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Abstract: A recently developed thermodynamic theory for the determination of the driving force of
crystallization and the crystal–melt surface tension is applied to the ice-water system employing the
new Thermodynamic Equation of Seawater TEOS-10. The deviations of approximative formulations of
the driving force and the surface tension from the exact reference properties are quantified, showing that
the proposed simplifications are applicable for low to moderate undercooling and pressure differences
to the respective equilibrium state of water. The TEOS-10-based predictions of the ice crystallization rate
revealed pressure-induced deceleration of ice nucleation with an increasing pressure, and acceleration
of ice nucleation by pressure decrease. This result is in, at least, qualitative agreement with laboratory
experiments and computer simulations. Both the temperature and pressure dependencies of the
ice-water surface tension were found to be in line with the le Chatelier–Braun principle, in that the
surface tension decreases upon increasing degree of metastability of water (by decreasing temperature
and pressure), which favors nucleation to move the system back to a stable state. The reason for this
behavior is discussed. Finally, the Kauzmann temperature of the ice-water system was found to amount
TK = 116 K, which is far below the temperature of homogeneous freezing. The Kauzmann pressure
was found to amount to pK = −212 MPa, suggesting favor of homogeneous freezing on exerting
a negative pressure on the liquid. In terms of thermodynamic properties entering the theory, the reason
for the negative Kauzmann pressure is the higher mass density of water in comparison to ice at the
melting point.

Keywords: classical nucleation theory; crystallization thermodynamics; homogeneous freezing;
thermodynamic driving force of nucleation; ice–water surface tension; Kauzmann temperature and
pressure; TEOS-10

1. Introduction

1.1. Motivation

The outstanding importance of homogeneous freezing for a variety of natural and technical
processes such as the microphysical evolution of atmospheric clouds (e.g., Meyers et al. [1],
Khvorostyanov and Sassen [2], Lohmann and Kärcher [3], Lohmann et al. [4], Pruppacher and Klett [5],
Heymsfield et al. [6], Jensen and Ackerman [7], Barahona and Nenes [8], Jensen et al. [9],
Zasetsky et al. [10], Khvorostyanov and Curry [11], Khvorostyanov and Curry [12], Hellmuth et al. [13],
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Khvorostyanov and Curry [14], Lohmann et al. [15]), the cryopreservation of organelles, cells, tissues,
extracellular matrices, organs, and foods (e.g., Pegg [16], Espinosa et al. [17], Espinosa et al. [18], see also
https://en.wikipedia.org/wiki/Cryopreservation, visited on December 29, 2019), and water vitrification
(e.g., Debenedetti and Stanley [19], Bhat et al. [20], Zobrist et al. [21]) stimulated a highly visible number of
investigations on the thermophysical behavior of undercooled and deeply undercooled water

• within the framework of laboratory studies and evaluation of experimental data
(e.g., McDonald [22], Butorin and Skripov [23], Hagen et al. [24], Hare and Sorensen [25], Henderson
and Speedy [26], Speedy [27], Bartell and Huang [28], Gránásy [29], Huang and Bartell [30], Jeffery
and Austin [31], Benz et al. [32], Holten et al. [33], Stöckel et al. [34], Souda [35], Tabazadeh et al. [36],
Vortisch et al. [37], Malila and Laaksonen [38], Atkinson et al. [39]),

• by computer simulations (e.g., Gránásy [29,40], Matsumoto et al. [41], Oxtoby [42], Nada et al. [43],
Laird and Davidchack [44], Vega and Abascal [45], Bai and Li [46], Bartell and Wu [47], Hernández
de la Peña and Kusalik [48], Vega et al. [49], Vrbka and Jungwirth [50], Espinosa et al. [17,18],
Moore and Molinero [51], Tanaka and Kimura [52]),

• and in form of fundamental theoretical considerations and synoptical views (e.g., Debenedetti
and Stanley [19], Bartell [53], Ford [54], Debenedetti [55]).

Comprehensive overviews on the fundamental thermodynamic and molecular properties of
water and the transition from clusters to liquid are given, e.g., by Ludwig [56], on undercooled
and glassy water by Debenedetti [55], and on the notions, methods, and challenges to determine
the crystal–melt interfacial free energy by Gránásy [29] and Laird and Davidchack [44]. Basic studies
on the thermodynamic behavior of metastable liquids were performed, e.g., by Skripov [57], Skripov
and Baidakov [58], Skripov and Koverda [59], Debenedetti et al. [60], Baidakov [61], Baidakov [62],
Baidakov [63,64], Baidakov and Protsenko [65,66], Skripov and Faizullin [67], Baidakov et al. [68],
Bartell and Wu [69]. In the last decade highly accurate equations of state (EoS) for water and ice became
available, which are based on data from the experimentally accessible parts of the phase diagram of water:
(i) for stable water (Wagner and Pruß [70], Wagner et al. [71], Guder [72]); (ii) for seawater (Feistel
and Hagen [73], Feistel [74,75], Feistel et al. [76]) (iii) for hexagonal ice (Feistel and Hagen [77,78],
Feistel and Wagner [79–82], IAPWS R10-06 [83]), (iii) for undercooled water (Holten et al. [84–86]).
The application of these EoS’ is supported by the availability of international guidelines and
standards for execution (Feistel et al. [87], Wright et al. [88], Feistel [89,90], IAPWS R6-95 [91], IAPWS
R10-06 [83], IAPWS [92], IAPWS R13-08 [93], IAPWS [94,95], IAPWS G12-15 [96], IOC, SCOR, and
IAPSO [97]). The aforementioned list of works contributing to water-to-ice crystallization, however,
must inevitably remain incomplete and can be further extended.

The classical theory of nucleation (CNT) and growth processes is till now the major tool in the
interpretation of experimental data on crystal nucleation and growth (e.g., Skripov [57], Skripov and
Koverda [59], Skripov and Faizullin [67], Gutzow and Schmelzer [98], Gutzow and Schmelzer [99],
Debenedetti [100], Kelton and Greer [101], Herlach et al. [102]). In its physical ingredients it is based on
the thermodynamic theory of heterogeneous systems as developed by Josiah W. Gibbs (Gibbs [103,104]).
Following Gibbs’ method in the specification of the properties of the critical clusters, it turns out that
they correspond widely to the properties of the newly evolving macroscopic phases. This consequence
of Gibbs’ theory gives the foundation of one of the main approximations of CNT in application to
crystal nucleation, namely the identification of the bulk properties of the critical crystallites with the
properties of the evolving macroscopic crystalline phase (Schmelzer and Abyzov [105]).

In line with such approximation, the surface tension in between melt and critical crystal can be
identified with the respective value for a planar equilibrium coexistence of the respective liquid and
crystalline phases. The latter assumption is denoted commonly as capillarity approximation. In the
framework of CNT, frequently a curvature dependence of the surface tension is introduced in order
to reconcile theory with experiment while the bulk properties of the critical clusters are assumed to
be more or less defined as described above. Moreover, the introduction of a curvature dependence
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of the surface tension is the major tool to arrive at a correct description of nucleation rates measured
experimentally. Alternatively, the theoretical expressions for the kinetic pre-factor in the expression
for the steady-state nucleation rate can be modified. However, this approach results as a rule only in
minor changes of the theoretical predictions (Gutzow and Schmelzer [98], Gutzow and Schmelzer [99],
Skripov and Koverda [59]).

Alternative approaches have been advanced in recent decades based on
generalizations of the classical Gibbs’ approach going beyond these simplest approximations
(Gutzow and Schmelzer [99], Schmelzer et al. [106], Schmelzer and Abyzov [107]). These methods
allow one to describe and in this way also to account for variations of the bulk properties of critical
clusters in dependence on the degree of deviation from equilibrium. They are, however, much more
complex and not as easily applicable as classical theory. Consequently, at least as a first estimate, CNT
based on Gibbs’ classical method of description will also be retained in future to serve as a valuable
tool in treating experimental data.

1.2. Rationale of the Present Study

Based on such considerations, in recent papers by Schmelzer and Abyzov [105,108] and
Schmelzer et al. [109,110] two of the basic ingredients of CNT were revisited: the methods of
specification of the thermodynamic driving force of nucleation and the dependence of the surface
tension on the degree of deviation from equilibrium (i.e., the degree of metastability) or, equivalently,
on the size of the critical clusters (Schmelzer et al. [111,112]). This analysis was performed for crystal
nucleation caused by both variations of temperature and pressure. In particular, it was shown there
that for both cases, the Tolman equation can be employed as an appropriate approximation for the
description of the curvature dependence of the surface tension and not only for variations of external
pressure at isothermal conditions as studied by Tolman [113]. Moreover, also going beyond Tolman’s
analysis it is shown that Tolman’s approach can be employed also for multi-component systems
provided the composition of the crystal phase (as employed as the basic assumption in CNT) and the
composition of the liquid (as it is most frequently studied in crystallization) are considered as or kept
constant. Consequences from the basic equations derived were discussed in the cited papers mainly
for the most frequently occurring situation that the mass-specific volume of the crystal phase is smaller
as compared to the respective value of the liquid phase.

Here, we will discuss the following aspects of ice nucleation in water as a very important example
in many respects, wherein the opposite condition is fulfilled, i.e., where the mass-specific volume of
the crystal phase is larger as compared to the respective value for the liquid phase:

(i) As the first topic of the analysis, we will explore which qualitative differences arise in the water–ice
system in comparison to other systems discussed earlier. Since we restrict the analysis here to
a one-component case, it is also reasonable to expect that the basic assumptions of CNT may be
fulfilled in a good approximation. At least, such conclusion was drawn quite recently based on
molecular dynamics studies of melt crystallization for Lennard–Jones systems (Baidakov [64]).
Possible generalizations of the theory in terms of the generalized Gibbs’ approach accounting for
variations of density of the critical crystallites (as performed by some of us for the description of
condensation and boiling (Schmelzer and Schmelzer Jr. [114,115], Schmelzer and Baidakov [116]),
or segregation in solutions (Schmelzer et al. [117], Abyzov and Schmelzer [118], Schmelzer and
Abyzov [119])) will not be discussed here. Having in mind the aforementioned importance of
ice–crystal nucleation in a variety of processes in nature, we will further analyze in detail the
degree of quantitative accuracy in the application of the general relations, derived in the mentioned
papers, to this particular realization of crystal nucleation. This concerns the expressions for the
temperature and pressure dependencies of the thermodynamic driving force of crystallization
and the ice–water surface tension.

(ii) A second aspect of the analysis is the application of the advanced Thermodynamic Equation of
Seawater TEOS-10 for the calculation of the thermodynamic properties, which determine the
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temperature and pressure dependencies of the thermodynamic driving force of crystallization
and the ice–water surface tension.

(iii) Finally, the third question of interest is related to a problem already studied by Kauzmann [120],
who asked for the behavior of a liquid at very low temperatures if experimental measurements
were conducted sufficiently slowly to avoid glass formation, i.e., upon cooling the system slowly
enough to ensure thermodynamic equilibrium of the liquid structure with the surroundings, but
fast enough to avoid homogeneous crystallization. Kauzmann expected information about this
behavior from the extrapolation of the known properties of supercooled liquids at temperatures
above their glass-transformation temperature to low temperatures. The application of such
extrapolation to plots of observed entropy vs. temperature for several substances (moist strikingly
for glucose and lactic acid) revealed that below the glass-transition temperature (but still far above
absolute zero) the extrapolated entropy of the liquid becomes less than that of the crystalline solid
(Kauzmann [120] (Figure 4)). Similar tendencies were found for the extrapolated enthalpy vs.
temperature and the specific volume vs. temperature, i.e., the liquid exhibits a tendency for lower
enthalpy and smaller specific volume than the crystal well above absolute zero (Kauzmann [120],
(Figures 3 and 6)). Such extrapolated behavior, however, is in contradiction with the lower entropy
of the crystalline phase (in comparison with the liquid), which is expectable from the higher
structural order of the crystalline phase. This contradiction became known as the Kauzmann
paradox. Kauzmann concluded that the proposed extrapolation is not applicable. In order to solve
this paradox, Kauzmann [120] argued that there must be a phase transition before the entropy of
the liquid decreases. The exact wording of Kauzmann [120] (p. 224) reads: “This peculiar result can
only mean that somehow the above ’reasonable’ extrapolation is not permissible. The following resolution
of the paradox is proposed: There is reason to believe that as the temperature is lowered the ’ambigious’
regions of the phase space intermediate between the definitely crystalline and definitely liquid regions
begin to be able to contribute significantly to the partition function of the liquid. This means that the free
energy barriers between the liquid and the crystal tend to become relatively small at low temperatures.
In particular, the barrier to crystal nucleus formation, which tends to be very large just below the melting
point, may at low temperatures be reduced to approximately the same height as the free energy barriers
which impede molecular reorientations in the liquid and which were shown to be responsible for glass
formation. Under these circumstances crystal nuclei will form and grow at about the same rate as the liquid
changes its structure following a change in temperature or pressure. In other words, the time required
for the liquid to crystallize becomes of the same order as the time required for it to change its structure
following some change in its surroundings. If, then, measurements are to be made on such a liquid before
it has had a chance to crystallize, these measurements must also be made before the liquid can bring its
structure into equilibrium with its surroundings. But this means, as we have seen, that the liquid will
behave as a glass. Thus, as the temperature of a liquid is lowered one is ultimately forced to study it as
a glass if one wishes to study it as a liquid at all. A non-vitreous stable liquid cannot exist below a certain
temperature, and it is operationally meaningless to extrapolate the entropy, energy, and specific volume
curves below that temperature, as we tried to do with such peculiar results.” The temperature, at which
the entropies of the liquid and the crystal are equal are called Kauzmann temperature. In a similar
way, Schmelzer et al. [109] defined the Kauzmann pressure. One aim of the present study is the
determination of the Kauzmann temperature and Kauzmann pressure for the ice–water system.

The aforementioned investigations represent preparative steps for a future, more general
description of ice crystallization in undercooled water within the framework of the generalized
Gibbs approach. Such generalization aims at the removal of an essential restriction of the classical
Gibbs theory, namely the assumed identity of the volume-specific properties of the newly evolving
cluster phase with those of the corresponding macrophase.

The paper consists of two parts. Part I presented here is devoted to two issues: (i) the formulation
of the theory underlying the determination of the temperature and pressure dependencies of the
thermodynamic driving force of ice crystallization and the ice–water surface tension; and (ii) the
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numerical evaluation of the differences between the exact expressions (serving as reference) and various
approximations of the theory. The subsequent Part II comprises a detailed intercomparison of the theory
with previously published expressions of the thermodynamic driving force of ice crystallization and the
ice–water surface tension based on laboratory experiments and computer simulations. Furthermore,
the predicted nucleation rates will be compared with measured nucleation rates in order to assess the
predictive power of the theoretical approach presented here.

The present Part I is structured as follows. In Section 2, the basic thermodynamic relations are
described: (i) the dependence of the thermodynamic driving force on temperature and pressure;
(ii) the dependence of the surface tension on temperature and pressure inclusive the parameters
determining the curvature dependence of the surface tension of critical clusters; (iii) the equations for the
determination of the Kauzmann temperature and pressure (Schmelzer et al. [106], Schmelzer et al. [109],
Schmelzer et al. [110], Kauzmann [120]). The relations given in Section 2 are applied to ice–crystal
nucleation in undercooled water. The required thermodynamic bulk properties of liquid and crystal
phases of water are taken from the advanced EoS of seawater TEOS-10 (Feistel et al. [87] (Part 1);
Wright et al. [88] (Part 2); IOC, SCOR, and IAPSO [97]; Feistel [89,90]), presented in Section 3.
The results and discussion in Section 4 will complete the paper.

