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Abstract: Twin-field quantum key distribution (TF-QKD) is proposed to achieve a remote key
distribution with a maximum secure transmission distance up to over 500 km. Although the security
of TF-QKD in its detection part is guaranteed, there are some remaining problems in the source part.
The sending-or-not-sending (SNS) protocol is proposed to solve the security problem in the phase
post-selection process; however, the light source is still assumed to be an ideal coherent state. This
assumption is not satisfied in real-life QKD systems, leading to practical secure issues. In this paper,
we discuss the condition that the photon number distribution (PND) of the source is unknown for
the SNS protocol, demonstrate that the security analysis is still valid under a source with unknown
PND, and show that with light source monitoring, the performance of the SNS protocol can remain
almost unchanged.
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1. Introduction

Quantum key distribution (QKD) provides a way for different communication parties to share a
set of identical security keys [1,2]. The security of QKD is based on the laws of quantum physics and
has been proved theoretically in different ways in the past decades. In addition to security analysis,
people have also started to study the performance of QKD and to further improve the performance of
real-life QKD systems by proposing new protocols [3–7].

Among all proposed protocols, measurement-device-independent (MDI) protocol is meaningful,
since it can make up all the security loopholes in the detection part of QKD systems [8]. MDI protocol
has developed rapidly in recent years, with many achievements obtained [9–19]. In theory, the
application of the decoy state method [20] has been further studied, and more optimized parameter
estimation results are obtained to achieve a better performance [9–11]. Besides, different MDI
experiment schemes have been proposed [12] and several meaningful experiment achievements,
including the field test [13] and the network experiment [14] based on the MDI protocol, have been
carried out. Meanwhile, the continuous-variable MDI protocol has also been developed [16–19]. With
the developing of experimental research, the MDI protocol achieved a transmission distance of 404 km
in 2016, which was the farthest distance for standard QKD at that time [15].

The transmission distance of QKD has been further increased recently. Based on the MDI protocol,
an extraordinary protocol called twin-field quantum key distribution (TF-QKD) was proposed by
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Lucamarini et al. in 2018, which can increase the transmission distance to over 550 km on standard
optical fibers without quantum repeaters [21]. Because of its outstanding advantage in transmission
distance, TF-QKD has recently been the subject of a lot of follow-up research [22–29]. Actually, in the
original protocol, the phase randomization process will lead to secure issues since the information of
random phase is announced to Eve in the post-selection process [30]. In further research, different types
of modified TF-QKD protocols have been proposed to improve the incomplete security analysis [22–26].
Through classifying the signals [22], or adding an extra test mode [23], or using a pre-selected global
phase [25,26], the security loophole of the post-selected part can be resolved. With the modified
protocols, long-distance TF-QKD experiments have already been implemented [28,29]. Recently, an
exciting experimental work has shown that the transmission distance for TF-QKD can reach over
500 km in practice [28], showing that TF-type protocols can significantly improve the transmission
distance with the currently available technology.

Among those TF-type protocols, the sending-or-not-sending (SNS) protocol proposed by
Wang et al. is an effective scheme to combine with the decoy state method to solve the phase
randomization problem. In the SNS protocol, there is no post-selection process for the random phases
of the signal bits, which are used to generate the final secret keys, thus the problem is avoided [22]. By
optimizing the proportion of the sending and not-sending signals, the SNS protocol can still achieve a
very long transmission distance.

A remaining problem with the SNS protocol is that the prepared quantum state in the source is
assumed to be an ideal coherent state. Actually, the assumption could be broken since the prepared state
will deviate from the ideal coherent state due to the non-ideality of the practical laser [31]. Moreover,
since the light source structure in the SNS protocol is similar to the BB84 protocol, there will also be an
untrusted source problem [32–36] in the source part, causing the photon number distribution (PND) of
the light source to be unknown, and the prepared state to no longer be a coherent state.

In this paper, we provide further discussion of the SNS protocol under the unknown PND
condition (UPC). By analyzing the form of the prepared state in Eve’s view, it is shown that the security
analysis in the SNS protocol is still valid without the coherent state assumption, and the final secret
key rate can be derived naturally. By applying a light source monitoring (LSM) method proposed
previously [37,38], all relevant parameters can be estimated compactly, thus the secret key rate of the
SNS protocol under UPC can be obtained. Moreover, it is indicated that the performance of the SNS
protocol under UPC can almost keep the same ideal source condition through the numerical simulation.

