 2, X and Y are two correlated variables. The circle on the left side is the individual entropy H(X)
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with the red area being the conditional entropy H(X|Y). The circle on the right side is the individual
entropy H(Y), with the blue part being the conditional entropy H(Y|X). The area that is covered by
both circles is the joint entropy H(X,Y). The middle part that is colored violet is mutual information
I(X;Y) [33]. If the two circles stand for the area of influence of two connected nodes X and Y, it will be
reasonable to measure the mutual power (the violet part) by using mutual information.
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Motivated by this, and based on mutual information theory, the mutual power of two connected
nodes is defined as follows:

Definition 4. We define two terms, Ni and N j, which are the set of all the neighbors of two connected nodes vi
and v j, respectively. Ni j is defined as the set of the common nodes of Ni and N j. N(i, j) is defined as the joint set
of Ni and N j, which equals the combination of Ni and N j.

Definition 5. Given sets Ni and N j, we define the random events X and Y by picking one node at random from
each set that satisfies X :

{
x ∈ Ni j

∣∣∣x ∈ Ni
}

or Y :
{
y ∈ Ni j

∣∣∣y ∈ N j
}
. The size function F(X) is defined in order to

calculate the size of the set.

Therefore, the joint probability distribution of the random events X and Y is F
(
Ni j

)
/F

(
N(i, j)

)
, and

the marginal probability distribution of X and Y is F
(
Ni j

)
/F(Ni) and F

(
Ni j

)
/F

(
N j

)
, respectively. In the

mutual information theory, the mutual information is equal to zero when the joint distribution coincides
with the product of the two marginals, which means that X and Y are independent. For a given
graph, two connected nodes are independent if they have no common neighbors. However, in real-life
complex networks, two connected nodes with few common neighbors is a pervasive phenomenon. In
this context, two connected nodes are considered to be independent when they only have very few
common neighbors, and the joint probability distribution and the product of the marginals should be
nearly the same. Consequently, we set the product of the marginals to F

(
Ni j

)
/
(
F(Ni) + F

(
N j

)
− F

(
Ni j

))
,

which will be very close to the joint distribution when the number of common neighbors is very
low. Another reason for this is that if F2

(
Ni j

)
/
(
F(Ni) · F

(
N j

))
is used as the product of the marginals,

the denominator will be zero in the case of F
(
Ni j

)
= 0. According to the above description and

discussion, the mutual influence between node vi and its neighbors can be obtained based on the
mutual information theory as the following formula:

MIi =
∑
x∈X

∑
y∈Y

F
(
Ni j

)
F
(
N(i, j)

) log
F(Ni) + F

(
N j

)
− F

(
Ni j

)
F
(
N(i, j)

) . (22)

The eventual influence value of node vi is:

Ki = Si + Ii + MIi. (23)
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For other kinds of network, if the network has either directions or weights, then the indegree
and outdegree entropy centralities or the interactive entropy are computed for it. For undirected and
unweighted complex networks, we only need to compute the structural entropy centrality, which is
defined in the following formula. The mutual power is considered for all kinds of complex networks.

Si = −
n∑

j=1

d j

EXDi
log

d j

EXDi
. (24)

The final influence value of the node is:

Ki = Si + MIi. (25)

Notice that in the subgraph method [34], the authors also employ the neighbors’ inbound degree
and outbound degree, but what is different is that not all of the degrees of the neighbors are used.
For example, let us assume that there is a subgraph centered on node A who has neighbors including
nodes B, C, and D. In the subgraph method’s process of calculation, the authors only take the edges
that are connected to node A into account. In our proposed method, however, we make use of all of
the edges of neighbors, including edges that point to other nodes. In Ahmad Zareie’s research, the
authors make use of all of the degrees of the secondary neighbors, which leads to high computational
complexity [35]. Compared with these two methods, our approach seems to be a compromise: EMI
considers global features and has low computational complexity. Our experiments show that EMI
takes advantage of both accuracies and efficiencies. A clear and standardized pseudo-code of the
proposed method is elaborated in Algorithm 1.

According to Algorithm 1, the network type is first detected. Then, based on the features, the
different entropy centralities of each node are calculated. Finally, we ranked all of the nodes in
descending order according to the Ki values and obtain the top-k key nodes from the order list.

Algorithm 1. EMI.