The three Appendices at the end of the paper include the derivation of the thermodynamic
calculus applied here (Appendix A), the rationale of Kauzmann’s perception of metastability of
undercooled liquids (Appendix B), and the details of the determination of the ice-water activation
energy applied here in the nucleation rate calculus, respectively (Appendix C).

2. Basic Equations

2.1. Steady-State Nucleation Rate according to CNT

According to CNT, the steady-state rate, J, of homogeneous nucleation of critical clusters
of phase α from its metastable maternal phase β reads (e.g., Pruppacher and Klett [5],
Gutzow and Schmelzer [99], Hellmuth et al. [13]) (see Appendices A.1 and A.2):

J = Jkin exp

(
−∆G(cluster)

c

kBT

)
,

∆G(cluster)
c =

1
3

Aασαβ =
16π

3

σ3
αβ(

∆g(bulk)
df,c

)2 , ∆g(bulk)
df,c = pα − pβ .

Rα =
2σαβ

∆g(bulk)
df,c

.

(1)

In Equation (1) the quantity Jkin is a kinetic prefactor determining the rate of cluster formation
in the absence of a thermodynamic energy barrier. The latter is described by the Boltzmann term
on the right-hand side of Equation (1) with ∆G(cluster)

c denoting the Gibbs free energy required to
form a critical cluster (subscript c) with radius Rα, surface area Aα = 4πR2

α, and surface tension σαβ.

The physical quantity kB is the Boltzmann constant. The quantity ∆g(bulk)
df,c is called thermodynamic

driving force of nucleation. It is determined originally by the pressure difference, pα−pβ, between the
critical cluster of phase α and the maternal phase β.

However, in application to crystal nucleation alternative approaches for its specification are
required and employed respectively. We will discuss them in Section 2.2. Please note that in the
present approach, we consider critical crystal clusters as to be of spherical shape and employ the Gibbs’
treatment developed originally for fluid-like systems. The theoretical foundation of such treatment is
discussed in detail in Schmelzer et al. [111,112].
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2.2. Different Ways to Determine the Temperature and Pressure Dependence of the Thermodynamic
Driving Force

2.2.1. Exact Form of the Thermodynamic Driving Force

According to Gibbs’ classical approach, the critical cluster of phase α is assumed to be
in thermodynamic equilibrium with its maternal phase β, comprising mechanical equilibrium
(Laplace equation), chemical (or diffusion) equilibrium, and thermal equilibrium between the
coexisting macrophases α and β. For a one-component system these equilibrium conditions read
(see Appendix A.2.1):

pα − pβ =
2σαβ

Rα
, (2)

µ̂β(pβ, Tβ)− µ̂α(pα, Tα) = 0 , (3)

Tβ − Tα = 0 . (4)

Here, µ̂α and µ̂β are the mass-specific (indicated by the “wide hat” symbol (̂ )) chemical potentials
of the respective macrophases α and β. Adopting the closure conditions pβ = p and Tβ = T, assuming
that pressure and temperature in the ambient phase are given, and having at one’s disposal the
knowledge of the chemical potentials of the considered component in both macrophases, the chemical
equilibrium given by Equation (3) provides a condition for the direct determination of pα = pα(p, T)
and therewith for the thermodynamic driving force of nucleation, ∆g(bulk)

df,c according to Equation (1).

2.2.2. Approximative Form of the Thermodynamic Driving Force

Alternatively, the thermodynamic driving force can be approximated as follows (Gutzow and
Schmelzer [98], Gutzow and Schmelzer [99], Schmelzer and Abyzov [105], Schmelzer et al. [109],
Schmelzer et al. [111]) (see Appendix A.2.2):

∆g(bulk)
df,c (T, p)

∣∣∣
approx

≈ ρ̂α(p, T)
[
µ̂β(p, T)− µ̂α(p, T)

]
. (5)

Here, ρ̂α(p, T) denotes the mass density of cluster phase α.

2.2.3. Thermodynamic Driving Force from the Gibbs Fundamental Equation

Equivalently, ∆g(bulk)
df,c (T, p) can also be determined from the governing equation for the total

differential of the Gibbs free energy, G, of a homogeneous, single-component system of n molecules,
entropy S and volume V, applied to the macrophases α and β (Schmelzer et al. [109], Equations (4)–(9))
(see Appendix A.2.3):

∆g(bulk)
df,c (T, p)

∣∣∣
num

= −
T∫

T?
m

∆s(T, p?m)dT +

p∫
p?m

∆v(T, p)dp .

∆s(T, p) =
Ŝβ(T, p)− Ŝα(T, p)

V̂α(T, p)
=

∆Ŝ(T, p)
V̂α(T, p)

,

∆v(T, p) =
V̂β(T, p)− V̂α(T, p)

V̂α(T, p)
=

∆V̂(T, p)
V̂α(T, p)

.

(6)

Here, Ŝα,β and V̂α,β denote the mass-specific entropies and mass-specific volumes of the respective
macrophases α and β. The integration in Equation (6) starts at some particular α−β equilibrium state
(T?

m, p?m) (subscript m) and ends at an actual non-equilibrium state (T, p). The reference equilibrium
state is set to p?m = 105 Pa and T?

m = 273.15 K. The superscript ? is used to distinguish the chosen
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reference state from any other equilibrium state along the melting line (Tm, pm) with Tm(p) denoting
the melting temperature and pm(T) the melting pressure, respectively. The system is first transferred in
a reversible isobaric process at p = p?m from T?

m to T, and then subsequently transferred in an isothermal
process at T = const. from p?m to p, i.e., via the path (T?

m, p?m)→ (T, p?m)→ (T, p). As the Gibbs free
energy is a thermodynamic potential, the difference in the mass-specific Gibbs free energy does
not depend on the particular way to transfer the system from its equilibrium state (T?

m, p?m) to any
non-equilibrium state (T, p). Knowing Ŝα,β and V̂α,β, the driving force ∆g(bulk)

df,c (T, p)
∣∣∣
num

can be
obtained from Equation (6) by numerical integration.

2.2.4. Linearized Form of the Thermodynamic Driving Force from the Gibbs Fundamental Equation

Expanding the integrands ∆s(T, p) and ∆v(T, p) in Equation (6) into Taylor series up to the linear
terms, Schmelzer et al. [109] (Equation (23)) obtained the following analytical solution of the integral,
Equation (6) (see Appendix A.2.4):

∆g(bulk)
df,c (T, p)

∣∣∣
lin
≈ ∆hm

∆T
T?

m

(
1− γT,m

∆T
2T?

m

)
+ ∆vm∆p

(
1− γp,m

∆p
2p?m

)
,

γT,m =
∆ĉp,m

∆Ŝm
, γp,m =

p?m∆κT,m

εm∆vm
.

(7)

Here, ∆T = T?
m−T is the temperature difference, called undercooling for T < T?

m. Analogously,
∆p = p−p?m is the pressure difference, corresponding to an overpressure for p>p?m and to
an underpressure for p < p?m. The quantity ∆hm = ∆ĤM,m/V̂α(T?

m, p?m) is the volumetric melting
enthalpy with ∆ĤM,m = ∆ĤM(T?

m) denoting the mass-specific enthalpy of melting at temperature T?
m.

Furthermore, ∆vm = ∆V̂m/V̂α(T?
m, p?m), with ∆V̂m = V̂β(T?

m, p?m)−V̂α(T?
m, p?m) denoting the difference

of the mass-specific volumes, ∆ĉp,m = ĉp,β(T?
m, p?m)−ĉp,α(T?

m, p?m) the difference of the mass-specific
isobaric heat capacities, ∆Ŝm = Ŝβ(T?

m, p?m)−Ŝα(T?
m, p?m) the difference of the mass-specific entropies,

∆κT,m = κT,β(T?
m, p?m)−κT,α(T?

m, p?m) the difference of the isothermal compressibilities between
macrophases α and β, and εm = V̂α(T?

m, p?m)/V̂β(T?
m, p?m), respectively. In comparison with Equation (5),

Equation (7) has the huge advantage that the driving force is expressed in terms of directly measurable
thermodynamic parameters and of the deviations of temperature and pressure from the respective
parameters of the chosen macroscopic equilibrium state. By this reason, not relations in the form of
Equation (5), but in the form of Equation (7) are commonly employed in the theoretical analysis of
crystal nucleation processes. A similar relation we will derive in the next section with respect to the
surface tension.

2.3. Temperature and Pressure Dependence of the Ice–Water Surface Tension

The crystal–melt interface energy has a large impact on the thermodynamic energy barrier for
homogeneous freezing, because it enters the expression of the critical formation work by the power
to three, i.e., ∆G(cluster)

c ∝ σ3
αβ. Nevertheless, “This interface energy is almost never known in supercooled

liquids” (Vortisch et al. [37]). According to Bai and Li [46], interfacial energies are, unfortunately,
very weak and extremely difficult to obtain experimentally for systems with two condensed phases
such as solid–liquid systems. Consequently, much work has been devoted to the determination of the
surface tension at the crystal–melt interface (e.g., McDonald [22], Bartell [53], Huang and Bartell [30],
Gránásy [29], Gránásy [40], Jeffery and Austin [31], Laird and Davidchack [44], Bai and Li [46],
Baidakov [63], Baidakov et al. [121], Espinosa et al. [17], Espinosa et al. [18], Ickes et al. [122]).
According to Bartell [53] (pp. 1083–1084), the surface tension is argued to play a role analogously
to that of the activation energy in the kinetics of chemical reactions. The author further wrote that
although its name is suggestive of a thermodynamic variable, the surface tension is a kinetic parameter
whose most important role is to facilitate the estimation of nucleation rates at greater or smaller
degrees of undercooling from a given measured nucleation rate. To what extent σαβ reflects the true
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thermodynamic variable in serving as a closure parameter to explain freezing experiments has not be
determined very precisely so far. Ibidem, this originates from the obvious difficulties to measure the
work required to increase the interfacial area between a solid and another phase without performing
other work (e.g., elastic or plastic deformation). The possibility of the coexistence of two phases at
equilibrium at ambient pressure at only a single temperature poses another problem. With reference
to theoretical considerations, σαβ might be considered to have a physical meaning only at that single
temperature and not at the deep undercooling encountered in nucleation experiments. As CNT is
argued to have only qualitative validity, Bartell [53] considered σαβ to be to some extent “a bit of a
fiction”. Similar problems were already discussed by Gibbs in connection with the problem down to
which critical cluster sizes thermodynamic concepts are applicable.

A comprehensive evaluation of methods to determine the ice-water surface tension and its
temperature dependence was performed by Ickes et al. [123] (Section 4.1). According to these authors,
owing to sampling problems and the onset of heterogeneous freezing of undercooled water on parts
of any experimental setup, direct measurements of σαβ are restricted to macroscopic water drops
at temperatures T ≥ T?

m = 273.15 K. These measurements are then extrapolated to ice crystals of
microscopic sizes in undercooled water, either by fitting σαβ to measured nucleation rates employing
CNT (e.g., Jeffery and Austin [31]), or alternatively by theoretical considerations and molecular models
(e.g., Espinosa et al. [17,18]).

According to Schmelzer and Abyzov [108], Schmelzer et al. [109] (Equation (30)), and
Schmelzer et al. [110], the dependence of the surface tension of critical crystallites on pressure and
temperature can be expressed for small deviations from equilibrium as

σαβ(T, p)
σαβ,m

∼=
T∆S(T, p)

Tm∆Sm
=

T∆Ŝ(T, p)
Tm∆Ŝm

. (8)

Here, σαβ,m = σαβ(T?
m, p?m) denotes the surface tension at the melting point, and ∆Ŝ(T, p) and

∆Ŝm are defined in Equations (6) and (7). By linearization of the scaling law given by Equation (8),
Schmelzer and Abyzov [108], Schmelzer et al. [109] (Equation (32)), and Schmelzer et al. [110] derived
the following expression for the temperature and pressure dependence of the surface tension of critical
crystallites (see Appendix A.3):

σαβ(T, p)
σαβ,m

∼=
T

T?
m

(
1− γT,m

∆T
T?

m
− χp,m

∆p
p?m

)
, χp,m =

p?m∆αp,m

∆sm
. (9)

In Equation (9), the quantity ∆αp,m = αp,β (T?
m, p?m)−αp,α(T?

m, p?m) denotes the difference of the
isobaric thermal expansion coefficients between macrophases α and β, and ∆sm = ∆Ŝm/V̂α(T?

m, p?m).
According to Gibbs [103], the surface tension of a crystallite depends on its curvature.

The shape of this dependence was elaborated by Tolman [113]. Generalizing Tolman’s formula,
Schmelzer et al. [112] derived the following expression for the curvature dependence of the surface
tension (Schmelzer et al. [111], Schmelzer et al. [112] (Equations (3), (33), (34) and references)):

σαβ(Rα) =
σαβ,∞

1 +
2δ(Rα)

Rα

, ∆ ≈ δ∞

(
1 +

l2
∞

2δ∞Rα

)
, σαβ,∞ = σαβ,m . (10)

Here, δ denotes the Tolman parameter. At low degree of metastability the curvature of
the critical embryo is small and the Tolman parameter approaches its planar equilibrium value,
δ = δ∞. The parameter l∞ is as further length scale to account for the higher-order contribution to
the approximation of the curvature depence of the surface tension. For the case of constant pressure,
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p = p?m, and weak undercooling one arrives at the following expression for δ∞ in the limit T→T?
m

(superscript (T)) (Schmelzer et al. [111] (Equation (69)) (see Appendix A.3):

δ
(T)
∞

∣∣∣∣
p=p?m

≈
σαβ,m

∆hm
(1 + γT,m) . (11)

Analogously, for the case of constant temperature, T = T?
m, and sufficiently weak deviations of the

pressure from p?m one obtains the following dependence of the Tolman parameter in the limit p→p?m
(superscript (p)) (Schmelzer et al. [111], ) (see Appendix A.3):

δ
(p)
∞

∣∣∣∣
T=T?

m

≈
σαβ,m

p?m∆vm
χp,m . (12)

For later comparison (see Section 4.2) of the different derived expressions for the
temperature and pressure dependence of the surface tension, σαβ, we take the expression proposed
by Jeffery and Austin [31] (Equation (8)) as the reference surface tension, which is based on the
Turnbull formula (Turnbull [124]) for σαβ, proposed for application to several metals and metalloids.
By addition of a correction term, Jeffery and Austin [31] (Equation (8)) re-fitted the Turnbull expression
to experimental data of homogeneous water-to-ice nucleation rates from chamber experiments at
p = 0.1 MPa in combination with CNT application:

σαβ(T, p) = κT∆ĤM(T) [$̂α(T, p)]2/3
(

Mw

NA

)1/3

︸ ︷︷ ︸
Turnbull

+∆σαβ ,

∆σαβ = −κσT , κT = 0.32 , κσ = 9×10−5 J m−2 K−1 .

(13)

Here, ∆ĤM(T) and $̂α(T, p) denote the previously introduced mass-specific melting enthalpy
and mass density of ice, Mw is the molar mass of water, and NA the Avogadro constant. The excess
value ∆σαβ was introduced as an empirical correction term, which depends only on temperature
(see Appendix C for discussion). The parameter setting of κT and κσ in the original paper of Jeffery
and Austin [31] is based on the use of the EoS of water developed by Jeffery [125] in combination
with a special formulation of the kinetic prefactor Jkin. In contrast to this, in the present evaluation
of Equation (13) the thermophysical parameters ∆ĤM(T) and $̂α(T, p) were taken from TEOS-10.
One can safely expect that the differences in the behavior of σαβ(T, p) between Equation (13) and
the expressions drived below are primarily caused by differences in the physical foundation of the
respective expressions but not by differences in the employed EoS for water.