The paper is organized as follows. In Section 2, we first analyze the security of the SNS protocol
under UPC and give the calculation method of the secret key rate for the SNS protocol under UPC,
then introduce an LSM method to obtain tight bounds of the parameters needed in calculating the
secret key rate. In Section 3, we show the simulation results by applying the LSM method in the SNS
protocol under UPC. Finally, we provide conclusion to our work in Section 4.

2. SNS Protocol with LSM

2.1. Security Analysis under UPC

In the SNS protocol [22,27], Alice (Bob) prepares a coherent state with an intensity µA (µB),
a random modulated phase δA (δB) and a global phase γA (γB). Only the states where Alice and Bob
choose the same intensity (µA = µB = µ) will be retained for discussion, thus the joint state sent by
Alice and Bob is |√µei(δA+γA)〉|√µei(δB+γB)〉. In Eve’s view, it has the convex form

ρAB = ∑
k

pk(µ)|ψk〉〈ψk|, (1)

where |ψk〉 refers to a joint state with total photon numbers k, and pk(µ) refers to the probability that
the joint state contains k photons totally [22]. Specifically, the single-photon part of the state has the
form of
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|ψ1〉 =
1√
2
[ei(δB+γB)|0〉A|1〉B + ei(δA+γA)|1〉A|0〉B]. (2)

|ψ1〉 plays an important role during the whole security analysis of the SNS protocol [22]. In fact, the
equivalent virtual protocols discussed in the security analysis focus on the single-photon part and the
security analysis could remain valid when the phase difference between the two parts of the single
state |1〉A|0〉B and |0〉A|1〉B remains to be

∆φ = δA + γA − δB − γB. (3)

Under UPC, the quantum state prepared by Alice (Bob) is no longer an ideal coherent
state |√µei(δA+γA)〉 (|√µei(δB+γB)〉), but a state with arbitrary PND, which can be written
as |ψA〉 = ∑k eik(δA+γA)

√
Pk,A(µ)|k〉A (|ψB〉 = ∑k eik(δB+γB)

√
Pk,B(µ)|k〉B) after the modulation process,

where Pk,A(µ) (Pk,B(µ)) is completely unknown.
As a result, with the analysis shown in Appendix A, the joint state sent by Alice and Bob can still

have the convex form
ρAB = ∑

n
pn(µ)|ψ′n〉〈ψ′n| (4)

in Eve’s view, with the n-photon state

|ψ′n〉 =
1√

pn(µ)

n

∑
k=0

√
Pk,A(µ)Pn−k,B(µ)eik∆φ|k〉A|n− k〉B, (5)

and the probability of n-photon

pn(µ) =
n

∑
k=0

Pk,A(µ)Pn−k,B(µ). (6)

Specifically, the single photon part of ρAB under UPC can be written as

|ψ′1〉 =
1√
2
[|0〉A|1〉B + ei∆φ|1〉A|0〉B] (7)

with a symmetric condition
Pk,A(µ) = Pk,B(µ) = Pk(µ), (8)

which is also assumed in the original SNS protocol [22]. This result indicates that the original security
analysis can be directly applied to UPC, since the phase difference between |1〉A|0〉B and |0〉A|1〉B is
still ∆φ, that is, |ψ′1〉 only has a global phase difference with |ψ1〉 in Equation (2).

Secret Key Rate

Unlike the original TF-QKD, the SNS protocol divides all the transmitted light pulses into
two categories, which are called signal windows and decoy windows [20,22]. In the signal
window (equivalent to Z-basis), Alice (Bob) randomly chooses to send or not send a signal pulse, and
the data are used to generate keys. In the decoy window (equivalent to X-basis), Alice (Bob) sends
decoy states with different intensities and the data are used to estimate the count rate and phase error
rate of the signals’ single photon part. In addition, there is a post-selection process for the random
phases δA, δB to ensure more accurate estimation results, which originates from TF-QKD.

