
entropy

Article

Solidification Morphology and Bifurcation
Predictions with the Maximum Entropy Production
Rate Model

Yaw Delali Bensah 1 and J. A. Sekhar 2,*
1 Department of Materials Science and Engineering, University of Ghana, Legon, Accra P.O. Box LG 77,

Ghana; bensahyad@gmail.com
2 Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
* Correspondence: Jainagesh.sekhar@uc.edu

Received: 30 October 2019; Accepted: 18 December 2019; Published: 26 December 2019
����������
�������

Abstract: The use of the principle of maximum entropy generation per unit volume is a new approach
in materials science that has implications for understanding the morphological evolution during
solid–liquid interface growth, including bifurcations with or without diffuseness. A review based
on a pre-publication arXiv preprint is first presented. A detailed comparison with experimental
observations indicates that the Maximum Entropy Production Rate-density model (MEPR) can
correctly predict bifurcations for dilute alloys during solidification. The model predicts a critical
diffuseness of the interface at which a plane-front or any other form of diffuse interface will become
unstable. A further confidence test for the model is offered in this article by comparing the predicted
liquid diffusion coefficients to those obtained experimentally. A comparison of the experimentally
determined solute diffusion constant in dilute binary Pb–Sn alloys with those predicted by the various
solidification instability models (1953–2011) is additionally discussed. A good predictability is noted
for the MEPR model when the interface diffuseness is small. In comparison, the more traditional
interface break-down models have low predictiveness.

Keywords: maximum entropy production rate; MEPR; planar morphology; cellular morphology;
morphological bifurcations at solid–liquid interface; growth velocity; temperature gradients;
coefficient of diffusion at high temperatures

1. Introduction

The maximum entropy generation principle [1–16] has brought significant predictive capability
to quantitative materials science. The principle has been able to reveal (a) the onset of various
forms of morphological bifurcations during growth, especially the onset of the first roughening
transition [1,2,6,9]; (b) complex solute segregation and texture reconfiguration phenomena, particularly
noted during tribological contacts [4,12]; (c) Belousov–Zhabotinsky patterns and reaction pathways for
high temperature reactions [2,3]; (d) the onset of steady state structures during solid–solid wear [5–8];
and (e) the stable ellipsoidal patterns that are noted in solidification microstructures (dendrite tips),
multiphase fluid flows, and particle sedimentation [2,10–19]. The principle accurately predicts the
trajectory of objects in motion when subjected to a gravitational field [16] and by extrapolation of the
field-theory for the assessment of the efficacy of solar cells [17].

The maximum entropy production rate-density, MEPR, or the Maximum Entropy Production
Principle, MEPP, are the acronyms used in the literature [2,6,9,10] for analyses that employ the entropy
rate maximization principle. We have chosen to use MEPR [2] in this article to emphasize the importance
of the “rate” in the acronym. A MEPR hypothesis is tested in this article for initiating interface diffuseness
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or topographical changes in the two-phase and/or diffuse interface regions. Any criterion for bifurcation
based on this principle is expected to be related to the composition, partition function, velocity of
solidification, and the temperature gradient experienced in the solid–liquid zone [1,2,18].

The MEPR model postulates that the entropy generation is maximized for an interface transition
(bifurcation) to a different configuration (i.e., to a different atomistic or topographical (morphological)
variant). In this article, we first review the MEPR solidification bifurcation model [1,2] and compare it
with other models for the plane front instability. The model predictions are tested with the experimental
data available from published studies on numerous dilute binary alloys [1]. The ensuing model for pure
substance or a binary alloy has been shown to quantitatively predict the size of a diffuse interface and
the number of pseudo-atomic layers present in the diffuse zone [1]. This is reviewed below. A further
comparison with experimentally measured breakdown groupings of variables that have been reported
in the solidification-research literature indicates that the MEPR model is also able to account for the
interface topography as being either of a faceted (f) or non-faceted (n/f) kind [1]. It must be noted that
model also correctly offers a quantitative measure for the transition from facet to non-facet (f/nf) planar
or to a non-planar topography, as being dependent on the velocity and the temperature gradient [1]. As the
entropy generation is related to the gradients, it is possible that the MEPR criterion may also allow for
a better estimate of the solute diffusion constant in binary alloys [18] that has proved elusive to predict
by traditional models. This hypothesis is tested for dilute Pb–Sn alloys in this article.