The ratio σαβ(T, p)/σαβ,m according to Equation (13) is presented as a function of ∆T and
∆p in Table 1. The surface tension remarkably decreases with decreasing temperature (increasing
undercooling) and decreasing pressure (or, equivalently, with increasing degree of metastability of the
fluid). One should keep in mind, however, that the parameters in Equation (13) were adjusted to data
at atmospheric pressure. Therefore, the data at ∆p > 0 represent, strictly speaking, extrapolations.
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Table 1. Ratio σαβ(T, p)/σαβ,m according to Equation (13) (Jeffery and Austin [31] (Equation (8))) as
a function of undercooling ∆T = T?

m − T and pressure difference ∆p = p − p?m.

∆T/K ∆p/MPa

0 1 10 100

0 1.000 1.000 1.001 1.008
5 0.975 0.975 0.975 0.982
10 0.946 0.946 0.946 0.953
15 0.917 0.917 0.917 0.923
20 0.890 0.890 0.890 0.896
25 0.868 0.868 0.868 0.874
30 0.854 0.854 0.854 0.859
35 0.851 0.851 0.852 0.857
39 0.861 0.862 0.862 0.867

2.4. Kauzmann Temperature and Pressure

In his seminal paper Kauzmann [120] discussed in detail the possibility that the entropy differences
between liquid and crystal may approach zero at low temperatures denoted today as Kauzmann
temperature, TK (see Schmelzer et al. [110] and Schmelzer and Tropin [126] for a detailed discussion).
According to Debenedetti et al. [60], TK imposes a sharply defined thermodynamic limit to the possible
existence of the liquid state of a given substance, since upon further undercooling the hypothetical
liquid would have a lower entropy than the corresponding crystalline phase (referred to as “entropy
catastrophe”). Ibidem Debenedetti et al. [60] concluded that the Kauzmann temperature is unattainable
because the slowing down of molecular motion inevitably drives kinetically controlled glass transitions.

As shown recently with respect to crystal nucleation, the Kauzmann temperature exhibits the
interesting peculiarity that the thermodynamic driving force does assume a maximum there (Schmelzer
and Abyzov [105], Schmelzer et al. [106]). Indeed, the fulfillment of the condition ∆s(TK, p?m) = 0 in
Equation (6) leads immediately to a maximum of ∆g(bulk)

df,? (TK, p?m).
In analogy to the Kauzmann temperature, Schmelzer and Abyzov [105] and Schmelzer et al. [109]

introduced the concept of Kauzmann pressure, pK, defined by the condition ∆v(T?
m, pK) = 0 in

Equation (6), leading to a maximum of ∆g(bulk)
df,? (T?

m, pK). The Kauzmann temperature and pressure
are determined by the following expressions (Schmelzer et al. [109] (Equations (24) and (26)))
(see Appendix A.4):

TK = T?
m

[
γT,m − 1

γT,m

]
, pK = p?m

[
γp,m + 1

γp,m

]
. (14)

3. The Advanced Thermodynamic Equation of Seawater TEOS-10

The basic equations presented in Section 2 were previously applied to crystallization
of glass-forming melts, e.g., by Schmelzer and Abyzov [105,107,108], Schmelzer et al. [109],
Schmelzer et al. [106,110–112], and Schmelzer and Tropin [126]. In the present study, this calculus
will be applied to ice-forming melts, i.e., to undercooled water (phase β) and hexagonal ice (phase α).
The reqired thermodynamic data are taken from an advanced seawater standard, the International
Thermodynamic Equation Of Seawater 2010 (TEOS-10), which was adopted in June 2009 by the
International Oceanographic Commission of United Nations Educational, Scientific and Cultural
Organisation (UNESCO/IOC) on its 25th General Assembly in Paris. TEOS-10 is–to the best of our
knowledge–the most advanced thermodynamic standard for the thermodynamic properties of pure
water, water vapor, hexagonal ice, and seawater. It is essentially based on IAPWS certificated equations
of state, which is in the case of pure water the standard IAPWS-95. Owing to its reliance on a large
amount of experimental data on water and the inclusion of a comprehensive uncertainty analysis,
IAPWS-95 (as a part of TEOS-10) is the best thermodynamic formulation of pure water. The notion
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“EoS of seawater” for TEOS-10 is due to its origin to serve as a generalized standard to describe
seawater, which includes pure water as a special case (zero salinity).

To support the application of TEOS-10, a comprehensive source code library for the
thermodynamic properties of liquid water, water vapor, ice, seawater, and humid air, is available and
referred to as the Sea–Ice–Air (SIA) library. The background information and equations (including
references for the primary data sources) required for the determination of the properties of single
phases and components as well as of phase transitions and composite systems as implemented in
the library are presented in two key papers of Feistel et al. [87] (Part 1) and Wright et al. [88] (Part 2),
in the TEOS-10 Manual (IOC, SCOR, and IAPSO [97]), in an introductory paper of Feistel [89] and
a comprehensive review paper of Feistel [90].

TEOS-10 is based on four independent thermodynamic functions, which are defined in terms of
the independent observables temperature, pressure, density, and salinity:

• a Helmholtz function of fluid water, known as IAPWS-95 (Wagner and Pruß [70], IAPWS R6-95 [91]),
• a Gibbs function of hexagonal ice (Feistel and Wagner [82], IAPWS R10-06 [83]),
• a Gibbs function of seasalt dissolved in water (Feistel [74,75], IAPWS R13-08 [93]), and
• a Helmholtz function for dry air (Lemmon et al. [127]).

In combination with air–water cross-virial coefficients (Hyland and Wexler [128],
Harvey and Huang [129], Feistel et al. [130]) this set of thermodynamic potentials is used as
the primary standard for pure water (in liquid, vapor, and solid states), seawater, and humid air from
which all other properties are derived by mathematical operations, i.e., without the need for additional
empirical functions.

The IAPWS-95 fluid water formulation is based on ITS-90 and on the evaluation of
a comprehensive and consistent data set, which was assembled from a total of about 20,000
experimental data of water. The authors of this water standard took into account all available
information given in the scientific articles describing the data collection and critically reexamined the
available data sets regarding their internal consistency and their basic applicability for the development
of a new equation of state for water. Only those data were incorporated into the final nonlinear fitting
procedure, which were judged to be of high quality. These selected data sets took into account
experimental data which were available by the middle of the year 1994 (Wagner and Pruß [70]).
The availability of reliable experimental data on undercooled liquid water was restricted to a few
data sets for several properties only along the isobar p = 1013.25 hPa (Wagner and Pruß [70]
(Section 7.3.2)), which set the lower limit of the temperature range of IAPWS-95 (and so of TEOS-10) to
T = 236 K (ϑ = −37.15 ◦C). This temperature is called the temperature of homogeneous ice nucleation
(or homogeneous freezing temperature), TH , which represents the lower limit below which it is very
difficult to undercool water. The thermodynamic functions from the SIA source code library, which are
used in the present analysis, are given in Table 2.
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Table 2. TEOS-10 SIA library functions used in the present analysis. The SIA equation (last column)
refers to the equation number in Wright et al. [88] (Supplement).

Property Symbol Unit FORTRAN Call SIA Equation

Mass density of water $̂β = 1/V̂β kg m−3 liq_density_si(T, p) (S11.2)
Mass density of ice $̂α = 1/V̂α kg m−3 ice_density_si(T, p) (S8.3)

Specific Gibbs energy of water Ĝβ J kg−1 liq_gibbs_energy_si(T, p) (S14.6)
Specific Gibbs energy of ice Ĝα J kg−1 ice_chempot_si(T, p) (S8.1)
Specific enthalpy of water Ĥβ J kg−1 liq_enthalpy_si(T, p) (14.3)
Specific enthalpy of ice Ĥα J kg−1 ice_enthalpy_si(T, p) (S8.4)

Specific melting enthalpy ∆ĤM(T) J kg−1 temp = set_ice_liq_eq_at_t(T)
temp = set_ice_liq_eq_at_p(p)
ice_liq_enthalpy_melt_si() (S23.6)

Specific entropy of water Ŝβ J kg−1 K−1 liq_entropy_si(T, p) (S14.4)
Specific entropy of ice Ŝα J kg−1 K−1 ice_entropy_si(T, p) (S8.5)

Specific isobaric heat capacity of water ĉp,β J kg−1 K−1 liq_cp_si(T, p) (S14.1)
Specific isobaric heat capacity of ice ĉp,α J kg−1 K−1 ice_cp_si(T, p) (S8.2)

Isothermal compressibility of water κT,β Pa−1 liq_kappa_t_si(T, p) (S14.9)
Isothermal compressibility of ice κT,α Pa−1 ice_kappa_t_si(T, p) (S8.10)

Thermal expansion coefficient of water αp,β K−1 liq_expansion_si(T, p) (S14.5)
Thermal expansion coefficient of ice αp,α K−1 ice_expansion_si(T, p) (S8.6)

Melting pressure pm Pa ice_liq_meltingpressure_si(T) (S23.10)
Melting temperature Tm K ice_liq_meltingtemperature_si(p) (S23.11)

By virtue of the definition range of TEOS-10, its application to liquid water is restricted to
temperatures T ≥ TH .

4. Results and Discussion

4.1. Thermodynamic Driving Force of Water-to-Ice Nucleation

Table 3 contains the key thermodynamic parameters of the ice-water system at the reference
equilibrium state (T?

m, p?m), which are used for the subsequent calculations.

Table 3. TEOS-10-based thermodynamic parameters of the ice-water system at the reference equilibrium
state T?

m = 273.15 K and p?m = 0.1 MPa.

Symbol Equation Value Unit

∆Ŝm (7) 1.221 kJ kg−1 K−1

∆sm (9) 1.119 MJ m−3 K−1

∆ĉp,m (7) 2.123 kJ kg−1 K−1

∆ĤM,m (7) 333.427 kJ kg−1

∆hm (7) 305.659 MJ m−3

∆V̂m (7) −9.069×10−5 m3 kg−1

∆vm (7) −8.313×10−2 1
∆κT,m (7) 3.911×10−10 Pa−1

∆αp,m (9) −2.276×10−4 K−1

γT,m (7) 1.739 1
γp,m (7) −4.704×10−4 1
χp,m (9) −2.034×10−5 1
δ
(T)
∞ (11) 2.8 Å

δ
(p)
∞ (12) 0.76 Å

In Table 4 the exact, TEOS-10-based thermodynamic driving force of the ice-water system,
∆g(bulk)

df,c = pα−pβ according to Equation (1) with pα determined from numerical solution of the
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transcendental Equation (3) (chemical equilibrium), is presented as a function of undercooling
∆T = T?

m−T and the pressure difference ∆p = p−p?m.

Table 4. Exact thermodynamic driving force of the ice-water system, ∆g(bulk)
df,c = pα−pβ (in units of

MPa) according to Equation (1), as a function of undercooling ∆T = T?
m−T and pressure difference

∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 −0.000 −0.083 −0.849 −9.944
5 5.511 5.429 4.679 −4.333

10 10.847 10.767 10.036 1.130
15 15.996 15.921 15.214 6.443
20 20.948 20.877 20.202 11.602
25 25.687 25.619 24.985 16.605
30 30.187 30.129 29.548 21.456
35 34.419 34.366 33.862 26.158
39 37.563 37.521 37.109 29.820

Negative values of ∆g(bulk)
df,c mean that there is no driving force to nucleation, i.e., the formation of

ice crystallites from water, which is not undercooled any longer then, is impossible. The driving force
to ice nucleation (or equivalently, the degree of metastability of the fluid) increases upon increasing
undercooling and decreasing pressure, i.e., starting at p?m, a pressure difference ∆p = p−p?m < 0 favors
crystallization of water, ∆p>0 disfavors it.

The relative deviations (in percent) of the approximative, the numerical, and the linearized
thermodynamic driving forces ∆g(bulk)

df,c

∣∣∣
X

, X = {approx, num, lin} according to Equations (5)–(7) from

the exact driving force, ∆g(bulk)
df,c according to Equation (1), are presented in Tables 5–7. The relative

deviation of the approximation ∆g(bulk)
df,?

∣∣∣
approx

from the exact value remains far below one percent

throughout the considered ranges of undercooling and pressure difference. Also the numerical
solution ∆g(bulk)

df,c

∣∣∣
num

is still a very good representation of the driving force throughout the considered

range of undercooling and from zero until moderate pressure difference (0 MPa ≤ ∆p ≤ 10 MPa).
The maximum of the relative deviation was found to amount 7 % at ∆p = 100 MPa for ∆T = 10 K.
The same proposition with respect to accuracy holds also for the performance of the linearized
representation of the driving force given by ∆g(bulk)

df,c

∣∣∣
lin

, which is based on a higher degree of
approximation. While the linearized form is still a very good approximation of the exact driving force
(relative deviation < 2 %) throughout the considered range of undercooling and pressure differences
in the interval 0 MPa ≤ ∆p ≤ 10 MPa, the relative deviation increases to a maximum of 50 % at
∆p = 100 MPa (for ∆T = 10 K), which originates from the linearization applied in the derivation of the
driving force. At these conditions, however, the nucleation rate is already very small.
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Table 5. Relative deviation of the approximative thermodynamic driving force, ∆g(bulk)
df,c

∣∣∣
approx

according to Equation (5), from the exact driving force, ∆g(bulk)
df,c according to Equation (1),

i.e.,
[

∆g(bulk)
df,c

∣∣∣
approx

− ∆g(bulk)
df,c

]
/∆g(bulk)

df,c in percent, as a function of undercooling ∆T = T?
m−T and

pressure difference ∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 − − − −
5 −0.029 −0.028 −0.026 −

10 −0.062 −0.062 −0.054 −0.005
15 −0.087 −0.095 −0.083 −0.031
20 −0.115 −0.119 −0.116 −0.064
25 −0.143 −0.141 −0.138 −0.085
30 −0.164 −0.172 −0.165 −0.115
35 −0.195 −0.191 −0.182 −0.133
39 −0.206 −0.202 −0.207 −0.151

Table 6. Relative deviation of the numerically determined thermodynamic driving force on the base of

the Gibbs fundamental equation, ∆g(bulk)
df,c

∣∣∣
num

according to Equation (6), from the exact driving force,

∆g(bulk)
df,c according to Equation (1), i.e.,

[
∆g(bulk)

df,c

∣∣∣
num
− ∆g(bulk)

df,c

]
/∆g(bulk)

df,c in percent, as a function of

undercooling ∆T = T?
m−T and pressure difference ∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 − − − −
5 −0.068 −0.080 −0.199 −

10 −0.141 −0.153 −0.260 −7.063
15 −0.205 −0.225 −0.325 −2.331
20 −0.272 −0.288 −0.394 −1.937
25 −0.338 −0.348 −0.453 −1.814
30 −0.398 −0.417 −0.516 −1.777
35 −0.466 −0.474 −0.570 −1.764
39 −0.509 −0.516 −0.624 −1.766

Table 7. Relative deviation of the analytically determined thermodynamic driving force on the base

of the linearized Gibbs fundamental equation, ∆g(bulk)
df,c

∣∣∣
lin

according to Equation (7), from the exact

driving force, ∆g(bulk)
df,c according to Equation (1), i.e.,

[
∆g(bulk)

df,c

∣∣∣
lin
− ∆g(bulk)

df,c

]
/∆g(bulk)

df,c in percent,

as a function of undercooling ∆T = T?
m−T and pressure difference ∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 − − − −
5 −0.084 −0.119 −0.504 −

10 −0.117 −0.157 −0.530 −49.992
15 −0.079 −0.132 −0.534 −11.294
20 0.033 −0.023 −0.484 −7.888
25 0.242 0.183 −0.348 −6.774
30 0.587 0.506 −0.118 −6.342
35 1.111 1.025 0.263 −6.211
39 1.758 1.649 0.710 −6.254
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4.2. Temperature and Pressure Dependence of the Ice–Water Surface Tension

The relative deviations of the ratio σαβ(T, p)/σαβ,m according to
Equations (8) and (9) (Schmelzer et al. [109] (Equations (30) and (32))) from the reference ratio given by
Equation (13) (Jeffery and Austin [31] (Equation (8))) are presented in Tables 8 and 9, respectively.
Both equations show qualitatively the same dependencies on temperature and pressure as the
Jeffery–Austin expression, but the absolute values are in both cases considerably smaller beginning
at moderate undercooling (e.g., maximum deviation of −34 % for Equation (8) at ∆T = 39 K and
∆p = 0). Equations (8) and (9) behave quite similarly, i.e., the linearization of Equation (8) does not
cause a substantial loss of information in comparison to the nonlinear function for σαβ(T, p) given
by Equation (8).