The secret key rate of the SNS protocol has been given as [22,27]:

R = 2ε(1− ε)PL
1 (µs)sL

1 [1− H(eph,U
1 )]− f SZ H(EZ), (9)

in which ε is the probability that Alice (Bob) chooses to send out a signal pulse (it can be preset in the
protocol), H(x) = −xlog2x− (1− x)log2(1− x) is the binary Shannon entropy function, PL

1 (µs) is the
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lower bound of the probability that a state with intensity µs sent in signal windows contains single
photon, sL

1 and eU
1 refer to the lower bound of the count rate and the upper bound of phase error rate for

the single photon part of signals, SZ and EZ refer to the count rate and the bit error rate of the signals. In
decoy windows, a three-intensity decoy method with intensities µd0 = 0, µd1 , µd2 and µd2 > µd1 > 0 is
used to estimate sL

1 and eU
1 and the results are obtained as [22]

sL
1 =

p2(µd2)[Sµd1
− p0(µd1)S0]− p2(µd1)[Sµd2

− p0(µd2)S0]

p2(µd2)p1(µd1)− p2(µd1)p1(µd2)
, (10)

eph,U
1 =

Sµd1
Eµd1
− p0(µd1)S0/2

p1(µd1)s
L
1

, (11)

where p0(µdk
), p1(µdk

), p2(µdk
) (k = 0, 1, 2) are the probabilities that a state with intensity µdk

sent in
decoy windows contains zero, single or two photons, Sµdk

, Eµdk
are the count rate and bit error rate of

a state with intensity µdk
sent in decoy windows.

In the original SNS protocol, the light source is assumed to be able to prepare ideal coherent
states [22], thus the PND of the light source satisfies Poisson distribution for each of Alice and Bob,
that is,

Pn,A(µ) = Pn,B(µ) = Pn(µ) = e−µ µn

n!
(12)

for µ = {µs, µd1 , µd2}, hence the probabilities pn(µ) (n = 0, 1, 2) obtained in Equation (6) can be
directly calculated as:

p0(µ) = P2
0 (µ), p1(µ) = 2P0(µ)P1(µ),

p2(µ) = 2P0(µ)P2(µ) + P2
1 (µ). (13)

When pn(µ) are known, the parameters sL
1 and eU

1 in Equations (10) and (11) can be estimated. In
addition, the probability PL

1 (µs) is also obtained exactly from Equation (12). With these results, the
secret key rate in Equation (9) can eventually be calculated.

However, as mentioned above, the probabilities pn(µ) become unknown under UPC, though the
security analysis can be held. Fortunately, as analyzed in Reference [39], the decoy-state method is still
valid under UPC when the lower and upper bounds of pn(µ) (n = 0, 1, 2) are obtained, and the results
of sL

1 and eU
1 can be rewritten as

sL
1 =

pL
2 (µd2 )[Sµd1

− pU
0 (µd1

)S0]− pU
2 (µd1

)[Sµd2
− pL

0 (µd2 )S0]

pU
2 (µd2 )pU

1 (µd1
)− pL

2 (µd1
)pL

1 (µd2 )
, (14)

eph,U
1 =

Sµd1
Eµd1
− pL

0 (µd1
)S0/2

pL
1 (µd1

)sL
1

, (15)

where pL(U)
n (µ) refers to the lower (upper) bound of pn(µ). With Equation (6) , pL(U)

n (µ) (n =

0, 1, 2) can be obtained as

pL(U)
0 (µ) = [PL(U)

0 (µ)]2, pL(U)
1 (µ) = 2PL(U)

0 (µ)PL(U)
1 (µ),

pL(U)
2 (µ) = 2PL(U)

0 (µ)PL(U)
2 (µ) + [PL(U)

1 (µ)]2 (16)

with Equation (8), hence the secret key rate can still be calculated effectively if tight bounds of Pn(µ)

are obtained.

2.2. Parameters Estimation with LSM

The source structure in the SNS protocol is similar to that of the BB84 and MDI protocol, therefore
it is possible to apply the LSM scheme proposed in the BB84 and MDI protocol to the SNS protocol to
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estimate Pn(µ). Recently, a new LSM scheme proposed by us in the MDI protocol gives tight bounds
of Pn(µ) in each of Alice’s and Bob’s part under UPC [38]. Since the SNS protocol and the MDI protocol
have the same structure in the intensity modulation part, the same LSM module can be added to the
SNS protocol as shown in Figure 1, and with the extra LSM module, the same results can be obtained
in the SNS protocol as follows [38]:

VOA SPD

Nonideal

Source

Modulation

Part

Nonideal

Source

Modulation

Part

SPD VOA

BS BS

BS

SPD SPD

PM

Figure 1. The structure of the sending-or-not-sending (SNS) protocol with an extra LSM module in
each of Alice’s and Bob’s parts. The LSM module is made up of a variable optical attenuators (VOA)
and a single photon detector (SPD). By changing the attenuation coefficient of the VOA, various
sets of the results on the responding probability of the SPD are obtained, which can be used to
estimate Pn(µ) effectively. The details of the monitoring scheme have been discussed in Reference [38].