When an alloy is directionally solidified at a low velocity (typically in the order of one micrometer
per second), a planar morphology is first noted at the solid–liquid interface. With an increase in
the transformation velocity (enabled by increasing the cooling rate or the Bridgman–Stockbarger
imposed growth rate (See for example https://en.wikipedia.org/wiki/Bridgman-Stockbarger_technique),
the initially planar interface becomes unstable with other shapes, transforming to a non-planar,
macroscopically jagged or wavy cellular shape to the variations possible in the topography; or it may
transform to a diffuse interface with non-planar shape variations [18]. There is a loss of work potential,
WL, with a new shape or diffuseness formation, which in turn is related to the entropy generation.
The appearance of a smooth-cellular or jagged morphology from a planar interface, especially for
binary alloys, depends on the material composition, CO (wt% or mole/m3), velocity V (m/s) of the
growing interface, and the temperature gradient GL (K/m) in the liquid and k, the non-dimensional
solute partition coefficient. These variables at the point of morphological instability are commonly
subscripted with the symbol (c) to indicate a transition [18–42]. Various theoretical models [18–34] have
been offered to explain the transition, however, the two most widely employed models (prior to MEPR)
that describe the interface instability from planar to non-planar are the constitutional undercooling
(CUT) [19–22,27] and the linear stability theory model (LST) [31]. A minimum–maximum entropy
model was also previously proposed [24] but did not provide comprehensive predictability, ostensibly
because the Prigogine criterion used in that model for the minimum–maximum criterion was not
applicable [2]. The objective of this article is to extend the confidence in the MEPR model with
comparative tests made in [1] in order to select between the models.

The CUT, LST, and MEPR models contain a diffusion parameter, namely, the coefficient of diffusion
of solute in the liquid. Consequently, one additional test for the comparison of the three models is to
compare the predicted values of the coefficient of diffusion to an experimental number measured from
a non-solidification experiments at that temperature. In [18], it was shown that the values predicted
by CUT and LST models show considerable deviation from the experimental number. In this article,
comparisons with the MEPR model are made.

2. The MEPR Model

During the one dimensional solidification of a pure metal or a binary molten alloy, which is at
freezing temperature under a fixed temperature gradient and with constant interface velocity there
is a loss of work potential from the dissipation of kinetic energy, giving rise to entropy generation
rate density

.
ϕmax (J m−3K−1s−1) is given by [1] in the region of the diffuse interface with dimensions
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ζ (m). The subscript max. indicates that that the maximum value of this new entropy generation rate is
given by:

.
ϕmax =

∆ρk V3

2 ζ2 GSLI
(1)

where ∆ρk (kgm−3) is the overall density shrinkage given by (ρl ∆ρ/ρs), ∆ρ (kgm−3) is the density change
from liquid to solid (ρs − ρl); ρs (kgm−3) and ρl (kgm−3) are the densities of the fully solid and fully
liquid zones, respectively. The symbol GSLI (Km−1) is the temperature gradient across the solid–liquid
interface, including the diffuse interface. This gradient is difficult to measure experimentally, so it is
commonly approximated as the average between the rigorous-solid and rigorous-liquid regions. In
this article, GSLI is assumed to be approximately equal to the temperature gradient in the fully liquid
zone, GL (Km−1), (i.e., GSLI ≈ GL).

At the solid–liquid interface region, during directional solidification of a binary material,
the existence of diffuseness or a non-planar morphology (such as cellular) can produce new entropy.
Following Sekhar [2], the entropy rate maximization in this region when compared between various
morphological pathways can be thought to be somewhat analogous to the free energy selections
between various phases. A cellular structure produces entropy of a positive value that increases with
velocity, as does the planar diffuse structure [1,2], but at different rates. The postulate of MEPR applied
to solidification morphology is that the highest entropy-rate-producing configuration is the most stable.
During directional solidification (one dimensional growth in casting, as is done for turbine blades
or jewelry manufacture), the first transition from a stationary planar interface is the evolution in the
interface region from an atomically sharp to a diffuse interface between the rigorous solid and the
rigorous liquid [2]. For an alloy, further topographical variations become possible as the entropy
generation rate per unit volume reaches a peak, beyond which a cellular or other non-planar structure
(e.g., cells or dendrites) can overtake the planar entropy production rate at any given composition of
the alloy [1,2]. Detailed calculations for developing Equation (1) for the diffuseness dimension and the
instability criterion are shown in [1]—only a brief review is provided below. The maximum entropy
generation rate per unit volume (or the entropy rate density) [1,2] is related to