Table 8. Relative deviation (in percent) of the ratio σαβ(T, p)/σαβ,m according to Equation (8)
(Schmelzer et al. [109] (Equation (30))) from the reference ratio given by Equation (13) (Jeffery
and Austin [31] (Equation (8))) as a function of undercooling ∆T = T?

m−T and pressure difference
∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 0.000 0.012 0.104 −0.112
5 −2.551 −2.531 −2.367 −2.134
10 −4.923 −4.892 −4.638 −3.866
15 −7.477 −7.432 −7.061 −5.619
20 −10.520 −10.456 −9.928 −7.629
25 −14.399 −14.309 −13.561 −10.134
30 −19.547 −19.418 −18.349 −13.386
35 −26.502 −26.314 −24.768 −17.632
39 −34.191 −33.802 −31.440 −21.883

Table 9. Relative deviation (in percent) of the ratio σαβ(T, p)/σαβ,m according to Equation (9)
(Schmelzer et al. [109] (Equation (32))) from the reference ratio given by Equation (13) (Jeffery
and Austin [31] (Equation (8))) as a function of undercooling ∆T = T?

m−T and pressure difference
∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0 0.000 0.012 0.125 1.258
5 −2.478 −2.465 −2.348 −1.170
10 −4.615 −4.601 −4.479 −3.251
15 −6.736 −6.722 −6.595 −5.314
20 −9.099 −9.084 −8.952 −7.622
25 −11.969 −11.954 −11.817 −10.445
30 −15.642 −15.626 −15.487 −14.086
35 −20.417 −20.402 −20.261 −18.853
39 −25.202 −25.186 −25.047 −23.657

Table 10 shows the temperature and pressure coefficients, ∂σαβ/∂T and ∂σαβ/∂p , derived for the
linearized form of σαβ(T, p) (Equation (9)) as a function of ∆T and ∆p:

∂σαβ

∂T
=

σαβ

T

[
1 + γT,m

σαβ,m

σαβ

(
T

T?
m

)2
]

,
∂σαβ

∂p
= −χp,m

σαβ,m

p?m

(
T

T?
m

)
. (15)

Here, σαβ,m = 31.2×10−3 J m−2 was determined from Equation (13). In accordance with
the temperature and pressure dependencies presented in Tables 1, 8, and 9 both coefficients
are positive definite, i.e., ∂σαβ/∂T>0 and ∂σαβ/∂p>0. A positive temperature coefficient of the



Entropy 2020, 22, 50 16 of 50

surface tension was reported, e.g., for mercury, tin, and sodium by Skripov and Faizullin [67]
(Equations (3.84), (3.85) and Figures 3.29, 3.30), for the Lennard–Jones system (a prototype model for
the interactions of neutral nonpolar molecules) by Laird and Davidchack [44] (Table 2), Bai and Li [46]
(Figure 12), and Baidakov [63] (Figures 1, 2, and Equation (3)) (Baidakov [63] reanalyzed and readjusted
the scaling law proposed by Skripov and Faizullin [67] (Equations (3.84) and (3.85))
to bring the scaling-law predictions in agreement with his MD simulations), and for
water by McDonald [22], Wood and Walton [131], Bartell [53] (Figure 6), Gránásy [29] (Figure 4),
Gránásy [40] (Figure 7), Jeffery and Austin [31], and Tanaka and Kimura [52]. The positive temperature
coefficient of the surface tension is argued to originate from the entropy loss in the liquid due to the
ordering near the crystal–melt interface (e.g., Gránásy [29], Gránásy [40], Bai and Li [46] (see reference
therein to Spaepen)).

Table 10. Temperature and pressure coefficients of the surface tension, ∂σαβ/∂T and ∂σαβ/∂p according
to Equation (15), as functions of undercooling ∆T = T?

m−T and pressure difference ∆p = p−p?m.

∆T/K
(∂σαβ/∂T)/(10−4 J m−2 K−1)

(∂σαβ/∂p)/(10−2 Å)
at p = pm(T) ∆p/MPa

0 1 10 100

0 3.133 3.133 3.134 3.144 3.238 6.354
5 2.93 2.872 2.873 2.881 2.97 6.238
10 2.731 2.631 2.632 2.64 2.722 6.122
15 2.541 2.409 2.409 2.417 2.494 6.005
20 2.361 2.204 2.205 2.212 2.284 5.889
25 2.191 2.016 2.017 2.024 2.091 5.773
30 2.032 1.844 1.845 1.851 1.914 5.657
35 1.884 1.686 1.686 1.692 1.751 5.540
39 1.773 1.568 1.569 1.574 1.630 5.447

According to Section 4.1, the driving force of nucleation as a measure of the degree of metastability
of the fluid was found to increase upon decreasing temperature and decreasing pressure. The surface
tension of the ice-water system responds to increasing metastability in such a way that the freezing
probability increases to remove the metastability and to adjust the system back to equilibrium.
Hence, the decrease of the surface tension with decreasing temperature and pressure is in agreement
with the principle of le Chatelier–Braun (Landau and Lifschitz [132] (pp. 61–64)): variations of external
parameters are expected to counteract the initial perturbation to bring the system back to equilibrium.
The positive definiteness of ∂σαβ/∂p is caused by the parameter χp,m = −2×10−5 < 0 according to
Equation (9) and Table 3, which, in turn, is caused by ∆αp,m = αp,β(T?

m, p?m)−αp,α(T?
m, p?m) < 0 (Table 3),

i.e., by the higher thermal expansion coefficient of ice as compared to water. Molecular-theoretical
arguments for the described pressure dependence will be given below.

An analysis of a large sample of empirical, theoretical, and simulated σαβ(T) correlations
performed by Ickes et al. [123] (Figures 2 and 3, Table 3) revealed a large scatter of both the
surface tension (σαβ(273.15 K) = (10−44) × 10−3 J m−2 and σαβ(220 K) = (6.8−26.7)× 10−3 J m−2)
and its temperature coefficient (∂σαβ/∂T = (0.1−0.25)×10−3 J m−2 K−1). The temperature
coefficient presented in Table 10 exhibits a weak decrease upon increasing undercooling with
values located at the lower end of the range reported by Ickes et al. [123]. The experimental
data of Bartell and Huang [28] (Figure 8) and the simulation data of Espinosa et al. [17]
(Figure 4 and Table 2) and [18] (Figure 1d) fit also well into the ranges of σαβ(T) and ∂σαβ/∂T
reported by Ickes et al. [123]. In their freezing experiments on homogeneous water-to-ice nucleation
Huang and Bartell [30] (Equation (3)) employed the following temperature dependence of the ice-water
surface tension:

σαβ(T)
σαβ(T0)

=

(
T
T0

)n
, n ≈ 0.3 . (16)
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Here, T0 serves as a reference temperature. Based on experimental nucleation data at ≈242 K
and 200 K, Bartell [53] (Figures 5 and 6) and Huang and Bartell [30] (Figures 7 and 8) reported the
exponent to be in the range n = 0.3−0.4. According Bartell [53] (Figure 6 and references), the values
n = 0.3−0.4 derived from his experimental approach refer to cubic ice. Extrapolation of the surface
tension from the undercooled regime to T = 273.15 K according to σαβ ∝ Tn yields σαβ(273 K) ≈
24 mJ m−2, which is by ≈9 mJ m−2 lower than the value derived from equilibrium contact angles
between water and two crystals of hexagonal ice sharing a grain boundary. Bartell noted that 75 Å
molecular clusters, cooled down to 200 K (cubic ice) by evaporation, manage to avoid the extreme
anomalies proposed to occur in bulk water in the vicinity of 226 K if nucleation could be avoided.
According to Huang and Bartell [30] (p. 3927, see references therein to Turnbull and Spaepen), the
exponent n is expected to be positive rather than negative. The authors argued, that the free energy
of the interface should increase as temperature rises as the interfacial entropy tends to be negative,
because a liquid in contact with crystal is forced into a structure more ordered than that of the bulk.

Reanalyzing the temperature dependence in Equation (13) in the form given by Equation (16),
one obtains n = 1.63−2.85 (depending on temperature and pressure), and performing the same
analysis for Equation (9), one arrives at n = 1.82−2.73. Hence, the power n of the temperature
dependence of the expressions analyzed in the present study is considerably larger than that used
by Huang and Bartell [30]. Based on CNT and using MD simulations of a Lennard–Jones system
to setup the nucleation scenario, Bai and Li [46] (Figure 12) derived a best-fit linear dependence of
the solid–liquid surface tension on temperature, i.e., n = 1, with a positive temperature coefficient.
The tendency of the temperature dependence of the surface tension was reported to be in good
agreement with, among others, the nucleation data of water published by Wood and Walton [131].

Evaluating laboratory data on homogeneous freezing within the framework of CNT, Tanaka
and Kimura [52] (Equation (13)) adopted a linear dependence of the surface tension on temperature
corresponding to n = 1, which is in between the comparative power values from the literature and the
present analysis.

Unlike the temperature dependence of the surface tension, there are only scarce data on its
pressure dependence. The simulation data of Espinosa et al. [18] (Figure 1d) revealed a positive
pressure coefficient of the surface tension (∂σαβ/∂p ≈ 0.5 Å in the range ∆T = (0−50)K). The positive
definiteness of the pressure coefficient results in a nucleation rate depression upon increasing pressure,
which is used in cryopreservation of biological samples, food, and organs to avoid water freezing and
cell damage by application of high pressures (Espinosa et al. [18] (Figure 1d)). The pressure coefficient
of the surface tension presented in Table 10 amounts ∂σαβ/∂p≈0.06 Å, which is in qualitative agreement
with the simulation data of Espinosa et al. [18] (Figure 1d), even if their value is one order of magnitude
larger. However, in view of the completely different approaches underlying the present study and
those of Espinosa et al. the agreement is good. Espinosa et al. [18] emphasized that “the dependence of
σ with pressure is totally unknown experimentally. In fact, there is not even a consensus for the experimental
value of σ at ambient pressure (there are reported values ranging from 25 to 35 mJ m−2 [. . . ])”. With reference
to the literature Espinosa et al. [18] speculated that ∂σαβ/∂p>0 originates from pressure-induced
breakage of hydrogen bonds in the liquid phase. The diffusion coefficient of water increases with
pressure. By hydrogen-bond breaking, the liquid is argued to decrease its structural resemblance to
ice and, as the consequence, the surface tension between water and ice increases. We should add,
however, that already Jeffery and Austin [31] (Figure 6), giving reference to experimental data from
Huang and Bartell [30] for very small droplets (diameter 3 nm), presented graphs of the nucleation rate
as a function of temperature at isobars p = (0.1, 55)MPa, which also reveal a significant decrease of
the nucleation rate with increasing pressure. Also the empirical parameterization of the homogeneous
nucleation rate of water proposed by Koop et al. [133] predicts a nucleation-rate depression upon
increasing pressure (see also Ford [54] (Figure 2)).

Figure 1 displays the normalized ice–water surface tension σαβ(T, p)/σαβ,m at the coexistence
line, i.e., as a function of temperature T along the melting pressure curve p = pm(T) for Equation (13)
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according to Jeffery and Austin [31] (Equation (8)), Equation (8) according to Schmelzer et al. [109]
(Equation (30)), and Equation (9) according to Schmelzer et al. [109] (Equation (32)). Both Equations (13)
and (8) exhibit the existence of a minimum, which is lost in the linearized form.

Figure 1. Normalized ice–water surface tension σαβ(T, pm(T))/σαβ,m as a function of temperature T/K
along the melting pressure line p = pm(T). Solid line: Equation (13) according to Jeffery and Austin [31]
(Equation (8))). Dashed line: Equation (8) according to Schmelzer et al. [109] (Equation (30)). Dotted
line: Equation (9) according to Schmelzer et al. [109] (Equation (32)).

The TEOS-10-based limiting values of the Tolman length scale according to
Equations (11) and (12), respectively, were found to be very close to each other: δ

(T)
∞

∣∣∣
p=p?m

= 2.8 Å and

δ
(p)
∞

∣∣∣
T=T?

m
= 0.76 Å. The Tolman length at equilibrium, δ∞, is independent of the way this equilibrium

is approached, i.e., δ∞ = δ
(T)
∞ = δ

(p)
∞ . However, due to several approximations employed in the

determination of the generating quantities entering the nonlinear expressions of δ∞, δ
(T)
∞ and δ

(p)
∞ ,

the equality sign was replaced with the approximate symbol. Apart from that, the determination
of δ

(T)
∞ on the hand and δ

(p)
∞ on the other hand is based on different thermophysical properties,

the physical uncertainties of which may also contribute to the recognized differences between the
isothermal and isobaric paths of the derivation.

Based on the experimentally determined positive temperature coefficient of the surface tension,
∂σαβ/∂T>0, and previous X-ray diffraction studies indicating an increasingly ice-like structure of
liquid water upon increasing undercooling, McDonald [22] (Table 2 and reference therein to Dorsch
and Boyd) concluded: “As the structure of the two phases grow increasingly more similar, it should follow
that the surface free energy of the interface between the two phases should decrease towards the zero value that it
must exhibit in the limit of complete isomorphism” (see also Ickes et al. [123]).

Apart from this general conclusion, one can distinguish two cases concerning the behavior of σαβ

at low temperatures:

(i) Zeroing the surface tension (but also the thermodynamic driving force) in the T−p plane could
be expected by approaching–if it exists–a spinodal of undercooled water. The latter is defined
by a line (Ts, ps) at which water loses its thermodynamic stability. Based on thermodynamic
arguments, the spinodal is defined by zero values of the isodynamic stability coefficients
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(e.g., Skripov and Baidakov [58], Skripov [57]; Kluge and Neugebauer [134]; Baidakov [61];
Skripov and Faizullin [67]): (

∂T
∂Ŝβ

)
p

=
T

ĉp,β
= 0 , (17)

−
(

∂p
∂V̂β

)
T

=
1

V̂βκT,β
= 0 . (18)

According to Equations (17) and (18), the spinodal of undercooled water is approached by
ĉp,β → ∞ and κT,β → ∞. At the spinodal, the ice-water surface tension, σαβ(T, p) according to
Equation (8), is expected to vanish, as can be deduced from the limiting behavior of the isobaric
temperature coefficient of the surface tension:(

∂σαβ

∂T

)
p
=

σαβ

T
+ T

σαβ,m

Tm∆Ŝm

(
ĉp,β − ĉp,α

)
. (19)

According to Feistel and Wagner [81] (Figure 1) (see also Feistel and Hagen [77,78], Feistel and
Wagner [79,80,82], Giauque and Stout [135], and IAPWS R10-06 [83]), the mass-specific heat
capacity of ice, ĉp,α, at atmospheric pressure is a monotonous function of temperature with
∂ĉp,α/∂T>0 and

lim
T→0

ĉp,α

T3 = 0.0091 J kg−1 K−4 .