Input:
G = (V, E, W) with n = |V|, m = |E|, q = |W|

Output:
Ranked nodes with overall importance value

Begin algorithm
1: If G is directed or weighted:
2: For node vi in V
3: compute structural entropy centrality Sin

i , Sout
i , and Si

4: compute interactive entropy centrality Iin
i , Iout

i , and Ii
5: compute mutual power MIi
6: compute overall importance Ki
7: Else
8: For node vi in V
9: compute structural entropy centrality Si
10: compute mutual power MIi
11: compute overall importance Ki
12: End for
13: rank nodes based on key values
End algorithm
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3.4. Case Study

To make it easy to understand how to use Algorithm 1 to assess the value of nodes’ importance,
we described the whole process in detail by making the following simple graph, shown in Figure 3, an
example [36]:
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We used node a as an example and a complete ranking list will be given in the end of this
subsection. Some parameters that were used in the process of calculation are listed in Table 1.

Table 1. This table contains some necessary parameters that can be obtained by Formulas (12), (13), (17),
and (18). For example, node a and c are neighbors of node b, and the outdegree of node a and c is 2 and
1, respectively. Therefore, EXDout

b = 3. The sum of the total weights carried by these outdegrees is 8.

Node EXDin
i EXDout

i EXWin
i EXWout

i

a 3 2 7 5
b 2 3 5 8
c 2 3 4 7
d 1 2 3 5

In this paper, we set 10 as the base value. Then, the structural entropy, interactive entropy, and
overall power could be obtained by the algorithm as follows.

Sa = Sin
a + Sout

a = −

 n∑
j=1

din
j

EXDin
a

log
din

j

EXDin
a
+

n∑
j=1

dout
j

EXDout
a

log
dout

j

EXDout
a

 = 0.7782. (26)

Ia = Iin
a + Iout

a = −

 n∑
j=1

win
j

EXWin
a

log
win

j

EXWin
a

+
n∑

j=1

wout
j

EXWout
a

log
wout

j

EXWout
a

 = 0.7073. (27)

MIa =
∑
x∈X

∑
y∈Y

F
(
Naj

)
F
(
N(a, j)

) log
F(Na) + F

(
N j

)
− F

(
Naj

)
F
(
N(a, j)

) = −0.03876. (28)

Ka = Sa + Ia + MIa = 1.44674. (29)

As the above illustration shows, the overall power of each node can be obtained in the same way.
The results are listed in Table 2. According to the value of the overall power of each node, the ranking
list is illustrated in Table 3.
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Table 2. The overall power of each node.

Node Si Ii MIi Ki

a 0.7782 0.7073 −0.03876 1.44674
b 0.5775 0.5796 −0.05062 1.10648
c 0.5775 0.5040 −0.05062 1.03088
d 0.3010 0.2966 0 0.59760

Table 3. The ranking list.

Node Placing

a NO.1
b NO.2
c NO.3
d NO.4

4. Experiments and Results

Details on the experiments, including the selected datasets, the evaluation criteria, and the
performance of all of the measures, were reported in this section. To obtain a convincing evaluation of
EMI, we compared it with the following measures:

• Degree centrality (Deg) [11];
• K-shell (K-s) [7];
• Closeness centrality (Clo) [12];
• Betweenness centrality (Bet) [14];
• Stress centrality (Str) [16];
• Radiality centrality (Rad) [37];
• Bridging centrality (Bri) [38];
• Centroid centrality (Cen) [39];
• Eccentricity centrality (Ecc) [17]; and
• Density of maximum neighborhood component (DMNC) [40,41];

For this purpose, the codes were implemented in Python 3.7 and experiments were performed on
a computer with an Intel Core i5 2.4 GHz processor and 8 GB RAM.

4.1. Datasets

We applied our proposed ranking measure to six real networks to evaluate its performance. To test
the pervasiveness of EMI, these datasets included different kinds of networks, including a weighted and
directed network, an unweighted and undirected network, and a directed and unweighted network.
All of these networks can be downloaded from http://konect.uni-koblenz.de/networks/. They are as
follows:

• Dutch college (Dc): this directed and weighted network contains friendship ratings between 32
university freshmen who had never met before. Each of them was asked to rate the other students
at different time points. The origin of the timestamps is not accurately known, but the distance
between two timestamps is the same. Each node represents a student, and an edge between two
nodes shows that one student rated another student. The edge weights show how good their
friendship is from the perspective of the rating student. The weight ranges from −1 (a risk of
getting into conflict) to +3 (best friend) [42].