.
sLG(J m−3K−1s−1),

which is the entropy transfer rate from the solute gradient in the liquid and
.
sE(J m−3K−1s−1) (i.e., the

main component of the entropy generation rate that describes the entropy generated due to exchange
of matter and heat in the SLI), expressed as:

.
ϕmax =

.
sE −

.
sLG (2)

.
sE and

.
sLG are given by

(
V∆hsl GSLI/T2

M

)
and

(
∆TOV2Rg ln(1/k)/DL 4 mL

)
, respectively [1]. The term

∆hsl (Jm−3) is the heat of fusion, which is an approximation for ∆hm [2]; ∆hm (Jmol−1) is the heat of
fusion with defects; mL (Km3mole−1) is the slope of the liquidus line at the solid–liquid boundary for
a binary material; k (dimensionless) is the partition coefficient that can be obtained from the binary
phase diagram; DL (m2s−1) coefficient of solute diffusion in the alloy. Here, ∆TO (K) is the solidification
temperature range, which is expressed as (Tl − Ts) or (CO(1 − k) mL/k), where Tl and Ts are the liquidus
and solidus temperatures, respectively, and can be obtained from the phase diagram. The conditions
given by Equations (3a) and (3b) below for a maximum or minimum defines a possible onset of a
bifurcation condition (morphological instability).(

∂
.
ϕmax

∂V

)
CO

= 0 (3a)

or (
∂

.
ϕmax

∂V

)
ζ

= 0 (3b)
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Note that arguments to indicate the maximization condition are provided in [2,6,9,10]. Note that(
∂2 .
ϕmax
∂V2

)
ζ, CO

is negative when inferring a maximization condition. Although Tsi and Tli are unknown

based on binary alloy materials, the thickness ζ of the diffuse interface (m) can be approximated for
dilute solutions by assuming that Tsi ≈ Tm and Tli ≈ Tm, and following the procedures developed in [1],
the standard solute balance at steady state growth along with Equation (3a) above can used to yield:(

∂
.
ϕmax

∂V

)
CO

=
∆hsl GSLI

Tli · Tsi
−

2∆TO

DL

V Rg ln(1/k)

4 mL
(4)

Here, CO (wt % or mole m−3) is the solute concentration in the alloy.
Similarly, Equation (2) yields,(

V
GSLI

)
C

=
DL

∆TO

2 mL ∆hsl

T2
m Rg ln(1/keff)

(5)

Now by using (3b) and (5), ζ can be written as:

ζ =
V

GSLI

1
√

M−B
(6)

where N (m2 K−2s−2) is defined as

( 2∆hsl
∆ρk T2

m

)
−

 V ∆TO Rg ln
(

1
keff

)
2 GSLI DL ∆ρk mL


, M (m2 K−2s−2) is defined as

(
2∆hsl

∆ρk T2
m

)
and B (m2 K−2s−2) is defined as

 V ∆TO Rg ln
(

1
keff

)
2 GSLI DL ∆ρk mL

.

Here, keff is the effective partition coefficient for a diffuse interface. The equation is valid for
extremely dilute alloys. Changing the formulation of Equation (6) by placing back into Equation (5)
now also gives the driving force diffuseness for a binary alloy material as: ηG = V

GSLI
1
d

1
√

N
, where d is

the interplanar lattice spacing normal to the growth direction. However, note that the exact bifurcation
may occur at any velocity and temperature gradient greater than that set by Equation (5) (i.e., Equation
(5) only sets one boundary condition). By analyzing the entropy generation density for a wavy
interface [1], one can also infer that the interface will break down between

DL

∆TO

2 mL ∆hsl

T2
m Rg ln(1/keff)

<

(
V

GSLI

)
C
<

2DL

∆TO

2 mL ∆hsl

T2
m Rg ln(1/keff)

(7)

This is the MEPR condition for describing the breakdown limits. Because the condition is based
on the comparison of the entropy rate maximization, it may also be recast in terms of the cooling
rate (VGSLI)C.