If a spinodal temperature, Ts, exists with

lim
T→Ts

ĉp,β = ∞ ,

one could expect

lim
T→Ts

(
∂σαβ

∂T

)
p
= ∞  lim

T→Ts
σαβ = 0 .

(ii) At the Kauzmann temperature TK—provided it exists—the temperature dependence of the surface
tension is controlled by Equation (8), i.e.,

σαβ(T, p) ∝ T∆S(T, p) .

By virtue of the definition of the Kauzmann temperature one could expect:

lim
T→TK

∆S(T, p) = 0  lim
T→TK

σαβ = 0 .

In a pioneering paper, Skripov and Baidakov [58] provided evidence for the absence of a spinodal
in one-component melt crystallization. This study stimulated intensive laboratory and theoretical
investigations, and computer simulations on the limits of metastability of undercooled liquids.
However, despite enormeous research over many decades there is still much controversy on the
existence of a spinodal in undercooled liquids. Our review of the literature disclosed a tendency
in the bulk of studies, which supports the proposition of Skripov and Baidakov [58] also for water.
Here, we base our consideration on previous studies on the temperature dependence of the isobaric
heat capacity, including a van der Waals model, recent computer simulations, and a state-of-the-art
EoS for undercooled water. To gain a qualitative picture of the isobaric heat
capacity, Gránásy [40] (Figure 2c) adopted a modified van der Waals model proposed by
Poole et al. [136], yielding a maximum difference of the isobaric heat capacity between water and
ice of ∆ĉp ≈ ĉp,β − ĉp,α = 5.56 kJ kg−1 K−1 occuring at T = 232 K. From their MD simulations
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Moore and Molinero [51] (Figure 1a and references) deduced a maximum isobaric heat capacity
of ĉp,β ≈ 5.56 kJ kg−1 K−1 at the liquid transformation temperature TL ≈ 202 K (defined by the
maximum change in density), which is also the maximum change in tetrahedrality and fraction
of four-coordinated molecules. Moore and Molinero [51] (see references) noted that TL in their
simulations is ≈15 K above the singular temperature of the power law, Ts, derived from a fit
of predicted ĉp,β values using the mW water model of [137], and ≈25 K below the Ts ≈ 225 K
estimated from the experimental values of the heat capacity of water (Speedy and Angell [138],
Tombari et al. [139]). In accordance with this, the extrapolation of the new EoS of undercooled water
proposed by Holten et al. [85] (Figure 14) into the deeply undercooled range yields a maximum of the
isobaric heat capacity of ĉp,β ≈ 7.5 kJ kg−1 K−1 at T ≈ 228 K. The findings of Moore and Molinero [51]
and Holten et al. [85] suggest that the temperature coefficient of the surface tension remains finite
at TL. From Cahn–Hilliard-type density functional calculations for homogeneous ice nucleation in
undercooled water Gránásy [40] (Figure 7a) predicted a monotonous behavior of the ice-water surface
tension in the temperature interval 160 K ≤ T ≤ 270 K with a finite value of σαβ ≈ (10−15)mJ m−2

at T = 160 K. Hence, there is no resilient empiricism for the accessibility of the state of complete
ice-water isomorphism.

4.3. Critical Cluster Size

Knowing the thermodynamic driving force for nucleation and the surface tension, the radius
of the critical cluster, Rα, is obtained from Equation (1). Table 11 contains the values of Rα

determined using the exact form of the driving force, ∆g(bulk)
df,c = pα−pβ (Equation (1)) together with

σαβ(T, p)∼=σαβ,m[T∆Ŝ(T, p)]/[Tm∆Ŝm] according to Equation (8), and Table 12 shows the corresponding

radii determined using the linearized forms of the driving force, ∆g(bulk)
df,c (T, p)

∣∣∣
lin

(Equation (7)) and

the surface tension, σαβ(T, p) according to Equation (9). The critical radius decreases upon decreasing
temperature and pressure. For the considered range of ∆T and ∆p ≤ 10 MPa the radii determined
from the different parameter combinations agree quite well, suggesting that the linearization of the
driving force and the surface tension captures the temperature and pressure dependencies still very
well in this range.

Table 11. Critical radius, Rα = 2σαβ/∆g(bulk)
df,c (in units of nm) according to Equation (1), using

the exact form of the driving force, ∆g(bulk)
df,c = pα−pβ according to Equation (1), and the surface

tension, σαβ(T, p)∼=σαβ,m[T∆Ŝ(T, p)]/[Tm∆Ŝm] according to Equation (8), as a function of undercooling
∆T = T?

m−T and pressure difference ∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0.0 − − − −
5 10.771 10.936 12.720 −

10 5.181 5.221 5.620 50.643
15 3.313 3.331 3.502 8.451
20 2.375 2.385 2.481 4.458
25 1.807 1.814 1.877 2.955
30 1.422 1.427 1.475 2.168
35 1.136 1.141 1.183 1.686
39 0.943 0.950 0.995 1.419
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Table 12. Critical radius, Rα = 2σαβ/∆g(bulk)
df,c (in units of nm) according to Equation (1), using the

linearized forms of the driving force, ∆g(bulk)
df,c (T, p)

∣∣∣
lin

according to Equation (7), and of the surface

tension, σ(T, p) according to Equation (9), as a function of undercooling ∆T = T?
m−T and pressure

difference ∆p = p−p?m.

∆T/K ∆p/MPa

0 1 10 100

0.0 − − − −
5 10.788 10.956 12.787 −
10 5.204 5.245 5.659 101.918
15 3.342 3.361 3.538 9.558
20 2.412 2.422 2.520 4.840
25 1.854 1.860 1.922 3.158
30 1.482 1.487 1.529 2.296
35 1.217 1.220 1.251 1.771
39 1.054 1.056 1.080 1.480

4.4. Homogeneous Water-to-Ice Nucleation Rate

To determine the sensitivity of the homogeneous water-to-ice nucleation rate against different
formulations of σαβ(k) (index k = 1, . . . , 3 corresponding to Equations (13), (8), and (9)) and of

∆g(bulk)
df,c (l) (index l = 1, . . . , 4 corresponding to Equations (1), (5), (6), (7)) we employ Equation (1)

for J with the kinetic prefactor Jkin taken from Jeffery and Austin [31] (Equation (1)) (see also
Hagen et al. [24] (Equation (1)); for derivation of Jkin see e.g., Pruppacher and Klett [5] and
Hellmuth et al. [13]):

J(k, l) = Jkin(k) exp

(
−∆G(cluster)

c (k, l)
kBT

)
,

∆G(cluster)
c (k, l) =

1
3

Aα(k, l)σαβ(k) ,

Aα(k, l) = 4π [Rα(k, l)]2 , Rα(k, l) =
2σαβ(k)

∆g(bulk)
df,c (l)

.

Jkin(k) = 2Nc

(
ρ̂β

ρ̂α

)(
kBT

h

)√
σαβ(k)

kBT
exp

[
−∆Gact

kBT

]
,

k = 1, . . . 3 , l = 1, . . . , 4 .

(20)

The kinetic prefactor represents the diffusive molecular flux across the solid–liquid interface. In
Equation (20), Nc = 5.85×1018 m−2 is the number of monomers of water in contact with unit area
of the ice surface, kB is the Boltzmann constant, and h the Planck constant. The quantity ∆Gact(T, p)
denotes the molecular ice-water activation energy. The expression for ∆Gact(T, p) used here is based
on an empirical Vogel–Fulcher–Tammann (VFT) equation for the self-diffusivity of water (see Jeffery
and Austin [31] (Equation (15) and discussion in Section 5), as well as Appendix C):

∆Gact(T, p) = kBT
[

B(p)
T − T?(p)

− ln
(

D?(p)
D0(p)

)]
. (21)

The pressure-dependent self-diffusivity parameters B(p), T?(p), D?(p), and D0(p) at isobars
p = (0.1, 10, 50, 100, 150, 200)MPa are taken from Jeffery and Austin [31] (Table 2). Table 2 in Jeffery
and Austin [31], containing the parameters for the self-diffusivity D according to their Equations (11)
and (15), is subject of two cumbersome mistakes in the unit annotation. The correct unit assignment
in column 2 and 5 of Table 2 must read D?/0 × 108/m2 s−1, and in column 3 the correct annotation
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is B/K (see e.g., Prielmeier et al. [140] (Table 3); Ludwig [56] (Figure 3a); Hernández de la Peña and
Kusalik [48]) (Table II). For details see Appendix C.

Figures 2–9 display the nucleation rate log10[J/(cm−3s−1)] vs. temperature T at isobars
p = (0.1, 10, 50, 100, 150)MPa. The graph annotation corresponds to the pairwise combinations{

σαβ(k), ∆g(bulk)
df,? (l)

}
described in Table 13. A common feature exhibited in all figures is a strong

increase of the nucleation rate upon decreasing temperature (or increasing undercooling) and
decreasing pressure. At atmospheric pressure (Figures 2–5) the 12 graphs can be gathered into
three group controlled by σαβ(k) (k = 1, . . . , 3). The differences between the nucleation rates caused

by the variation in ∆g(bulk)
df,c (l) (l = 1, . . . , 4) cannot be resolved in Figure 2, i.e., the variation in

the driving force does not significantly contribute to the variation in J(k, l). As can be seen from
Figures 3–5, at atmospheric pressure the differences in the nucleation rate due do variation of the
driving force amount less than one order of magnitude. The described grouping of the nucleation
rate according to index k can also be seen in Figure 6 for p = 10 MPa. At p = 50 MPa (see Figure 7)
even the differences in the nucleation rates between surface tension indices k = 2 and k = 3 diminish
for the chosen scale of the nucleation rate (differences due to variation of index l are not displayed).
However, toward the pressure p = 100 MPa, the differences due to variations in k and l start to increase
(see Figure 8).

Figure 2. Nucleation rate log10[J/(cm−3s−1)] vs. temperature T/K for isobar p = 0.1 MPa. The graph

annotation corresponds to the pairwise combinations
{

σαβ(k), ∆g(bulk)
df,c (l)

}
described in Table 13.



Entropy 2020, 22, 50 23 of 50

Figure 3. As Figure 2 for k = 1 only.

Figure 4. As Figure 2 for k = 2 only.
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Figure 5. As Figure 2 for k = 3 only.

Figure 6. As Figure 2 for isobar p = 10 MPa.
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Figure 7. As Figure 2 for isobar p = 50 MPa.

Figure 8. As Figure 2 for isobar p = 100 MPa.
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Figure 9. As Figure 2 for isobar p = 150 MPa.

Table 13. Indexing of the nucleation rate J(k, l) for three different formulations of the surface tension

σαβ(k) (k = 1, . . . , 3) and four different formulations for the thermodynamic driving force ∆g(bulk)
df,c (l)

(l = 1, . . . , 4). The number in each table cell is the number of the graph in Figures 2–9.

σαβ(k) ∆g(bulk)
df,c (l)

l = 1 l = 2 l = 3 l = 4
Equation (1) (5) (6) (7)

k = 1 Equation (13) 1 2 3 4
k = 2 Equation (8) 5 6 7 8
k = 3 Equation (9) 9 10 11 12

As the temperature coefficient of the surface tension (determining the slope of the curve) according
to Jeffery and Austin [31] is lower than those for the surface-tension expressions proposed by
Schmelzer et al. [109], the surface tension of Jeffery and Austin [31] is larger at lower temperatures,
leading to the lowest nucleation rate in Figure 2 (series (k, l) = (1, 1−4)). The differences in the
nucleation rates between the surface tensions of Jeffery and Austin [31] and Schmelzer et al. [109] are
much larger than those between Equation (8) and Equation (9) proposed by Schmelzer et al. [109].
This grouping behavior is pronounced at low and moderate pressure (p = (0.1, 10)MPa), but starts
to diminish at pressures above, i.e., the variation in the nucleation rate becomes more and more
controlled by variations in the thermodynamic driving force, which can be seen from the increasing
differences between the temperature dependencies of J within each of the three groups representing
the considered formulations for σαβ(T, p) (Figure 9, p = 150 MPa).

Figure 10 shows the calculated decadic logarithm of the nucleation rate log10 J vs. temperature T
at atmospheric pressure as in Figure 2 but with the expectation range of the experimental data analyzed
by Ickes et al. [122] (Figures 10 and 11). The green-shaded area represents the empirical expectation
range of the nucleation rate defined by the scatter among 34 different sources of experimentally derived
nucleation rates analyzed by Ickes et al. [122]. The bold green lines represent the envelopes of the
scattered data presented in Ickes et al. [122] (Figure 11). The analysis revealed that the empirical
temperature coefficient of the nucleation rate, ∂J/∂T, is very well captured by the calculated nucleation
rates. However, the expectation range of the calculated nucleation rates due to the variation of the
ice–water interfacial energy (red, black, and blue lines) is about a factor 3 larger than the expectation
range of the experimental nucleation rates (green lines and green-shaded area). While the employment
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of the Turbull expression (k = 1, blue line, Equation (13)) leads to a strong underestimation of the
nucleation rate, the application of the entropy-based expressions (k = 2, red line, Equation (8), and
k = 3, black line, Equation (9)) leads to a strong overestimation of the nucleation rate. This result is a
direct consequence of the caculated differences in the ice–water interfacial energy depicted in Figure 1.
The difference between the two entropy-based expressions of σαβ(T) leads to a calculated expectation
range in log10 J(k, l) which is about as large as the empirical expectation range.

It is interesting to note, that at atmospheric pressure the variation in the thermodynamic driving
contributes little to the variation in log10 J(k, l). The corresponding contribution of the driving force to
the calculated expectation range of log10 J(k, l) remains much smaller than the empirical expectation
range. The comparison depicted in Figure 10 confirms that fitted nucleation parameters (such as
the Turnbull expression of σαβ) will lose their predictive power when applied independently from
the specification of the kinetic pre-factor and thermodynamic driving force underlying the fitting
to experimental nucleation rates. The question to be answered is the following: Which physical
nucleation parameter is the most conclusive one to move the graph of the calculated nucleation rate
into its empirical expectation range defined by the green-shaded area of Figure 10? Ideally, the aim is
to remove the degrees of freedom in the nucleation rate calculation by formulation of as much physical
constraints as unknown nucleation parameters have to be determined. This question is subject of Part
II of the manuscript.
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234 235 236 237 238 239 240
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Temperature / K

Figure 10. Calculated nucleation rate log10[J/(cm−3s−1)] vs. temperature T/K for isobar
p = 0.1 MPa as in Figure 2, but with the expectation range of the experimental data analyzed by
Ickes et al. [122] (Figures 10 and 11). The graph annotation corresponds to the pairwise combinations{

σαβ(k), ∆g(bulk)
df,c (l)

}
described in Table 13. The green-shaded area represents the scatter of

experimental data depicted in Ickes et al. [122] (Figure 11).

4.5. Kauzmann Temperature and Kauzmann Pressure of Water

According to Equation (14), a positive definiteness of the Kauzmann temperature requires the
fulfillment of the inequality γT,m>1. For the ice-water system one has γT,m ≈ 1.74 and TK = 116 K
corresponding to TK/T?

m ≈ 0.42.
For comparison, Schmelzer et al. [110] (Table 1) reported a ratio of TK/T?

m ≈ 0.26 for
the glass-forming melt of 2Na2O · 1CaO · 2SiO2. The Kauzmann temperature is well below the
“no-man’s land” in the water-phase diagram, enclosed between the glass transition (or vitrification)
temperature of water, Tg = 136 K, and the temperature of homogeneous nucleation, TH ≈ 232 K
(Moore and Molinero [51]).