PU
0 (µ) = PL

0 (µ) =
Pµ(η0)

1−Y0
, (17)

PL
1 (µ) =

(1− η2)
2Pµ(η1)− (1− η1)

2Pµ(η2)

(1−Y0)(1− η1)(1− η2)(η1 − η2)
− (

1
1− η1

+
1

1− η2
)PU

0 (µ), (18)

PU
1 (µ) =

(1− η2)(1− η1)

[1− η2 − (1− η1)(2− η1)]
{ Pµ(η1)

(1− η1)2(1−Y0)
+

[1− (1− η2)
3]

η2(1− η2)2 PU
0 (µ)

+
1− η2

η2
− Pµ(η2)

η2(1− η2)2(1−Y0)
−

PL
0 (µ)

(1− η1)2 }, (19)

PL
2 (µ) =

Pµ(η2)

(1−Y0)(1− η2)2η2
− 1− η2

η2
− [1− (1− η2)

3]

(1− η2)2η2
PU

0 (µ)− 2− η2
1− η2

PU
1 (µ), (20)

PU
2 (µ) =

Pµ(η2)

(1−Y0)(1− η2)2 −
PL

0 (µ)

(1− η2)2 −
PL

1 (µ)

1− η2
(21)

with a condition
η1(2− η2) > 1, (22)

where ηk(k = 0, 1, 2) is the variable attenuation coefficient in the extra LSM module, Pµ(ηk) is the
probabilities of the single photon detector’s (SPD) not responding in the LSM module, and Y0 is the dark
count rate of the SPD. When Pn(µ) are estimated with the LSM scheme, the key parameters sL

1 , eU
1 in

Equations (14) and (15) can be calculated, and the secret key rate of SNS protocol under UPC is obtained.

3. Performance with Numerical Simulation

The performance of the original SNS protocol and the SNS protocol with the LSM scheme can be
compared with a determined light source condition. Considering an ideal simulation circumstance
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first [22], the PND of the light source, Pn(µ), is assumed to satisfy Equation (12). In this case, the
probabilities Pµ(η) in the LSM scheme can be simulated as [38]

Pµ(η) = (1−Y0)e−ηµ, (23)

and the estimation results of Pn(µ) can be calculated with Equations (17)–(21). Except Pµ(η), other
parameters used in Equations (9)–(11), (14) and (15), such as Sµdk

, Eµdk
, SZ, EZ, can be simulated with

the same method discussed in the original SNS protocol [22,27], hence the final secret key rate can
be calculated.

To compare the performance of the LSM scheme and the original SNS protocol under ideal
simulation conditions, the simulation parameters, which are listed in Table 1, are set to be the same
as in Reference [22]. Besides, for the LSM scheme, we set the attenuation coefficient as η0 = 1,
η1 = 0.95, η2 = 0.9 to obtain tight estimation results of Pn(µ); other parameters, including the
intensities µs, µd1 , µd2 and the sending probability ε, are optimized at different transmission distances
for both the original protocol and the SNS protocol with the LSM scheme.

Table 1. Values of parameters used in simulation. α: the fiber loss coefficient (unit: dB/km); Y0: the
dark count rate of the detector; ηD: the detection efficiency; edet: the misalignment error of the QKD
system; f : the error correction efficiency.

α Y0 ηD edet f

0.2 1.0× 10−11 80% 1% 1.1

The simulation results shown in Figure 2 indicate that, with the LSM scheme, the SNS protocol
under UPC can have a performance that is almost the same as that of the original protocol with an
ideal source. Specifically, both cases have a maximum transmission distance of up to over 800 km, and
the difference between the LSM scheme and the ideal source condition is only about 0.5 km. Besides,
the difference of the secret key rate between them is only about 1% for a typical distance of 100 km.