• US-Airports (US-Air): this is a directed and weighted network of flights between U.S. airports in
2010. Each edge represents a flight path from one airport to another, and the weight of an edge
shows the number of flights on that connection in the given direction in 2010 [43].

http://konect.uni-koblenz.de/networks/
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• Air traffic control (A-tc): this network is directed and unweighted. It was constructed from
the United States’ FAA (Federal Aviation Administration) National Flight Data Center (NFDC)
Preferred Routes Database. Nodes in this network represent airports or service centers and edges
are created from strings of preferred routes that are recommended by the NFDC [44].

• Euroroad (E-road): this is the international E-road network, which is a road network that is located
mostly in Europe and is undirected and unweighted. Nodes represent cities and an edge between
two nodes denotes that they are connected by an E-road [45].

• Chicago: this is the road transportation network of the Chicago region in the United States; it is
undirected and unweighted. Nodes are regarded as transports, and edges are connections [46].

• Dolphins: this directed social network was created by bottlenose dolphins. The nodes represent
the bottlenose dolphins (genus Tursiops) of a bottlenose dolphin community living near Doubtful
Sound, which is a fjord in New Zealand (spelled fiord in New Zealand). An edge indicates a
frequent association. The dolphins were observed between 1994 and 2001 by oceanographers [47].

Figure 4 shows the layout of the six datasets. And Table 4 shows the basic topological features of
the giant connected component of these networks, including the network size n, the number of edges
e, the average degree ad, the maximum degree dmax, the clustering coefficient cc [1], the assortativity
ρ [48], and the relative edge distribution entropy σ.
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Table 4. The basic topological properties of six real-world networks.

Network n e ad dmax cc ρ σ

Dc 32 3062 191.38 (overall) 290 0.904 −0.05898 0.981
US-Air 1574 28,236 35.878 (overall) 596 0.384 −0.11330 0.842

A-tc 1226 2615 4.2659 (overall) 37 0.0639 −0.01520 0.951
E-road 1174 1417 2.4140 10 0.0339 0.12668 0.985

Chicago 1467 1298 1.7696 12 0 −0.50492 0.928
Dolphins 62 159 5.1290 12 0.309 −0.04359 0.957

4.2. Evaluation Criteria

In this experiment, the monotonicity relation [49], as defined in Equation (30), was employed to
evaluate the discriminability of a ranking measure. A ranking algorithm will be better if a few nodes
are listed in the same rank.

M(R) =
(
1−

∑
r∈R nr·(nr − 1)

n·(n− 1)

)2

, (30)
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where n is the number of different ranks in a ranking list R, and nr is the number of nodes that have
been listed in the same rank r. Obviously, if all of the nodes were to be placed in the same rank, the
value of M(R) would be 0, and the result would be of little or no value in determining how important
a node is. When all of the nodes receive a unique ranking, the value of M(R) would be 1, and the
ranking result would thus be perfectly monotonic.

Moreover, the complementary cumulative distribution function (CCDF) was utilized [50], in
addition to monotonicity, for a better evaluation of the ranking distribution of different methods. The
value of the function is calculated for rank r by Equation (31):

CCDF(r) =
|V| −

∑r
i=1 ni

|V|
, (31)

where ni represents the number of nodes that were placed in rank i, and |V| is the total number of
network nodes. This function can better reflect the distribution of nodes to different ranks. Having
more nodes gathered in a rank causes the function to sharply drop to zero, while having an extremely
scattered distribution of nodes to different ranks makes the function have a mild slope. However,
differentiation and monotonicity alone cannot be used to identify whether or not a ranking method is
successful; hence, we have also tested the method in terms of its precision and the correctness of the
resulting rankings.