Correspondingly, according to Equation (14) the positive definiteness of the Kauzmann pressure
requires the fulfillment of the inequality γp,m > 0. For the ice-water system, however, one has
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γp,m ≈ −4.7×10−4 originating from ∆V̂m = V̂β(T?
m, p?m)− V̂α(T?

m, p?m) < 0, i.e., at the melting point
the mass density of water is higher than that of ice. As a consequence, the Kauzmann pressure
attains a negative value of pK = −212 MPa (undercooled liquid under tension). As the pressure
has to be decreased in order to initiate crystallization of water, a maximum of the driving force is
reconcilable with negative pressure. According to Nada et al. [43] (p. 298), the MD simulations of
Matsumoto et al. [41] of ice nucleation and growth in deeply undercooled water revealed nucleation

“only at an extraordinary low negative pressure”, but did not predict ice nucleation at atmospheric pressure.
Matsumoto et al. [41] emphasized that for systems with a limited number of possible disordered

hydrogen-bond network structures, such as confined water, it is relatively easy to locate a pathway
from a liquid state to a crystalline structure. In contrast to this, for pure and spatially confined water,
MD simulations of freezing were argued to be severely hampered by the large number of possible
network configurations that exist. Matsumoto et al. [41] calculated MD trajectories for 512 water
molecules for different temperatures, but at T = 230 K only one out of six trajectories exhibited
sucessful crystallization. The authors also performed constant-pressure and constant-temperature
trajectory calculations for various sizes of the system, but crystallization was observed only for very
small systems (64 molecules). According to Leach [141] (p. 309, Equation (6.13)), the pressure can be
determined on the base of MD simulations according to the following relation:

p =
1
V

[
NkBT − 1

3

N

∑
i=1

N

∑
j=i+1

rij fij

]
.

Here, V denotes the volume of the system, N the number of molecules, rij and fij the distance
and the force acting between atomes i and j. According to this relation, at low number of molecules,
N, the pressure becomes negativ. Hence, the phrase “nucleation only at an extraordinary low negative
pressure” employed by Nada et al. [43] (p. 298) refers to a large absolute value of the negative pressure,
or equivalently, to a large value of the tensile stress of the nucleating system.

However, it cannot be ruled out that the predicted absence of ice nucleation at atmospheric
pressure is affected by uncertainties of current water models (e.g., Ludwig [56], Nada et al. [43],
Espinosa et al. [17], Vega and Abascal [45], Hernández de la Peña and Kusalik [48], Vega et al. [49],
Moore and Molinero [51]). In any case, the predicted Kauzmann pressure is already below the
extrapolated spinodal pressure of water according to the IAPWS-95 formulation (Wagner and Pruß [70]
(Figure 7.54)).

In principle, the Kauzmann temperature and pressure could be determined also directly without
any approximations by searching for the temperature and pressure at which the equality of the
mass-specific entropies and volumes of the both macrophases is fulfilled. This would require an EoS of
water, which is valid down to these values of temperature and pressure. The application of TEOS-10,
however, is restricted to temperatures equal or higher than the homogenous freezing temperature and
to positively definite pressures.

5. Summary and Conclusions

Employing the advanced seawater standard TEOS-10, we applied recently developed expressions
for the thermodynamic driving force of crystallization and the crystal–melt surface tension to the
ice-water system. It was shown that the thermodynamic driving force can be completely determined
from thermodynamic properties provided by TEOS-10 for undercooled water and ice. As reference
value for the driving force the pressure difference between the ice cluster and the undercooled water
was determined. Several approximations of the driving force were evaluated.

The driving force approximation based on linearization of the chemical potentials was
demonstrated to deviate by not more than 0.5 % from the exact solution in the ranges of temperature
and pressure differences 0 K ≤ ∆T ≤ 39 K and 0 MPa ≤ ∆p ≤ 100 MPa. The determination of the
driving force by numerical integration of the Gibbs fundamental equation was found to deviate by not
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more than 0.7 % from the exact solution in the ranges 0 K ≤ ∆T ≤ 39 K and 0 MPa ≤ ∆p ≤ 10 MPa.
At the ∆p = 100 MPa isobar, the maximum relative deviation exceeded 7 % at ∆T = 10 K. Finally, the
determination of the driving force by analytical integration of the linearized Gibbs fundamental
equation was found to deviate by not more than 1.8 % from the exact solution in the ranges
0 K ≤ ∆T ≤ 39 K and 0 MPa ≤ ∆p ≤ 10 MPa, but at ∆p = 100 MPa the maximum deviation
exceeded 50 % at ∆T = 10 K. Fortunately, the high-pressure regions with enhanced error correspond
to states with extremely low nucleation rates.

Provided the surface tension at the melting point is given from experiments (serving as
an empirical closure parameter), the pressure and temperature dependencies of the surface tension
are fully determined from water and ice entropies given by TEOS-10. The linearization of the surface
tension was shown to recover the theoretical scaling law in the ranges of temperature and pressure
differences 0 K ≤ ∆T ≤ 35 K and 0 MPa ≤ ∆p ≤ 100 MPa with a relative deviation of ≤ 6 %.

Our TEOS-10-based predictions of the nucleation rate revealed pressure-induced deceleration
of ice nucleation, which is in qualitative agreement with laboratory experiments and computer
simulations. By a special choice of the kinetic prefactor the sensitivity of the nucleation rate against
different expressions for the thermodynamic driving force and the surface tensions was analyzed.
At atmospheric pressure the variance of the nucleation rate was mainly controlled by the variance
in the surface tension. With increasing pressure difference ∆p the variance in the nucleation rate
was increasingly controlled by the variance in the thermodynamic driving force. The nucleation rate
determination is subject to a closure problem, requiring the availability of the surface tension at the
melting point and the activation energy. In the case of water, all other thermodynamic quantities are
available from TEOS-10. However, owing to the large uncertainties in the activation energy and the
melting-point surface tension (as reported in the literature) homogeneous freezing of undercooled
water cannot be considered “a work done”.

The temperature and pressure dependencies of the ice-water surface tension follow the le
Chatelier–Braun principle, in that the surface tension decreases upon increasing degree of metastability,
which favors water freezing and in this way readjustment of the metastable system back to a stable
state. The increase of the surface tension with increasing pressure can be explained by the higher
thermal expansion coefficient of ice in comparison to water at the melting point. Finally, the calculated
values of the Kauzmann temperature and pressure, corresponding to the maxima of the driving force to
nucleation, are fully reconcilable with the temperature and pressure dependencies of the driving force
and with laboratory findings and computer simulations on the temperature and pressure dependencies
of the nucleation rate. The reason for the negative value of the Kauzmann pressure is the higher mass
density of water in comparison to that of ice at the melting point.

6. Outlook

In Part II of the paper the expressions of the thermodynamic driving force of ice crystallization and
the ice–water surface tension derived here will be compared with previously published formulations.
In addition, the results of an intercomparison between theoretically predicted and experimentally
derived rates of homogeneous ice crystallization will be presented and discussed.
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Appendix A. Crystallization Thermodynamics

Appendix A.1. Work of Cluster Formation

According to Gibbs [103,104] (see also Rusanov [142], Ulbricht et al. [143], Schmelzer et al. [144],
and Schmelzer et al. [145]) a real heterogeneous system consisting of two homogeneous coexisting
macrophases (subscripts α and β), separated by an interfacial region, can be idealised by replacing the
interfacial region with a mathematical surface (subscript σ). The internal energy U, the entropy S and
the mole or particle numbers of the different components, nj, j = 1, . . . , k of the whole system read
(Schmelzer et al. [144] (Equation (11.1))):

U = Uα + Uβ + Uσ , S = Sα + Sβ + Sσ , nj = njα + njβ + njσ . (A1)

The superficial quantities obey Gibbs’ fundamental equation (Schmelzer et al. [144]
(Equation (11.2))):

dUσ = Tσ dSσ +
k

∑
j=1

µjσ dnjσ + σαβ dAα . (A2)

Here, Aα denotes the surface or interfacial area, σαβ is the interfacial tension, and Tσ and µjσ
are the temperature and chemical potential of the interface, respectively. In Equation (A2), energy
contributions originating from changes in the curvature of the surface element were neglected.
The integral of Equation (A2) reads (Schmelzer et al. [144] (Equation (11.4))):

Uσ = TσSσ + σαβ Aα +
k

∑
j=1

µjσnjσ . (A3)

Derivation of Equation (A3) and comparison with Equation (A2) yields the Gibbs adsorption
equation with neglect of curvature effects (Schmelzer et al. [144] (Equation (11.5))):

Sσ dTσ + Aα dσαβ +
k

∑
j=1

njσ dµjσ = 0 . (A4)

With consideration of U = G−pV+TS and G = ∑j njµj one has (Schmelzer et al. [144]
(Equation (11.6))):

Uα = TαSα − pαVα +
k

∑
j=1

njαµjα ,

Uβ = TβSβ − pβVβ +
k

∑
j=1

njβµjβ ,

Uσ = TσSσ + σαβ Aα +
k

∑
j=1

njσµjσ

 U = Uα + Uβ + Uσ

= TαSα − pαVα +
k

∑
j=1

njαµjα + TβSβ − pβVβ +
k

∑
j=1

njβµjβ

+TσSσ + σαβ Aα +
k

∑
j=1

njσµjσ .

(A5)
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By virtue of the Gibbs fundamental equations for the coexisting macrophases and the interface,

dUα = Tα dSα − pα dVα +
k

∑
j=1

µjα dnjα ,

dUβ = TβdSβ − pβ dVβ +
k

∑
j=1

µjβ dnjβ ,

dUσ = Tσ dSσ +
k

∑
j=1

µjσ dnjσ + σαβ dAα ,

(A6)

one arrives at the Gibbs fundamental equation of the heterogeneous system (Schmelzer et al. [144]
(Equation (11.7))):

dU = dUα + dUβ + dUσ

= Tα dSα − pα dVα +
k

∑
j=1

µjα dnjα + Tβ dSβ − pβ dVβ +
k

∑
j=1

µjβ dnjβ

+Tσ dSσ + σαβ dAα +
k

∑
j=1

µjσ dnjσ .

(A7)

Assuming the heterogeneous system being isolated, Equation (A7) is constraint by mass, volume,
and entropy conservation (Schmelzer et al. [144] (Equation (11.8))):

nj = njα + njβ + njσ = const. ,

V = Vα + Vβ = const. ,

S = Sα + Sβ + Sσ = const.

(A8)

With these constraints the general thermodynamic equilibrium condition reads
(Schmelzer et al. [144] (Equation (11.9))):

(dU)S,V,{n} = (Tα − Tσ)dSα + (Tβ − Tσ)dSβ − (pα − pβ)dVα + σαβ dAα

+
k

∑
j=1

(µjα − µjσ)dnjα +
k

∑
j=1

(µjβ − µjσ)dnjβ = 0 .
(A9)

The thermodynamic equilibrium requires the fulfillment of thermal, mechanical, and chemical
equilibria between the coexisting macrophases (Schmelzer et al. [144] (Equations (11.10)–(11.12))):

Tα = Tβ = Tσ , (A10)

pα − pβ = σαβ
dAα

dVα
, (A11)

µjα(Tα, pα, {xiα}) = µjβ(Tβ, pβ, {xiβ}) = µjσ , j = 1, 2, . . . , k . (A12)

The work of cluster formation is given by the difference in the internal energy, ∆U, between the
final state with the heterogeneous system, Uhet (given by Equation (A5), and the initial state with the
homogeneous system, Uhom (Schmelzer et al. [144] (Equation (11.14))):
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∆U(cluster) = Uhet −Uhom

= TαSα − pαVα +
k

∑
j=1

njαµjα + TβSβ − pβVβ +
k

∑
j=1

njβµjβ

+TσSσ + σαβ Aα +
k

∑
j=1

njσµjσ −
(

TS− pV +
k

∑
j=1

njµj

)
.

(A13)

Assuming that the characteristic size of the embryonic phase α is much smaller than the
characteristic size of the maternal phase β (microscopic approximation), one can safely adopt the
following constraints:

T = Tβ = const. , p = pβ = const. , µj = µjβ . (A14)

With consideration of Equations (A8) and (A14) the work of cluster formation reads
(Schmelzer et al. [144] (Equation (11.15))):

∆U(cluster) = (Tα − Tβ)Sα + (Tσ − Tβ)Sσ + (pβ − pα)Vα + σαβ Aα

+
k

∑
j=1

njα(µjα − µjβ) +
k

∑
j=1

njσ(µjσ − µjβ) .
(A15)

Consideration of the isolation constraint, Equation (A8), the thermodynamic equilibrium
conditions, Equations (A10)–(A12), the microscopicity of the cluster, Equation (A14), and the sphericity
of the cluster,

Vα =
A3/2

α

6
√

π
,

the work of formation of the critical cluster (subscript c) reads (Schmelzer et al. [144] (Equation (11.18))):

∆U(cluster)
c = (pβ − pα)Vα + σαβ Aα = σαβ

(
Aα −Vα

dAα

dVα

)
=

1
3

σαβ Aα =
16π

3

σ3
αβ

(pα − pβ)2 .

(A16)

From the definition U = G−pV+TS one has ∆U = ∆G−∆(pV)+∆(TS), which yields with
consideration of the constraints of mass, volume, and entropy conservation (Equation (A8), ∆V = 0,
∆S = 0), and of microscopicity (Equation (A14), ∆T = 0, ∆p = 0), the relations ∆U(cluster) = ∆G(cluster)

(Equation (A15)) and ∆U(cluster)
c = ∆G(cluster)

c (Equation (A16)).

Appendix A.2. Work of Bulk Phase Formation (Thermodynamic Driving Force)

Employing the closure assumption Tσ = Tβ and µjσ = µjβ, the change of the Gibbs free
energy of cluster formation, ∆G(cluster), is given by Equation (A15) (Schmelzer and Abyzov [105]
(Equations (3) and (4))):

∆G(cluster) = (Tα − Tβ)Sα + (pβ − pα)Vα +
k

∑
j=1

njα(µjα − µjβ)︸ ︷︷ ︸
= ∆G(bulk)

+σαβ Aα . (A17)

The quantity ∆G(bulk) denotes the change of the Gibbs free energy of bulk phase formation
(i.e., without the work σαβ Aα required to form the interface between the bulk phases). The bulk
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contributions to the Gibbs free energy change per unit volume of the crystal phase read (Schmelzer
and Abyzov [105] (Equation (5))):

∆g(bulk) = (Tα − Tβ)sα + (pβ − pα) +
k

∑
j=1

ρjα(µjα − µjβ) ,

∆g(bulk) =
∆G(bulk)

Vα
, sα =

Sα

Vα
, ρjα =

njα

Vα
.

(A18)

Here, ∆g(bulk), sα, and ρjα denote changes in the volumetric Gibbs free energy of bulk phase
formation, in the volumetric entropy of the embryonic phase, and in the number or mole density of
component j in the embryonic phase, respectively.