.

×

×

Figure 2. The performance of the proposed LSM scheme (red dash curve) compared to original
SNS protocol (blue dash curve) with the parameters set as Table 1. The ratios of secret key rate
between the LSM scheme and original SNS protocol are about 99.1%, 98.9%, 98.8% at the distance
of 100, 300, 500 km, and the maximum transmission distances of the LSM scheme and original SNS
protocol are about 806.0 and 806.5 km.

In order to further analyze the practical performance of the SNS protocol and it with the LSM
scheme, it is necessary to consider a more practical simulation circumstance. For a real-life QKD
system, the PND of the source’s signals is not fixed although without Eve’s disturbance [31,40,41].
Under this condition, the performance of the original SNS protocol will be degraded even though the
security problem of an unknown PND is ignored. Specifically, the signal sent out from the source can
be considered as a fluctuated coherent state with a Gaussian-distributed average photon number µ,
which has a probability distribution of
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P(µ) =
1√

2πσµ

exp[− (µ− µ0)
2

2σ2
µ

], (24)

where µ0, σµ are the mean value and the standard deviation of µ. Without the LSM module, the
probabilities Pn(µ) can only be estimated by assuming that µ belongs to a confidence interval, that is,
µ ∈ [µL, µU ], with a confidence level ε =

∫ µU
µL

P(µ)dµ, where

µL = (1− δ)µ0, µU = (1 + δ)µ0, (25)

hence the results are

PL(U)
0 (µ) = e−µU(L) , PL(U)

1 (µ) = µL(U)e
−µL(U) ,

PL(U)
2 (µ) =

µ2
L(U)

2
e−µL(U) . (26)

For the LSM scheme, the probabilities Pµ(η) can be simulated as

Pµ(ηi) = (1−Y0) exp [−ηiµ0 −
(ηiσµ)2

2
] (27)

after considering the source fluctuation [36,37], and Pn(µ) can be estimated by Pµ(ηi) with
Equations (17)–(21).

The performance of both the original SNS protocol and the original SNS protocol with LSM
are simulated under different fluctuation coefficient σ = σµ/µ0. The parameters are changed to
be consistent with those in Reference [21] in Table 2 to simulate a more realistic condition, which
is close to the practical experimental conditions [28], and ε, µs, µd1 , µd2 are optimized as well. For
the original SNS protocol, the confidence levels are set as ε = 1− 10−10, and in the LSM scheme,
the attenuation coefficients are set as η0 = 1, η1 = 0.95, η2 = 0.9. The simulation results under the
practical simulation condition shown in Figure 3 indicate that the LSM scheme still performs well
in practice, as its performance remains almost the same under the fluctuated light source. As a
comparison, the performance of the original SNS protocol decreases obviously with a light source
fluctuation σ = 1%, and its transmission distance even reduces to less than 500 km when σ = 2%.
Since the condition σ > 1% is common in real-life QKD systems [40,41], the LSM scheme will have a
better performance compared to the original SNS protocol in practice, although only the fluctuation
problem is considered.

0 100 200 300 400 500 600

Transmission distance L (km)
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SNS with LSM, =1%

SNS with LSM, =5%

Original SNS, =1%

Original SNS, =2%

Figure 3. The performance of the LSM scheme with an untrusted and fluctuated light source compared
to original SNS protocol. σ: the fluctuation coefficient. For the LSM scheme, we consider a small
fluctuation condition σ = 1% (black dash curve) and a large fluctuation condition σ = 5% (red dash
curve), and the performance between them is still close. For the original protocol, we consider a small
fluctuation condition σ = 1% (blue curve) and a relatively large fluctuation condition σ = 2% (yellow
curve), since the condition σ = 2% already has an obviously worse performance than σ = 1%.
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Table 2. Values of parameters used in simulation (set as in Reference [21] for a more practical condition).