In order to assess the precision of EMI, we compared the ranking list that was generated by EMI
with those of the benchmarking methods using the real spreading influence model susceptible-infected
(SI) [28]. In this model, each node belongs to one of two states: susceptible (S) or infectious (I). At first,
all nodes are set to be in the state S except for node vi, which is selected to be the infected node. At
each timestamp, the infected nodes infect their susceptible neighbors with an infection probability β.
The number of infected nodes is regarded as the influence of node vi when the epidemic process is
finished. However, the infection probability is not constant in a weighted network. The feature that is
contained on the directed edge has to be considered as well. According to Yan et al. [51], the infection
probability in directed and weighted networks is defined as λi j =

( wi j
wmax

)α
, in which susceptible node i

is infected through neighbor node j. α corresponds to a constant of a positive value, wi j is the weight of
a directed boundary, and wmax denotes the maximum value among wi j. In this experiment, we adopted
λi j as the infection probability in directed and weighted networks. We first used the EMI and other
methods that were mentioned above to find the ten most critical nodes. Then, we selected different
sets (different numbers of nodes, usually at the top of ranking list) as the seed nodes and made them
the infected nodes. The number of infected nodes was regarded as the correctness of a method when
the propagation process was over. To increase accuracy, we ran the process hundreds of times, and the
mean value was considered to be the final result. Finally, time-efficiency is the last but not the least
criteria that we need to evaluate. A shorter running time means that the program is fast and efficient.

4.3. Experimental Results

In the first experiment, other well-known centrality measures were applied to six real networks.
The monotonicity value of the ranking list that was obtained using each of the approaches was
calculated. Table 5 shows the results. The greater the value of M is, the more clearly a method can
distinguish which rank the node belongs to. Based on the theory and Table 5, EMI obtained the
maximum monotonicity values for all datasets except US-Air and Chicago; for these datasets, closeness
centrality and bridging centrality obtained the greatest values (0.98480 and 0.93045, respectively),
which were slightly higher than those of EMI. However, some methods performed poorly; for example,
centroid, DMNC, and eccentricity performed poorly in most of the datasets, and even obtained a value
of zero in particular datasets. It is remarkable that half of the methods had an average M value of less
than 0.5. Plainly, EMI had outstanding performance as compared to these authoritative methods. The
M values of EMI were vastly superior to those of most methods.
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Table 5. The M values that were obtained by different methods on the six real networks.

Dataset M (Rad) M (Cen) M (Ecc) M (DMNC) M (K-s) M (EMI)

Dc 0.69037 0.00000 0.36785 0.99570 0.12366 1.00000
US-Air 0.05925 0.06400 0.00442 0.33589 0.04230 0.85336

A-tc 0.11111 0.03290 0.14406 0.56714 0.86431 0.94789
E-road 0.96893 0.40198 0.43244 0.00777 0.81910 0.97835

Chicago 0.61174 0.38272 0.09452 0.00000 0.53828 0.83838
Dolphins 0.94540 0.74809 0.11111 0.17084 0.54066 0.95032

Mean value 0.56447 0.27162 0.19240 0.34622 0.48805 0.92805

Dataset M (Deg) M (Str) M (Clo) M (Bet) M (Bri) M (EMI)

Dc 0.97895 1.00000 0.69037 1.00000 1.00000 1.00000
US-Air 0.26639 0.27627 0.98480 0.36178 0.39860 0.85336

A-tc 0.75375 0.93115 0.90503 0.92784 0.93413 0.94789
E-road 0.53086 0.90656 0.96976 0.86180 0.88559 0.97835

Chicago 0.07802 0.06905 0.69762 0.69650 0.93045 0.83838
Dolphins 0.34183 0.93976 0.94540 0.95030 0.95031 0.95032

Mean value 0.49163 0.68713 0.86550 0.79970 0.84985 0.92805

The maximum value and mean value are highlighted in bold.

To further assess the efficiency of different measures in assigning distinct ranks to each node, we
examined the node distribution in the next part of our experiment. To make the result more concise,
we compared EMI with the top four measures (betweenness centrality, closeness centrality, bridging
centrality, and stress centrality). Four datasets (Dutch college, US-Airport, Air traffic control, and
Dolphins) were used in this part. As shown in Figure 5, EMI did a perfect job in Dutch college and
Dolphins, as every node was assigned to a distinct rank. Closeness centrality did not behaved very
well in these two datasets. In US-Airport, EMI and closeness centrality performed the best compared
with stress centrality and betweenness centrality, which placed a lot of nodes in the same rank. In the
Air traffic control network, although EMI placed dozens of nodes in the same rank, the number was
far lower than those of the other four methods. As shown in Figure 5, stress centrality, betweenness
centrality, and bridging centrality assigned almost 200 nodes to the same rank in the Air traffic control
network. The ranking list that was obtained by closeness centrality had three ranks, into which were
assigned 50, 100, and 150 nodes. Generally speaking, the ranking list that was obtained by EMI had
a lower number of nodes in the different ranks, which is an urgent need when faced with networks
containing millions of vertices.