Note that Figure 1 establishes a relationship between the diffuseness and the break down variable.
Figure 1 shows the plot of the total diffuseness as a function of (V/Gsli)c. The figure plots the set
of measurable breakdown parameters. For any alloy this would be a straight line as per the MEPR
model. However, we note that that the band is the similar across various alloys thus highlighting the
previously unanticipated relationship between interface diffuseness and the solidification parameters.
This implies that the results shown below in Figures 2 and 3, namely the maximums in the entropy
generation rate, are anticipated by the experiments. Additionally, the slopes are different for faceted
materials when compared to the non-facet situation, possibly indicating features of diffuseness not
fully captured by the MEPR model.
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φ̇max cannot be less than zero (second law of thermodynamics). This implies that regardless of the 

sign of GSLI, the critical φ̇max can only have a lower value of zero for a planar interface. Thus, a non-

planar shape can always overtake a plane front morphology for a negative temperature gradient, or 

in other words a negative temperature gradient will always imply a breakdown into cells or other 

Figure 1. The plot shows measured experimental conditions at breakdown in the abscissa and
calculated interface diffuseness on the ordinate. If the total interface diffuseness is greater than one or
two atomic layers, then there is a possibility of non-facet morphology at breakdown, otherwise
it should be facet morphology [1]. The relationship between total diffuseness and the ratio of
the velocity/temperature gradient (V)C/(GSLI)C should yield a straight line irrespective of material
parameters for any growth direction (or crystal plane spacing normal to a growth direction) in the
MEPR model. The values V and GSLI are experimentally measured numbers at breakdown, and ηT is
calculated from the model [1]. Note that succinonitrile (SCN) alloys are non-faceted by an additional
thermal and possibly rotational diffuseness at the melting temperature, which makes the SCN material
transformation always appear with a non-faceted morphology particularly when observed at optical
level magnifications. Experimentally, the materials shown below the dashed line (log10 ηT = 2) are
recorded to be macroscopically faceted [1]. For the zone for facet materials, a different slope than in
the non-facet region may represent different mechanisms for growth (e.g., nucleation-dominated or
dislocation-dominated) [22,32,43].
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Figure 2. MEPR model prediction of the calculated maximum entropy generation rate density
.
ϕmax

(J/m3Ks) against the diffuse interface thickness at a constant solute concentration for dilute binary
materials. The

.
ϕmax for the diffuse plane front reaches its highest value at the peak of the curve (i.e.,

when M becomes equal to 2B).
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Figure 3. MEPR model prediction [1] of calculated
.
ϕmax (J/m3Ks) as a function of the (V/GSLI) for

Al–Cu with solute concentrations for five compositions (thick colored curves). The
.
ϕmax increases with

decreasing solute concentration and reaches a maximum value. At extremely low solute concentration,
the binary material behaves similarly to a pure material (linear dark line) and

.
ϕmax increases indefinitely

with V/GSLI, like a pure metal [1]. Note the two thin schematic lines, one for cells (that begins at the
origin) and the other for some form of dendrites, are also shown to indicate how a bifurcation transition
may be reached, and further how dendrites can overtake cellular morphologies (see reference [2] for
more details on types of dendrites). Note that in Equation (8) a similar graphical relationship for
the entropy rate density generation density is seen when the abscissa is the cooling rate (V∗GSLI) [1].
For unconstrained dendrites [18] the cooling rate is a preferred grouping of processing variables to
indicate particularly the fineness of the secondary dendrites with increased cooling rate [32,33,43,44].