α Y0 ηD edet f

0.2 1.0× 10−9 30% 3% 1.15

4. Conclusions

In summary, we analyze the security of the SNS protocol under UPC, and propose an LSM scheme
to solve the unknown PND problem in the source part. An important problem for the SNS protocol
is whether its security analysis is still valid without assuming the prepared state is an ideal coherent
state. In this paper, we calculate the form of the quantum state sent from Alice and Bob in Eve’s view,
and show that the single photon part of the state has the same form as the ideal source condition under
UPC, thus the security analysis remains valid. We apply the LSM scheme proposed previously to the
SNS protocol to estimate the probabilities pn(µ) precisely to eventually obtain a tight bound of the
secret key rate. Through simulation, we show that, with the proposed LSM scheme, the performance of
the SNS protocol under UPC can be almost the same as that of the original SNS protocol with an ideal
source. Moreover, the LSM scheme improves the performance of the SNS protocol when considering
source fluctuation, indicating that the SNS protocol can still have a long transmission distance with a
fluctuated source in real-life QKD systems.
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Appendix A. The Convex Form of ρAB under UPC

After the modulation of intensity and phase, the quantum state sent by Alice (Bob) can
be written as a state with an arbitrary PND, |ψA〉 = ∑k eik(δA+γA)

√
Pk,A(µ)|k〉A (|ψB〉 =

∑k eik(δB+γB)
√

Pk,B(µ)|k〉B). Although the exact values of Pk,A(µ), Pk,B(µ) are totally unknown, the
form of the sent state ρAB in Eve’s view can be calculated because of the randomness of the
phase δA, δB. Actually, similar to the situation of original SNS protocol, the new independent
variables δ± = δA ± δB can be introduced as well, and the phase δ+ is completely random for Eve [22],
thus in Eve’s view, the quantum state sent from Alice and Bob is

ρAB =
∫ 2π

0
P(|ψA〉 ⊗ |ψB〉)dδ+

=
∫ 2π

0
P[∑

k
eik(δA+γA)

√
Pk,A(µ)|k〉A ⊗∑

m
eim(δB+γB)

√
Pm,B(µ)|m〉B ]dδ+

=
∫ 2π

0
∑
k

∑
m

P[eik(δA+γA)
√

Pk,A(µ)|k〉A | ⊗ eim(δB+γB)
√

Pm,B(µ)|m〉B ]dδ+

= ∑
k

∑
m

∫ 2π

0
P[ei( k+m

2 δ++
k−m

2 δ−+kγA+mγB)
√

Pk,A(µ)Pm,B(µ)|k〉A |m〉B ]dδ+

= ∑
k,k′ ,m,m′

∫ 2π

0

√
Pk,A(µ)Pk′ ,A(µ)Pm,B(µ)Pm′ ,B(µ)e

i[ k+m−k′−m′
2 δ++

k−k′+m′−m
2 δ−+(k−k′)γA+(m−m′)γB ] |k〉A |m〉BB〈m′ |A〈k′ |dδ+

= ∑
k,k′ ,m,m′

δ(k + m− k′ −m′)
√

Pk,A(µ)Pk′ ,A(µ)Pm,B(µ)Pm′ ,B(µ)e
i[ k−k′+m′−m

2 δ−+(k−k′)γA+(m−m′)γB ] |k〉A |m〉BB〈m′ |A〈k′ |

= ∑
k,k′ ,m

√
Pk,A(µ)Pk′ ,A(µ)Pm,B(µ)Pk+k′−m,B(µ)e

i(k−k′)∆φ |k〉A |m〉BB〈k + m− k′ |A〈k′ |, (A1)

where P(|x〉) = |x〉〈x| is the density matrix of |x〉, δ(·) is the Dirac delta function, and ∆φ = δA +

γA − δB − γB.
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The results of Equation (A1) can be written as

ρAB = ∑
n
|ψn(µ)〉〈ψn(µ)|, (A2)

where |ψn(µ)〉 has the form of

|ψn(µ)〉 =
n

∑
k=0

√
Pk,A(µ)Pn−k,B(µ)|k〉A|n− k〉B. (A3)

After normalization, the form of ρAB is eventually obtained as

ρAB = ∑
n

pn(µ)|ψ′n〉〈ψ′n|, (A4)

in which

|ψ′n〉 =
1√

pn(µ)

n

∑
k=0

√
Pk,A(µ)Pn−k,B(µ)eik∆φ|k〉A|n− k〉B (A5)

is the n-photon part of ρAB, and

pn(µ) =
n

∑
k=0

Pk,A(µ)Pn−k,B(µ) (A6)

is the probability of n-photon.
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