Appendix A.2.1. Exact Form of the Thermodynamic Driving Force of Nucleation

With consideration of the conditions of thermodynamic equilibrium, Equations (A10)–(A12),
one obtains from Equation (A18) the change in the volumetric Gibbs free energy required for the
formation of the critical cluster (subscript c), ∆g(bulk)

c (Schmelzer and Abyzov [105] (Equation (11))):

∆g(bulk)
c = −∆g(bulk)

df,c = −
2σαβ

Rα
= −(pα − pβ)  Rα =

2σαβ

∆g(bulk)
df,c

. (A19)

Here, the quantity ∆g(bulk)
df,c = pα−pβ is called thermodynamic driving force of bulk phase

transformation. With Equation (A19) the Gibbs free energy change for critical cluster formation,
Equation (A16), reads (Schmelzer and Abyzov [105] (Equation (12))):

∆G(cluster)
c =

16π

3

σ3
αβ(

∆g(bulk)
df,c

)2 . (A20)

Appendix A.2.2. Linearized Form of the Thermodynamic Driving Force of Nucleation

In a first-order approximation the third term on the right-hand side of Equation (A18) can be
linearized by Taylor expansion and by means of the Maxwell relations (Schmelzer and Abyzov [105]
(Equations (16) and (17))):

µjα(pα, Tα, {xiα}) ≈ µjα(pβ, Tβ, {xiα})

+

(
∂µjα(pβ, Tβ, {xiα})

∂pβ

)
Tβ ,{xiα}︸ ︷︷ ︸=

(
∂Vα(pβ, Tβ, {niα})

∂njα

)
pβ ,Tβ ,{niα,i 6=j}



(pα − pβ)

+

(
∂µjα(pβ, Tβ, {niα})

∂Tβ

)
Tβ ,{niα}︸ ︷︷ ︸= −

(
∂Sα(pβ, Tβ, {niα})

∂njα

)
pβ ,Tβ ,{niα,i 6=j}



(Tα − Tβ) .

(A21)
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Substraction of µjβ(pβ, Tβ, {xiβ}) from both sides of Equation (A21), multiplication of
Equation (A21) by njα, and summation over all components delivers:

k

∑
j=1

njα
[
µjα(pα, Tα, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
≈

k

∑
j=1

njα
[
µjα(pβ, Tβ, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
+(pα − pβ)

k

∑
j=1

njα

(
∂Vα(pβ, Tβ, {niα})

∂njα

)
pβ ,Tβ ,{niα,i 6=j}︸ ︷︷ ︸

Vα

−(Tα − Tβ)
k

∑
j=1

njα

(
∂Sα(pβ, Tβ, {niα})

∂njα

)
Tβ ,{niα,i 6=j}︸ ︷︷ ︸

Sα

.

(A22)

In the derivation of Equation (A22) use was made of the special feature of the volume,
V = V(p, T, n1, n2, . . . , nk) and the entropy, S = S(p, T, n1, n2, ..., nk) to be extensive functions of
the particle numbers, i.e., V and S are homogeneous functions of first order in the variables nj,
f = f (n1, n2, . . . , nk) with the following property:

f (ξn1, ξn2, . . . , ξnk) = ξ f (n1, n2, . . . , nk)

 
∂ f (ξn1, ξn2, . . . , ξnk)

∂ξ
=

k

∑
j=1

(
∂ f (ξn1, ξn2, . . . , ξnk)

∂nj

)
ni,i 6=j

nj

= f (n1, n2, . . . , nk) .

(A23)

Dividing Equation (A22) by Vα one arrives at (Schmelzer and Abyzov [105]
(Equations (18) and (19))):

k

∑
j=1

ρjα
[
µjα(pα, Tα, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
≈

k

∑
j=1

ρjα
[
µjα(pβ, Tβ, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
+(pα − pβ)− (Tα − Tβ)sα .

(A24)

Inserting Equation (A24) into Equation (A18) yields:

∆g(bulk) ≈
k

∑
j=1

ρjα
[
µjα(pβ, Tβ, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
. (A25)

Evaluating Equation (A24) at the thermodynamic equilibrium conditions, one obtains

k

∑
j=1

ρjα
[
µjα(pβ, Tβ, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
≈ −(pα − pβ) ,
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i.e., Equation (A18) approximates the Gibbs free energy change per unit volume for critical cluster
formation (Schmelzer and Abyzov [105] (Equation (20))):

∆g(bulk)
c = −∆g(bulk)

df,c ≈
k

∑
j=1

ρjα
[
µjα(pβ, Tβ, {xiα})− µjβ(pβ, Tβ, {xiβ})

]
. (A26)

For a heterogeneous one-component system the thermodynamic driving force,
Equations (A19) and (A26), reduces to:

∆g(bulk)
df,c (T, p) = pα − pβ

≈ ρα(p, T)
[
µβ(p, T)− µα(p, T)

]
= ρ̂α(p, T)

[
µ̂β(p, T)− µ̂α(p, T)

]
.

(A27)

Here, ρ̂α denotes the mass density of phase α, and µ̂α and µ̂β are the mass-specific chemical
potentials of the coexisting macrophases.

Appendix A.2.3. Thermodynamic Driving Force from Gibbs’ Fundamental Equation

Alternatively to Equation (A27), ∆g(bulk)
df,c (T, p) can be determined from the governing equation

for the total differential of the Gibbs free energy, G, of a homogeneous, single-component system of n
molecules, entropy S and volume V, applied to the macrophases α and β (Gutzow and Schmelzer [99]
(Equation (2.53))):

dGα = −Sα dT + Vα dp ,

dGβ = −Sβ dT + Vβ dp ,

 d∆g(bulk)
df,c (T, p) =

d(Gβ − Gα)

Vα
= −

(Sβ − Sα

Vα

)
dT +

(Vβ −Vα

Vα

)
dp .

(A28)

If macrophase α is identified with a crystal formed from its melt (macrophase β),
the thermodynamic driving force is obtained by integrating Equation (A28) from some particular
α−β equilibrium state (T?

m, p?m) (subscript m) to an actual non-equilibrium state (T, p). The reference
equilibrium state is set to p?m = 105 Pa and T?

m = 273.15 K. The superscript ? is used to distinguish the
chosen reference state from any other equilibrium state along the melting line (Tm, pm) with Tm(p)
denoting the melting temperature and pm(T) the melting pressure, respectively. Assuming that the
system is first transferred in a reversible isobaric process at p = p?m from T?

m to T, and then subsequently
transferred in an isothermal process at T = const. from p?m to p, i.e., via the path (T?

m, p?m)→ (T, p?m)
→ (T, p), the integral of Equation (A28) reads (Schmelzer et al. [109] (equations (4)–(9))):

∆g(bulk)
df,c (T, p) = −

T∫
T?

m

∆s(T, p?m)dT +

p∫
p?m

∆v(T, p)dp .

∆s(T, p) =
Sβ(T, p)− Sα(T, p)

Vα(T, p)
=

Ŝβ(T, p)− Ŝα(T, p)

V̂α(T, p)
=

∆Ŝ(T, p)
V̂α(T, p)

,

∆v(T, p) =
Vβ(T, p)−Vα(T, p)

Vα(T, p)
=

V̂β(T, p)− V̂α(T, p)

V̂α(T, p)
=

∆V̂(T, p)
V̂α(T, p)

.

(A29)

Here, Ŝα,β and V̂α,β denote the mass-specific entropies and volumes of the respective macrophases.
However, as the Gibbs free energy is a thermodynamic potential, the difference in the mass-specific
Gibbs free energy does not depend on the particular way to transfer the system from its equilibrium
state (T?

m, p?m) to any non-equilibrium state (T, p).
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Appendix A.2.4. Linearized Form of the Thermodynamic Driving Force, Equation (A29)

In the vicinity of the reference equilibrium state (T?
m, p?m) the mass-specific entropy can be

linearized for weak to moderate undercooling by means of a Taylor expansion:

Ŝ(T, p?m) ∼= Ŝ(T?
m, p?m) +

(
∂Ŝ(T, p)

∂T

)
T?

m ,p?m

(T − T?
m) .

Considering the mass-specific isobaric heat capacity,

ĉp = T

(
∂Ŝ
∂T

)
p

, (A30)

the mass-specific entropy reads:

Ŝ(T, p?m) ∼= Ŝ(T?
m, p?m)− ĉp(T?

m, p?m)
(

∆T
T?

m

)
. (A31)

The sign on the right-hand side of Equation (A31) was chosen to ensure positive definiteness of
the undercooling ∆T = T?

m−T > 0. Therewith, ∆Ŝ(T, p) assumes the following form:

∆Ŝ(T, p) = Ŝβ(T, p)− Ŝα(T, p)

∼= Ŝβ(T?
m, p?m)− Ŝα(T?

m, p?m)︸ ︷︷ ︸
= ∆Ŝm

−
[
ĉp,β(T?

m, p?m)− ĉp,α(T?
m, p?m)

]︸ ︷︷ ︸
= ∆ĉp,m

∆T
T?

m
. (A32)

Taking the into account the Clausius–Clapeyron relation for the mass-specific melting enthalpy,

∆ĤM,m = ∆ĤM(T?
m, p?m) = T?

m∆Ŝm , (A33)

one arrives at:

∆Ŝ(T, p?m) ∼=
∆ĤM,m

T?
m
− ∆ĉp,m

(
∆T
T?

m

)
. (A34)

Analogously, the linearization of the mass-specific volume by Taylor expansion delivers:

V̂(T, p) ∼= V̂(T?
m, p?m) +

(
∂V̂(T, p)

∂p

)
T?

m ,p?m

∆p .

Here, the quantity ∆p = p−p?m denotes the pressure difference with respect to the chosen
reference pressure p?m. This pressure difference corresponds to an overpressure for p > p?m, and to an
underpressure for p < p?m. Considering the isothermal compressibility,

κT = − 1
V̂

(
∂V̂
∂p

)
T

, (A35)

one obtains:

V̂(T, p) ∼= V̂(T?
m, p?m)

[
1− κT(T?

m, p?m)p?m

(
∆p
p?m

)]
. (A36)

Therewith, the linearized form of ∆s(T, p?m) in Equation (A29) reads:

∆s(T, p?m) =
∆Ŝ(T, p?m)
V̂α(T, p?m)

∼=
∆ĤM,m

V̂α(T?
m, p?m)T?

m
−

∆ĉp,m

V̂α(T?
m, p?m)

(
∆T
T?

m

)
. (A37)
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Analogously, the linearized form of ∆v(T, p) in Equation (A29) assumes the following form:

∆v(T, p) =
V̂β(T, p)

V̂α(T, p)
− 1 ∼=

V̂β(T?
m, p?m)

V̂α(T?
m, p?m)

(
1− κT,β(T?

m, p?m)∆p
1− κT,α(T?

m, p?m)∆p

)
− 1

≈
V̂β(T?

m, p?m)

V̂α(T?
m, p?m)

[
1−

(
κT,β(T?

m, p?m)− κT,α(T?
m, p?m)

)
︸ ︷︷ ︸

= ∆κT,m

∆p
]
− 1 .

(A38)

Inserting ∆s(T, p?m) from Equation (A37) into Equation (A29) yields the temperature dependence
of the thermodynamic driving force (Schmelzer et al. [109] (Equation (13))):

∆g(bulk)
df,c (T, p)

∣∣∣∣
p=const.

≈ ∆ĤM,m

V̂α(T?
m, p?m)︸ ︷︷ ︸

= ∆hm

∆T
T?

m

[
1−

∆ĉp,m

∆Ŝm︸ ︷︷ ︸
= γT,m

∆T
2T?

m

]
. (A39)

Here, the quantity ∆hm denotes the volumetric melting enthalpy. For small deviations from
equilibrium, the thermodynamic driving force as a function of undercooling reduces to the
Tammann–Meissner–Rie equation (Schmelzer et al. [109] (Equation (14))):

∆g(bulk)
df,c (T, p)

∣∣∣∣
p=const.

≈ ∆hm
∆T
T?

m
. (A40)

Analogously, inserting ∆v(T, p) from Equation (A38) into Equation (A29) yields the pressure
dependence of the thermodynamic driving force (Schmelzer et al. [109] (Equation (18))):

∆g(bulk)
df,c (T, p)

∣∣∣∣
T=const.

≈ ∆vm∆p

[
1− p?m∆κT,m

ε∆vm︸ ︷︷ ︸
= γp,m

∆p
2p?m

]
,

ε =
V̂α(T?

m, p?m)
V̂β(T?

m, p?m)
.

(A41)

Here, ∆vm = ∆v(T?
m, p?m) with ∆v(T, p) defined by Equation (A29). The expression

γp,m = γp(T?
m, p?m) in Equation (A41) slightly differs from Schmelzer et al. [109] (Equations (18)–(20)).

The latter is based on the approximation−∂∆v(T, p)/∂p ≈ κT,β− κT,α originating from the assumption
V̂α ≈ V̂β (i.e., ε ≈ 1).

For small deviations from equilibrium, the thermodynamic driving force as a function of the
pressure difference ∆p reduces to the following equation (Schmelzer et al. [109]):

∆g(bulk)
df,c (T, p)

∣∣∣∣
T=const.

≈ p?m∆vm
∆p
p?m

. (A42)

By virtue of Equations (A39) and (A41) the linearized form of the thermodynamic driving force of
nucleation reads:

∆g(bulk)
df,c (T, p) = ∆g(bulk)

df,c (T, p)
∣∣∣∣

p=const.
+ ∆g(bulk)

df,c (T, p)
∣∣∣∣
T=const.

≈ ∆hm
∆T
T?

m

[
1− γT,m

∆T
2T?

m

]
+ ∆vm∆p

[
1− γp,m

∆p
2p?m

]
.

(A43)
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Appendix A.3. Temperature and Pressure Dependence of the Surface Tension

According to Schmelzer and Abyzov [108], Schmelzer et al. [109], and Schmelzer et al. [110],
the dependence of the surface tension of critical crystallites on temperature and pressure can be
expressed for small deviations from equilibrium as

σαβ(T, p)
σαβ,m

∼=
T∆S(T, p)

Tm∆Sm
=

T∆Ŝ(T, p)
Tm∆Ŝm

, (A44)

with ∆Ŝ(T, p) defined in Equation (A29), ∆Ŝm in Equation (A32), and σαβ,m = σαβ(T?
m, p?m).

Linearization of the mass-specific entropy, Ŝ(T, p), by Taylor expansion in the vicinity of the reference
equilibrium state (T?

m, p?m) yields (Schmelzer et al. [110] (Equation (31))):

Ŝ(T, p) ∼= Ŝ(T?
m, p?m) +

(
∂Ŝ
∂T

)
T?

m ,p?m

(T − T?
m) +

(
∂Ŝ
∂p

)
T?

m ,p?m

(p− p?m) . (A45)

Considering the Maxwell relation(
∂Ŝ(T, p)

∂p

)
T

= −
(

∂V̂
∂T

)
p

,

the definition of the mass-specific isobaric heat capacity, Equation (A30), and the definition of the
isobaric thermal expansion coefficient,

αp =
1
V̂

(
∂V̂
∂T

)
p

, (A46)

one arrives at the following approximation of the mass-specific entropy with ∆T = T?
m−T and

∆p = p−p?m:

Ŝ(T, p) ∼= Ŝ(T?
m, p?m)− ĉp(T?

m, p?m)
(

∆T
T?

m

)
− αp(T?

m, p?m)V̂(T?
m, p?m)∆p .

Therewith ∆Ŝ(T, p) defined in Equation (A32) assumes the following form:

∆Ŝ(T, p)
∆Ŝm

∼= 1−
∆ĉp,m

∆Ŝm︸ ︷︷ ︸
= γT,m

(
∆T
T?

m

)

− p?m∆V̂(T?
m, p?m)

∆Ŝm

[
V̂β(T?

m, p?m)αp,β(T?
m, p?m)− V̂α(T?

m, p?m)αp,α(T?
m, p?m)

∆V̂(T?
m, p?m)

]
︸ ︷︷ ︸

= 〈∆αp,m〉V︸ ︷︷ ︸
= χp,m

(
∆p
p?m

)

∼= 1− γT,m

(
∆T
T?

m

)
− χp,m

(
∆p
p?m

)
.