Equation (6) can be related to the processing parameters for constrained or unconstrained
solidification namely, (V/GSLI) or the cooling rate (VGSLI) respectively to yield the following entropy
rate based criteria, (

V
GSLI

)
C

=
2

∆ρk

 .
ϕmax

N G2
SLI


C

(8)

(VGSLI)C =
2 (

.
ϕmax)C

∆ρk NC
(9)

where c refers to critical and N is defined below Equation (6) (please also see nomenclature).
Figures 2 and 3 show the plot of the entropy rate density as a function of the alloy parameters

(diffuseness) and the processing and for the MEPR model. The first and second derivatives w.r.t. to V
at constant ζ and GSLI indicate that the entropy generation rate will increase linearly with velocity
unless solute partitioning into the liquid is allowed. When solute partitioning is possible, the entropy
rate generation term indicates a maximum when plotted as a function of velocity (Figure 2). If no
other interface configuration is feasible (those that display a higher entropy rate generation, such as
a seaweed, jagged or fine tip interface), the interface will remain planar during growth. Note that
.
ϕmax cannot be less than zero (second law of thermodynamics). This implies that regardless of
the sign of GSLI, the critical

.
ϕmax can only have a lower value of zero for a planar interface. Thus,

a non-planar shape can always overtake a plane front morphology for a negative temperature gradient,
or in other words a negative temperature gradient will always imply a breakdown into cells or other
patterns (unless a high-velocity-plane front transition occurs [2]). Additionally, because cellular shapes
with a diffuse interface are seemingly restricted by the bounds of entropy from the diffuseness of
alternate shapes, additional configurational entropy production rate increases for complex features
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(e.g., dendrites) are feasible and so will always emerge as an alternative structure unless a very wide
diffuse interface topographies are possible with no partitioning. This is a possible explanation for why
well-defined cellular features are not commonly noted in microstructures, such as atomized powders
that solidify with a negative temperature gradient. Figures 2 and 3 show the entropy generation rate
density as a function of various solidification features and collapsed parameters that are known to
influence instability of a particular topography or morphology. Note the definitions of B, M, and N
from Equations (4)–(6) and the nomenclature. When B becomes greater than or equal to M, then N is
either zero or negative; consequently, the interface diffuseness becomes undefined. The maximum
entropy generation rate density increases with the corresponding increase in diffuse interface thickness
and falls only when the parameter B approaches 0.5 M. The growth of the interface can be steady
when N is greater than one. When the temperature gradient is zero, the diffuse interface thickness
becomes undefined, thus allowing keff to take on a high value closer to one. When B is equal to M,
then N is zero, and ζ and

.
ϕmax are both undefined. From the transition instability criterion defined

above, the peak for
.
ϕmax against velocity occurs when M/B (dimensionless) is equal to 2 (i.e., M/N0.5)

is equal to
(

2∆hsl
∆ρk T2

m

)
. Figure 2 in [1] shows the plot of the entropy generation rate as a function of the

diffuseness. When M > B, then the number of pseudo-atomic layers present within the diffuse interface
region is easily related to the driving force diffuseness in an almost linear manner [1]. Note that the
deviation from linearity sets in at a lower V/GSLI as the concentration increases. At the condition where
M ≥ N > 1, noted in Figure 2, a steady slope is observed, where the V/GSLI ratio shows a strong effect
on the number of pseudo-atomic-spacings [1]. As the condition for 1 > N > 0 is encountered, even a
small change in the V/GSLI ratio can lead to a rapid change in the number of pseudo-atomic spacings
at the interface. Figure 3 shows the parabolic-like profile of the entropy generation rate density as a
function of V/Gsli. Both Figures 2 and 3 indicate that a peak is noted in the entropy generation rate
density for a planar interface, essentially giving other entropy producing morphologies a possibility to
dominate over the plane front structure (whether diffuse or not). An example is shown in Figure 3
of how the entropy rate for a cellular pattern or a dendritic morphology may indicate transitions to
those shapes. Note that an implication of the results in Figure 1 is that ∆TSLI approaches ∆TO, but a
morphological transition prevents the full attainment for this separation for the plane front (i.e., if the
high velocity plane front condition is not encountered) [2,13,38–40].

3. Traditional Instability Models

3.1. The CUT Model

The first interface breakdown model was proposed qualitatively by Rutter and Chalmers [22],
and then quantitatively described by Tiller, Rutter, Jackson, and Chalmers [19]. This model describes
the interface instability (from planar to non-planar) as being enabled by a region of constitutionally
undercooled liquid that forms ahead of the solid–liquid interface during growth from solute partitioning.
For a binary alloy, the CUT criterion for instability is written as:

DL =

(
V

GL

)
C

∆TO (10)

where GL (Km−1) is the temperature gradient in the liquid, DL (m2s−1) is the solute diffusion coefficient
in the liquid, and ∆TO (K) is the equilibrium solidification range (Tl − TS) for a liquid at composition
CO (molem−3). Also, Tl (K) and TS (K) are the equilibrium liquidus and solidus temperatures captured
in equilibrium phase diagrams.