In addition, the CCDF is plotted for Dutch college, US-Airport, E-road, and Dolphins in Figure 6.
Due to the large number of data points, we still chose, as we did before, to compare EMI with the top
four measures. As mentioned earlier, the lower the number of nodes in the same rank, the slower
will the curve decrease to zero. In Dutch college and Dolphins, EMI performed as well as most of the
well-known measures and much better than closeness centrality. From the US-Airport and E-road
datasets, we could see that EMI emerged as the best candidate as the size of the network increases.
Closeness centrality and stress centrality simply indicate that a node was heavily involved in the core
but was not relevant to maintaining communication between other nodes. Accordingly, bridging
centrality and betweenness centrality focus on the shortest path, could not differentiate between nodes
with different influences, and the nodes were distributed in less-distinct ranks. EMI outperformed the
top four well-known methods; thus, it could be seen that deep disparities remain between EMI and the
other 10 famous methods. Based on the above conclusion, it could be inferred that EMI distributed
nodes to a larger number of ranks, and each rank contained a lower number of nodes. EMI was the
best choice when a large dataset requires ranking. In the next experiment, we assessed the correctness
and accuracy of all of the measures.
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Experiments were performed to examine the methods’ accuracy by comparing the top 10 vital
nodes. Table 6 shows the lists of the top 10 key nodes produced by EMI and the other 10 approaches.
In the Dutch college network, the proposed method, Bridging centrality, and DMNC had two and
three nodes (red mark) in common. EMI is dissimilar to the other methods in terms of common nodes;
however, five nodes is not a small number for a network with 32 vertices. In the US-Airport network,
the methods almost have no resemblance to each other; EMI and DMNC were the only methods with
half of the nodes in common. For the Air Traffic Control network, the number of the same nodes in the
list between the proposed method and degree centrality, K-shell, closeness centrality, betweenness
centrality, stress centrality, and radiality centrality was 8, 1, 6, 2, 4, and 6, respectively. EMI and four
methods (closeness centrality, betweenness centrality, stress centrality, and radiality centrality) had
only one node in common in the E-road network. In addition, the fact that the same nine nodes were
identified by EMI and degree centrality is noteworthy, as it means that our method performs as well as
degree centrality. Moreover, it can be seen that, in the Chicago and Dolphins networks, our proposed
method and the other popular methods have almost all of the nodes in common. To sum up, we could
observe that our proposed measure could produce acceptable results and provided accurate ranks for
the top-N nodes in comparison with other methods. There was no conflict between EMI and other
well-known methods.

Table 6. The top 10 key nodes as ranked by different methods.

Rank Deg K-s Clo Bet Str Rad Bri Cen Ecc DMNC EMI

1 22 19 22 7 22 26 7 - - 30 4
2 17 7 3 3 7 22 3 - - 11 5
3 3 3 26 22 3 3 4 - - 18 1
4 7 26 31 6 31 31 1 - - 9 32
5 13 6 20 26 26 20 26 - - 10 24
6 6 31 17 31 21 29 6 - - 2 30
7 31 22 6 21 13 21 31 - - 8 11
8 21 21 21 13 29 17 22 - - 16 25
9 29 29 29 29 6 15 21 - - 19 10

10 28 13 15 27 17 6 27 - - 12 14

Dutch college

1 46 - 68 32 22 - 424 - - 168 99
2 88 - 52 22 10 - 308 - - 187 620
3 69 - 174 165 195 - 498 - - 169 374
4 74 - 147 74 165 - 1418 - - 127 187
5 165 - 69 174 147 - 986 - - 166 265
6 150 - 88 46 174 - 744 - - 99 594
7 174 - 74 418 46 - 804 - - 485 198
8 147 - 159 159 74 - 520 - - 265 485
9 159 - 150 69 317 - 1186 - - 650 170

10 57 - 60 136 205 - 781 - - 620 665

US-Airport

1 312 116 68 68 68 68 1226 - 734 3 312
2 68 34 52 52 213 52 953 - 369 221 52
3 52 113 44 212 212 44 842 - 618 187 68
4 44 109 113 312 52 113 1196 - 678 139 187
5 187 102 116 135 220 116 1007 - 827 28 113
6 113 77 47 213 312 47 254 - 992 29 44
7 110 424 110 523 135 110 307 - 787 1051 89
8 47 81 46 220 44 46 300 - 162 1053 47
9 89 308 51 148 148 51 1095 - 464 994 604

10 135 470 89 629 119 89 396 - 829 841 46
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Table 6. Cont.