(A47)
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Assuming V̂α≈V̂β and considering ∆sm = ∆s(T?
m, p?m) with ∆s(T, p) defined in Equation (A29),

the parameter χp,m simplifies to

χp,m ≈
p?m∆αp,m

∆sm
, ∆αp,m = αp,β(T?

m, p?m)− αp,α(T?
m, p?m) . (A48)

Inserting Equation (A47) into Equation (A44) yields a linearized expression for σαβ(T, p)
(Schmelzer et al. [109] (Equation (32))):

σαβ(T, p)
σαβ,m

∼=
T

T?
m

(
1− γT,m

∆T
T?

m
− χp,m

∆p
p?m

)
. (A49)

The reconciliation of CNT predictions on crystallization with experimental data requires the
removal of the widely adopted planar-equilibrium representation of the surface tension, the so-called
capillarity approximation, in favor of consideration of the curvature or size dependence of the
surface tension. Such procedure was already performed by J. W. Gibbs [103] and elaborated by
a variety of authors, in particular by Tolman [113]. However, as argued by Schmelzer et al. [112]
(Equation (3)), the approximation suggested by Tolman is valid only for small deviations
from thermodynamic equilibrium. In the more general case, the dependence of the surface
tension can be expressed as a truncated Taylor expansion in the following form (for the details,
see Schmelzer et al. [112] (Equations. (33), (34) and references)):

σαβ(Rα) =
σαβ,∞

1 +
2δ(Rα)

Rα

, δ(Rα) = δ∞

(
1 +

l2
∞

2δ∞Rα
+ . . .

)
, σαβ,∞ = σαβ,m . (A50)

Here, δ(Rα) denotes the Tolman parameter. At low degree of metastability the curvature of the
critical embryo is small and the Tolman parameter approaches its planar equilibrium value, ∆ = δ∞.

At this and with consideration of Equation (A19), σαβ(Rα) in Equation (A50) can be rearranged to
yield δ∞ (Schmelzer et al. [111] (Equation (68))):

δ∞ = lim
Rα→∞

δ(Rα) = lim
Rα→∞

Rα

2

(
σαβ,m

σαβ
− 1

)

= lim
Rα→∞

Rασαβ,m

2σαβ

(
1−

σαβ

σαβ,m

)
= lim

Rα→∞

σαβ,m

∆g(bulk)
df,c

(
1−

σαβ

σαβ,m

)
.

(A51)

For the case of constant pressure, p = p?m, and weak undercooling we insert Equation (A39)
together with Equation (A49) into Equation (A51), which results in the following expression at the
limit T→T?

m (Schmelzer et al. [111] (Equation (69))):

δ
(T)
∞

∣∣∣∣
p=p?m

=
σαβ,m

∆hm

1− T
Tm

(
1− γT,m

∆T
Tm

)
∆T
Tm

(
1− γT,m

∆T
2Tm

)
≈

σαβ,m

∆hm

[
∆T
Tm

(
1 + γT,m

∆T
2Tm

)] [
1− T

Tm

(
1− γT,m

∆T
Tm

)]
≈

σαβ,m

∆hm

(
1 + γT,m

∆T
2Tm

)(
1 + γT,m

T
Tm

)
≈

σαβ,m

∆hm
(1 + γT,m) .

(A52)
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Analogously, at constant temperature, T = T?
m, one obtains with Equation (A41) the following

expression at the limit p→p?m (Schmelzer et al. [111] (Equation (70))):

δ
(p)
∞

∣∣∣∣
T=T?

m

≈ σαβ,m
χp,m

p?m∆vm
. (A53)

Appendix A.4. Kauzmann Temperature and Kauzmann Pressure of Water

The Kauzmann temperature, TK, is defined by the condition ∆Ŝ(TK, p?m) = Ŝβ(TK, p?m) −
Ŝα(TK, p?m) = 0. Provided Ŝβ(T, p?m)>Ŝα(T, p?m), the first integral on the right-hand side of
Equation (A29) is a negative definite quantity, i.e., its disappearance at T = TK leads to a maximum of
the driving force ∆g(bulk)

df,c (T, p) (Kauzmann [120], Schmelzer et al. [110], Schmelzer and Tropin [126]
Schmelzer et al. [106], Schmelzer and Abyzov [105]).

In analogy to the Kauzmann temperature, Schmelzer and Abyzov [105]
and Schmelzer et al. [109] introduced the concept of Kauzmann pressure, pK, defined by ∆V̂(T?

m, pK)

= V̂β(T?
m, pK) − V̂α(T?

m, pK) = 0. Provided V̂β(T?
m, pK) < V̂α(T?

m, pK), the second integral on the
right-hand side of Equation (A29) is also a negative definite quantity, i.e., its disappearance at p = pK

leads to a maximum of the driving force ∆g(bulk)
df,c (T, p).

As a consequence, the Kauzmann temperature is obtained from the solution of the equation

∂∆g(bulk)
df,c (T, p?m)

∂T

∣∣∣∣∣∣
T=TK

= 0 .

Taking the linearized form of ∆g(bulk)
df,c (T, p?m) according to Equation (A39), the Kauzmann

temperature reads (Schmelzer et al. [109] (Equation (24))):

TK = T?
m

[
γT,m − 1

γT,m

]
. (A54)

Evaluating ∆g(bulk)
df,c (T, p?m) at T = TK delivers the maximum of the thermodynamic driving force

(provided it exists) (Schmelzer et al. [109] (Equation (25))):

∆g(bulk)
df,c (TK, p?m) ∼=

∆hm

2γT,m
. (A55)

Analogously, the Kauzmann pressure is obtained from the solution of the equation

∂∆g(bulk)
df,? (T?

m, p)

∂p

∣∣∣∣∣∣
p=pK

= 0 .

Taking the linearized form of ∆g(bulk)
df,c (T?

m, p) according to Equation (A41), the Kauzmann pressure
reads (Schmelzer et al. [109] (Equation (26))):

pK = p?m

[
γp,m + 1

γp,m

]
. (A56)

Evaluating ∆g(bulk)
df,c (T?

m, p) at p = pK delivers the maximum of the thermodynamic driving force
(provided it exists) (Schmelzer et al. [109] (Equation (27))):

∆g(bulk)
df,c (T?

m, pK) ∼=
p?m∆vm

2γp,m
. (A57)
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Appendix B. Kauzmann’s Perception of Metastability within the Framework of Statistical
Thermodynamics

Kauzmann [120] considered subregions of the phase space, which are assigned to various possible
regular geometrical arrangements of the molecules of the system. These arrangements correspond
to crystalline forms of the system, which comprise the volume Vα. Other regions, which are much
more extensive and of higher energy, correspond to the liquid form and comprise the volume Vβ.
The thermodynamic properties of both subregions of the phase space can be determined from the
partition function Z(T, V):

Zα(T, Vα) =
1

N!h f

∫
Vα

. . .
∫

exp

[
−

H(q1, q2, . . . , q f , p1, p2, . . . , p f , V
kBT

]

·dq1 dq2 . . . dq f dp1 dp2 . . . dp f ,

Zβ(T, Vβ) =
1

N!h f

∫
Vβ

. . .
∫

exp

[
−

H(q1, q2, . . . , q f , p1, p2, . . . , p f , V
kBT

]

·dq1 dq2 . . . dq f dp1 dp2 . . . dp f .

The function
H(qk, pk) = T(qk, pk) + U(qk, pk, Ai) , k = 1, 2, . . . , f

denotes the Hamilton function, T(qk, pk) the kinetic energy, and U(qk, pk, Ai) the potential energy of
the system, which are functions of the generalized coordinates qk and generalized impetuses pk, and
(for U) of the external parameters Ai, e.g., the volume A1 = V comprising the system. The quantity h
denotes the Planck constant, and f is the number of the mechanical degrees of freedom of the system,
given by f = 3N for a mechanical system consisting of N mass points. The integration has to be
performed over the corresponding subregions, Vα and Vβ, of the phase space. For a normal liquid
above the melting point one will find Zβ/Zα�1, and for a crystal below the melting point Zβ/Zα�1
(which is a consequence of occupied volumes of integration in each case). Kauzmann argued that in
either case the integration could be approximatively carried out over the entire volume of the phase
space, resulting in inequalities of Zα and Zα, which are overwhelmingly one-sided.

For an undercooled liquid one has Zβ/Zα�1, and the correct identification of Vβ is of greatest
importance and appears to be quite difficult. In such case all parts of Vα must be excluded from Vβ,
because even a tiny portion of Vα might contribute much more to Zα than the entire integral over
the correct Vβ. The substraction of the cristalline volume from the integration volume is obviously
possible because Vα is easily detectable owing to its great geometrical regularity. In “ambiguous”
regions of the phase space, which obviously have either a cystalline or liquid-like structure, one can
expect either very high values of the Hamiltonian, and hence very small values of the Boltzmann
term in the partition integral, or else a relatively small extent in the phase space. In either case the
contribution to the partition function should be small. Regions of the phase space, which correspond
to states near the top of the free energy barrier of crystallization, are in this ambiguous region between
Vβ and Vα. Considering the definition of the entropy, S(T, V), and the Helmholtz free energy, F(T, V),
of the system,

S(T, V) = −
(

∂F(T, V)

∂T

)
V

, F(T, V) = −kBT ln Z(T, V) ,

one arrives by virtue of the fore-mentioned inequalities for the ratio Zβ/Zα at the following relation
for the temperature dependence of the entropy difference between the liquid phase β and the crystal
phase α:

Sβ − Sα = kB ln
Zβ

Zα
+ kBT

∂

∂T

(
ln

Zβ

Zα

)
=

{
> 0 for T > T?

m ,
< 0 for T < T?

m .
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Here we adopted Zβ/Zα�1 at T < T?
m and Zβ/Zα�1 at T > T?

m, i.e., ∂ ln(Zβ/Zα)/∂T > 0.

Appendix C. Ice–Water Activation Energy

According to Jeffery and Austin [31] (section 5), the molar ice-water activation energy, ∆G̃act(T, p, ),
appearing in the kinetic prefactor in Equation (20), is–next to the ice-water surface tension–the second
closure parameter for CNT application to homogeneous freezing of water. The authors employed
the following relation between the self-diffusivity of water, D(T, p), and the molar activation energy,
∆G̃act(T, p) (Jeffery and Austin [31] (equation (11) and reference to Glasstone)):

D(T, p) = D0(p) exp

(
−∆G̃act(T, p)

RuT

)
 G̃act(T, p) = −RuT ln

D(T, p)
D0(p)

. (A58)

Here, the parameter D0(p) is approximately independent of temperature and denotes the
self-diffusivity of water at G̃act = 0. Jeffery and Austin estimated D and D0 separately from different
datasets. The data for self-diffusivity D(T, p) were taken from Prielmeier et al. [140] (Equation (3) and
Table 3), who fitted an empirical Vogel–Tamann–Fulcher equation to experimental data on water in the
temperature and pressure ranges 204 K ≤ T ≤ 333 K and 0.1 MPa ≤ p ≤ 400 MPa:

D(T, p) = D?(p) exp
(
− B(p)

T − T?(p)

)
. (A59)

Here, T? represents the ideal glass-transition temperature, at which self-diffusion ceases,
i.e., D(p, T?) = 0. Consistency requires, that T? must be related to the Kauzmann temperature,
where the configurational entropy of the amorphous and crystalline phases would match
(Prielmeier et al. [140] (p. 1114)). The parameters in Equation (A59) are presented in Table A1.
Note, that the order of magnitude of D? in column 2 and the unit of B in column 3 of
Jeffery and Austin [31] (Table 2) are wrong.

Table A1. Best fit parameters for the description of the isobaric temperature dependence of D(T, p)
in H2O according to Equation (A59). The data in the pressure range p = (0.1−200)MPa were
employed by Jeffery and Austin [31] (Table 2). Example: D?(0.1 MPa) = 4.14·10−8 m2 s−1. Taken from
Prielmeier et al. [140] (Table 3).

p/MPa
D? × 108

m2 s−1 B/K T?/K

0.1 4.14 347 177
10 6.46 455 161
50 8.90 563 143
100 10.1 622 133
150 11.2 668 126
200 8.93 614 131
250 7.24 564 137
300 5.78 514 142.5
350 3.41 423 152
400 3.24 410 154.5

To estimate D0, Jeffery and Austin [31] used a separate dataset of self-diffusivity measurements
conducted by Harris and Woolf [146] in the temperature and pressure ranges 277 K ≤ T ≤ 333 K and
0.1 MPa ≤ p ≤ 300 MPa. Harris and Woolf [146] (Equation (1) and Table 3) derived the following
parameterization for D(p, T):
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ln
(

D(T, p)
10−9 m2 s−1

)
= A0

+
3

∑
i=1

{
+
( p

0.1 MPa

)i
[

A2i−1 + A2i

(
103 K

T

)i]
+ Ci

(
103 K

T

)i}
.

(A60)

The parameters appearing in Equation (A60) are presented in Table A2.

Table A2. Best fit parameters for the description of the pressure and temperature dependence of D in
H2O according to Equation (A60). Taken from Harris and Woolf [146] (Table 3).

Ai Value Ci Value

A0 = 3.425150
A1 = −0.627500×10−3 C1 = 0.623898
A2 = 0.202474×10−3 C2 = −0.416757
A3 = 0.114172×10−6 C3 = 0
A4 = −0.447466×10−7

A5 = 0.450105×10−11

A6 = 0

Assuming that ∆G̃act(T, p) at constant pressure is nearly independent of temperature in the
considered temperature range, Jeffery and Austin [31] fitted the first relation in Equation (A58) to
the D(T, p) data of Harris and Woolf [146]. The fit returned both D0 and the average activation

energy ∆G̃act(p).
We checked the values of D0 and ∆G̃act(p) derived by Jeffery and Austin [31] by comparison with

the predictions from Equation (A60), and identified in this way a mistake in the order of magnitude
of D0 presented in Jeffery and Austin [31] (Table 2). Therefore, the correct values are listed here
in Table A3.

Finally, inserting D(T, p) from Equation (A59) into Equation (A58) yields the expression for the
activation energy proposed by Jeffery and Austin [31] (equation (15)):

∆G̃act(T, p) = RuT
[

B(p)
T − T?(p)

− ln
(

D?(p)
D0(p)

)]
. (A61)

We recalculated the isobars ∆G̃act(T, p = const.) vs. T presented in Jeffery and Austin [31]
(figure 4) and found them to be correct. The plot reveals an increase in the activation energy
upon increasing undercooling (corresponding to a kinetically controlled nucleation rate depression),
and a decrease in the activation energy upon increasing pressure (kinetically controlled nucleation rate
enhancement). As the values of both D?(p) and D0(p) were subject to the same wrong unit prefactor
in Jeffery and Austin [31] (Table 2), the errors (typo) cancel out in the ratio D?(p)/D0(p), which enters
the activation energy expression, Equation (A61).

Table A3. Best fit parameters in Equation (A58) for the description of the isobaric temperature
dependence of D in H2O according to Harris and Woolf [146] (Equation (1) and Table 1). Example:
D0(0.1 MPa) = 349×10−8 m2 s−1. Corrected version of Jeffery and Austin [31] (Table 2).

p/MPa
D0 × 108

m2 s−1
∆G̃act(p)
kJ mol−1

0.1 349 18.2
10 328 18.0
50 263 17.5
100 210 16.9
150 175 16.5
200 157 16.3
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