3.2. The LST Model

In 1964, Mullins and Sekerka [31] proposed the linear stability model (LST) that considered the
stability of a planar interface to a perturbation of an infinitesimal amplitude. In this stability model,
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the interface is unstable if any wavelength of a sinusoidal perturbation grows, and conversely the
interface is stable if none of the perturbations can grow (regardless of their wavelength and surface
energy) can grow. This LST criterion gives the instability criterion for a binary material as:

DL =

(
V

GL

)
C

∆TO(Ks + KL) S
2 KL

(11)

where S (no units) is the Mullins–Sekerka stability constant [31], which is equal to one for low velocities;
KL and KS (J m−1K−1s−1) are the thermal conductivities for the fully solid and the fully liquid states,
respectively. Note that the CUT model in Equation (10) and LST model in Equation (11) converge for
the limit of Ks ∼= KL.

A study by Burgeon et al. [38] with in situ interface imaging in microgravity conditions prevalent
during the ordering of a cellular array structure concluded that the cause of interface dynamics
and breakdown are more than just an account of the undercooled liquid ahead of the interface.
An experimental study by Inatomi et al. [39] also cast doubt on whether an undercooled liquid or
solute pile-up ahead of the interface is always present. They have argued persuasively that none of
the theories for breakdown may be correct. For an interface’s topographical instability in the case of
facet prone materials, a strain accumulation model [34] has also been considered as describing the
interface breakdown. However, Inatomi et al. [39] argue against a general strain model as the cause for
the instability. In reference 1, the variables ZCUT and ZLST were developed as parameters that describe
the deviations from the experimental values. For the conditions where the interface instability occurs
at high velocities, especially for very low alloy composition materials or with very low temperature
gradients [1], both the CUT and LST models lose even more predictive capability [1,18]. Additionally,
it should be noted the CUT and LST models do not address the facet/non-facet transitions or diffuseness
at a molecular level, which is easily treated by the MEPR model [1,2].

4. Comparison with Experiments for the Diffusion Coefficient Prediction

The experimentally reported values of DL from non-solidification experiments for Pb–Sn alloys
at different concentrations are reported in [18] and are summarized in Table 1. The experimental DL

values shown in Table 1 directly measured from non-solidification experiments are corrected by an
Arrhenius-type correction for the liquidus temperature if the report is at a higher temperature than
the liquidus [30–40]. However, note that these corrected numbers only impact the results in a minor
way for the dilute alloy compositions considered. The results shown in Table 1 for the DL predictions
for both CUT and LST show consistent and significant deviation from experimental measurements,
as pointed out by De Cheveigne et al. [26] and Bensah et al. [18]. From Table 1, we note that the
MEPR model shows stronger predictive capability of DL compared to CUT and LST for Pb–Sn alloys
when compared with experimental values. However, even with the MEPR model, large deviations are
noted for experimental conditions with a small temperature gradient. Pb–Sn alloys are known to have
very wide diffuse interfaces [1,21,35–37]. A lower GSLI dramatically influences the diffuse interface
as noted above, and consequently the partition coefficient. The expectation that keff approaches one
with increased interface diffuseness is a reasonable assumption for dilute Pb–Sn and icosahedral alloys
with a diffuse interface [32,33,40–48]. Should keff, therefore, change from 0.636 to 0.95 because of the
low temperature gradient and diffuse interface, the DL value that is calculated is shown to become
much lower to match the experimental data for even these low solidification temperature- gradient
experiments. The corrected values are also shown in italics in Table 1 in the highlighted part of the
table. Regardless, it should be noted that the assumed change in keff to 0.95 is arbitrary and is only set
to this number to illustrate the influence of the partition function on the calculated number.
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Table 1. A summary of results for DL in instability conditions for experimental breakdown compared
with the value obtained from three instability models. Note that for MEPR, GSLI was assumed to
be equal to GL for the calculations. The diffusion data and physical constant from [18] for Pb–Sn
alloys is Ks = 33.6 (J/mKs), KL = 15.4 (J/mKs); the equilibrium partition coefficient is k = keff = 0.636,
Tm = 600.65 K, ∆hsl = 2.48 × 108 (J/m3). The shaded cells contain values of DL (in italics) for both cases
(i.e., the equilibrium partition ration as well as when keff increases to 0.95 for the low temperature
gradient conditions). MEPR Model: Circa 2011; LST Model: Circa 1964; CUT Model: Circa 1953.