Rank Deg K-s Clo Bet Str Rad Bri Cen Ecc DMNC EMI

Air traffic control

1 284 453 1174 402 277 401 404 1174 647 - 284
2 7 433 1173 284 402 402 452 1173 59 - 236
3 137 542 1163 277 837 403 837 1163 62 - 137
4 107 8 1162 453 836 432 835 1163 1174 - 39
5 236 179 1152 452 228 1019 801 1151 1173 - 7
6 39 280 1151 403 225 253 546 1148 1163 - 107
7 401 57 1148 401 284 452 799 1147 1162 - 401
8 499 253 1147 404 453 404 866 1094 1152 - 43
9 181 543 1094 837 452 232 811 1093 1151 - 141

10 43 479 1093 836 224 284 889 1077 1148 - 181

E-road

1 922 1157 918 1156 1156 1156 1157 918 922 - 552
2 552 1154 798 1157 1157 1157 1156 798 918 - 922
3 1156 1147 900 1147 1147 1147 1147 900 798 - 1147
4 1147 1156 1204 1155 1155 1150 1150 1204 552 - 1150
5 1155 1153 1163 1153 1153 1146 1155 1163 900 - 1146
6 1153 1155 1085 1154 1154 1155 1153 917 1082 - 1153
7 1154 1146 917 1150 1150 1153 1154 1292 917 - 1154
8 1150 1134 1292 1146 1146 1154 1146 924 559 - 1155
9 1146 1148 924 1138 1138 1138 1158 797 1292 - 1156

10 1138 1138 797 499 499 1100 1159 1343 183 - 817

Chicago

1 52 7 37 37 37 37 40 37 37 30 21
2 34 18 41 2 2 41 24 41 2 18 38
3 18 22 38 41 38 38 8 38 41 19 15
4 21 10 21 38 41 21 37 21 55 25 2
5 58 25 15 8 18 15 29 15 8 7 46
6 30 30 2 18 21 2 2 8 29 58 41
7 2 19 8 21 55 29 41 34 40 44 18
8 41 52 29 55 8 8 55 2 31 35 30
9 14 46 34 52 58 34 53 9 28 6 51

10 39 15 9 58 29 9 33 29 30 17 37

Dolphins; Red means that this node is in common with EMI; ‘-’ in the list means this method has neither reliability
nor reference value as it has assigned a lot of nodes to one rank.

As the datasets were ranked by all of the measures, we ran the SI simulation on the six datasets.
In light of the size of the networks, we selected the top 2, 4, 6, 8, and 10 nodes to be the seed set in the
Dutch college and Dolphins networks, and the top 10, 20, 30, 40, and 50 nodes to be the seed set in the
US-Airport, Air traffic control, E-road, and Chicago networks. Correspondingly, Figure 7 illustrates
the results of the infection epidemic of each measure with different seed sets for the six networks. As
shown in Figure 7, in terms of all of the networks, centroid centrality, which is a shortest-path-based
method, performed poorly. One possible reason for this is that centroid centrality, which only takes
into consideration the information about the shortest path, does not employ the information that is
carried by other paths. Eccentricity centrality and closeness centrality also performed poorly in many
datasets, and their underlying principle may explain why. Interestingly, no method did well in all
datasets except for EMI, even though stress centrality performed the best in US-Airport. As can be
seen in Figure 7, most methods were very unstable and their performance was mixed. Further, the
single principle that they followed became ineffective when faced with increasingly complex and
dynamic topological characteristics. In US-Airport, E-road, and Chicago, the top 10 most influential
nodes as ranked by bridging centrality, centroid centrality, and closeness centrality had only infected
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dozens of nodes in a network with more than 1000 nodes, which illustrates that these methods had lost
effectiveness and mistakenly made some isolated nodes the top key vertices.
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Our proposed method EMI was the preferred method among the 11 methods and in the Dutch
college, Air traffic control, E-road, Chicago, and Dolphins networks. However, stress centrality and
some other methods had slightly better performance in seed sets 10, 20, 30, and 40. The infection
epidemic of EMI increased as the seed set increased and caught up with stress centrality in seed set
50. Thus, we could deduce that EMI would perform the best if the seed set grew consistently. In
addition, EMI’s infection epidemic in each seed set took first place in the Dutch college, Air traffic
control, E-road, and Dolphins networks, which proved that our proposed method, EMI, could precisely
identify which nodes were the most important as compared with other famous centrality methods.
These datasets basically covered all of the types of complex networks. That is why most of the methods
performed exactly the same: sometimes good, sometimes bad. Amazingly, EMI shows relatively
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stable performance in all datasets. Our proposed method solved this issue once and for all type of
complex network.