Composition DL (×10−9

m2/s)
at Tl from

Experiment *

Imposed Variable Alloy Variable
k =

0.636
k = 0.95

DL (×10−9 m2/s) at TS from
Solidification Theories

VC
(m/s)
×10−6

GL
(K/m) Ts (K) Tl (K)

MEPR
Model
Lower
Bound

MEPR
Model
Upper
Bound

CUT
Model

LST
Model

Pb-0.01 wt% Sn 1.656 167 540 600.621 600.604 4.619 2.3095 5.398 8.587

Pb-0.03 wt% Sn 1.655 73.5 820 600.560 600.508 4.016 2.008 4.692 7.465

Pb-0.05 wt% Sn 1.654 73.5 1380 600.499 600.412 3.976 1.988 4.646 7.392

Pb-0.06 wt% Sn 1.654 75.0 1220 600.469 600.364 5.507 2.7535 6.435 10.24

Pb-0.1 wt% Sn 1.653 56.7 1200 600.347 600.172 7.053 3.5265 8.241 13.11

Pb-0.15 wt% Sn 1.652 33.3 1300 600.194 599.933 5.733 2.8665 6.699 10.66

Pb-0.15 wt% Sn 1.652 108 415 600.194 599.933
58.24 29.12

68.06 108.32.97 1.485

Pb-0.15 wt% Sn 1.652 142 465 600.194 599.933
68.34 34.17

79.86 127.13.48 1.74

Pb-0.15 wt% Sn 1.652 167 485 600.194 599.933
77.06 38.53

90.05 143.33.93 1.96

Pb-0.15 wt% Sn 1.652 230 700 600.194 599.933
73.54 36.77

85.93 136.73.75 1.87
* Extrapolated to the liquidus temperature.

5. Summary Discussions

Topographical and diffuse interface reconfigurations occur with a change in the solidification
rate. In this article, we pursue the hypothesis that the interface configuration during solidification
is determined by the maximum rate of entropy production in the region between a rigorous solid
and rigorous liquid phase. We posit that when an interface begins to migrate, there are several stable
configurations that are possible. These include atomically planar, diffuse-planar, facet non-planar,
and cellular nonplanar configurations. The configuration and topographical condition that affords the
maximum entropy production rate (MEPR) yields the most stable interface configuration. The principle
of MEPR is applied to (1) describe atomically smooth and diffuse interfaces, (2) provide quantitative
results for the diffuse interface thickness and the number of pseudo-atomic layers in the interface
region, and (3) predict the transition from planar to a non-planar facet or non-facet cellular morphology
as a function of solidification velocity or temperature gradient. The MEPR model provides for an
assessment of the interface diffuseness at the breakdown condition. It also allows for the break down
condition to be expressed in terms of the cooling rate and the entropy generation rate.

Numerous experimental investigations spanning sixty years have failed to comprehensively
validate any of the existing solid–liquid interface (SLI) growth instability models. With the MEPR
model for the first time, breakdown conditions are predicted with a fair degree of accuracy for several
binary alloys, where no previous theoretical model had predictability. The model considers steady-state
solidification at close-to-equilibrium and far-from-equilibrium conditions. For dilute Pb–Sn alloys,
the MEPR model gives closer DL predictions compared to the predictions made by the more traditional
CUT and LST models. Regardless of the success of the model to date, it should be noted that the model
remains untested for alloys with a significant amount of solute content.
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Nomenclature and Abbreviations

Letter symbols
Af area of a solute flux in a liquid (m2)
ASLI area of an interface in a solid–liquid region (m2)
B Entropic contribution from the solute boundary layer
Cp average heat capacity across a solid–liquid interface (Jm−3K−1)
d interplanar lattice spacing (m)
∆CO change in concentration at a solute distance z (mole m−3) ∆CO = ∆TO

mL

D Diffusion Coefficient (m2s−1)
fs fraction of liquid solidified at the solid–liquid interface (dimensionless)
GS temperature gradient in a solid (Km−1)
GL temperature gradient in a liquid (Km−1)
GSLI linear temperature gradient across a diffuse interface (Km−1)
∆hm heat of fusion of a solid with defects (Jm−3)
∆hsl equilibrium heat of fusion (Jm−3) or (Jmol−1)
Js solute flux in a liquid entering a solid–liquid interface (mole s−1)
k equilibrium partition coefficient obtained from the phase diagram (dimensionless)
keff effective partition coefficient at a solid–liquid interface (dimensionless)
∆KE gain or loss in kinetic energy (J)
KL thermal conductivity for a rigorous liquid (Jm−1K−1s−1)
KS thermal conductivity for a rigorous solid (Jm−1K−1s−1)
mL slope of the equilibrium liquidus line at the SLI for a binary material (Km3mole−1)
M Entropic contribution from the thermal flow
N Diffuseness contribution to the entropy generation
Q lost work potential from the heat generation from a solid–liquid interface (J)
Rg molar gas constant (Jmol−1 K−1)
S Mullins and Sekerka stability constant (dimensionless)
Sf flux entropy rate (JK−1s−1)
.
sE

change in entropy generation rate density due to exchange of matter and energy to and
from a solid–liquid interface with its surrounding (Jm−3K−1s−1)

.
sgen irreversible entropy generation rate in a diffuse region (JK−1s−1)
.
sin rate of entropy entering a control volume (JK−1s−1)
.
sout rate of entropy leaving a control volume (JK−1s−1)
.
sgen total irreversible entropy generated rate density at an interface (Jm−3K−1)
.
sLG entropy generation rate density by the solute gradient in a liquid (Jm−3K−1)
(Sgen)max maximum entropy generation due to lost work (JK−1)
dScv/dt total steady state entropy rate in a control volume (JK−1s−1)
dscv/dt total steady state entropy rate density in a control volume (Jm−1K−1s−1)
t time (s)
Tli liquidus temperature at a solid–liquid interface boundary (K)
Tsi solidus temperature at a solid–liquid interface boundary (K)
∆TSLI temperature difference across a solid–liquid interface (K)
(dCLG/dz) or
(∆ CO/δc)

change in solute gradient in a liquid (mole m−4)

Tm melting temperature (K)

www.mhi-inc.com


Entropy 2020, 22, 40 11 of 13

Tav average temperature between Tli and Tsi across a diffuse interface (K)
∆TO solidification temperature range (K)
V solidification interface velocity (ms−1)
WL lost work (J)
dz or δc change in the position length of the solute (m)
ZCUT deviation parameter of CUT from experiment at breakdown (dimensionless)
ZLST deviation parameter of LST from experiment at breakdown (dimensionless)
Greek symbols
Ωf flux volume (m3)
∆ΩS volume shrinkage (m3)
δC Solute boundary layer at the critical point δC = 2 DL

V (m)
|∆ρk| density shrinkage (kgm−3) (ρs- ρl)
ρl density of rigorous liquid (kgm−3)
ρs density of rigorous solid (kgm−3)
∆µc Chemical potential difference (Jmole−1)
ζ solid–liquid interface thickness (m)
ωD energy of defects (Jm−3)
ΩSLI volume of a solid–liquid interface (m3)
.
ϕ maximum entropy generation rate density for a moving interface (Jm−3K−1s−1)
ηG driving force diffuseness (dimensionless)
ηT total diffuseness (dimensionless)
ηα thermal diffuseness (dimensionless)
Subscripts and acronyms
CUT constitutional undercooling theory circa 1953
LST linear stability theory circa 1964
MEPR maximum entropy production rate circa 2011
L liquid
S solid
LG solute gradients in the liquid
SG solute gradients in the solid
SLI solid–liquid interface
HD mean heat dissipation at the solid–liquid interface
f facet
nf non-facet
Expt experiment
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