Finally, the time consumption of each method was considered. We employed Cytoscape, an open
source bioinformatics software platform, to run these methods and obtain the uptime. The results of
the experiment are shown in Table 7. The proposed method recorded a time of 0.015 s, 0.592 s, 0.039 s,
0.022 s, 0.018 s, and 0.0005 s in Dutch college, US-Airport, Air traffic control, E-road, Chicago, and
Dolphins, respectively, which was far less than that of any other method. Therefore, EMI has emerged
as the best choice when dealing with large datasets.

Table 7. The time consumption of different methods in the six datasets. For example, the time of
obtaining key nodes of Dutch college using EMI is only 0.0015 s. For each dataset, the shortest uptime
is highlighted in bold.

Data Deg K-s Clo Bet Str Rad Bri Cen Ecc DMNC EMI

Dc 0.043 0.078 0.055 0.040 0.041 0.042 0.032 0.023 0.025 0.059 0.015
US-Air 4.750 4.120 4.520 20.59 4.500 4.390 8.700 4.650 4.580 6.220 0.592

A-tc 0.400 0.377 0.413 0.393 0.402 0.412 0.580 0.362 0.400 0.418 0.039
E-road 0.495 0.399 0.402 0.413 0.412 0.419 0.501 0.471 0.333 0.413 0.022

Chicago 0.520 0.411 0.780 0.790 0.690 0.512 0.742 0.720 0.810 0.991 0.018
Dolphins 0.0033 0.0030 0.0043 0.0044 0.0041 0.0037 0.0048 0.0046 0.0050 0.0051 0.0005

5. Discussion

Since complex network analysis plays an important role in many fields, complex network science
has aroused and will continue to draw sustained attention. To obtain an efficient spread of information,
ensure that topological web servers are secure, and optimize the utilization of available resources,
the identification of key nodes is of vital significance. In this paper, we proposed a novel entropy
and mutual information-based centrality method called EMI. In order to develop a method that not
only make full use of local information but also employ all possible characteristics, a wider range of
neighbor nodes and all of the digital indexes in the network were taken into account. The algorithm
was also shown to remain efficient. In addition, on the basis of repeated observations, we found
that some of the well-known centrality methods often overestimate a node’s influence. To overcome
this deficiency, several measures were proposed and experimented with. Ultimately, the mutual
information-based method emerged as the best candidate. According to [52], mutual information can
be used to measure how much duplicate information is there between two information sources. It
is worth mentioning that, although the perfect algorithm, free of any limitations and that captures
all of the dynamic features, does not exist, EMI still heads the line-up in terms of both the scope of
application and the rate of network characteristics usage. EMI can be used in the prevailing types of
networks, such as directed networks, weighted networks, and directed and weighted networks. To
test the performance of the proposed method, several experiments were done, and we compared EMI
with other famous centrality methods, including closeness centrality, betweenness centrality, degree
centrality, K-shell, and stress centrality, in six real-world networks (Dutch college, US-Airport, Air
traffic control, E-road, Chicago, and Dolphins). The results of the experiments show that EMI had the
best performance when compared with the other methods in terms of many evaluation criteria.

Remarkably, there were similarities and differences between EMI and the recently introduced
entropy-based method. For example, in [53], the author proposed a subgraph-based approach that takes
second-order neighbor nodes only. EMI employs both second-order neighbor nodes and the neighbors
of second-order neighbor nodes. Therefore, EMI considers more information when calculating the
importance of nodes. However, there remain challenges to be overcome to make our proposed method
perfect. Firstly, there remain some ranks that have been assigned to several nodes; that is, we have
not yet achieved the goal of an assignment of every node to distinct rank. Secondly, the ability the
capture dynamic characteristics needs to improve; for example, there are always users joining and
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leaving a social network, so the method needs to more fully consider dynamic information for more
accurate results.
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