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Abstract: We consider the Dean–Kawasaki (DK) equation of overdamped Brownian particles that
forms the basis of the stochastic density functional theory. Recently, the linearized DK equation
has successfully reproduced the full Onsager theory of symmetric electrolyte conductivity. In this
paper, the linear DK equation is applied to investigate density fluctuations around the ground
state distribution of strongly coupled counterions near a charged plate, focusing especially on the
transverse dynamics along the plate surface. Consequently, we find a crossover scale above which
the transverse density dynamics appears frozen and below which diffusive behavior of counterions
can be observed on the charged plate. The linear DK equation provides a characteristic length of
the dynamical crossover that is similar to the Wigner–Seitz radius used in equilibrium theory for
the 2D one-component plasma, which is our main result. Incidentally, general representations of
longitudinal dynamics vertical to the plate further suggest the existence of advective and electrical
reverse-flows; these effects remain to be quantitatively investigated.

Keywords: stochastic density functional theory; counterions; charged plate; strong coupling;
the Wigner–Seitz cell; the Dean–Kawasaki equation

1. Introduction

Water-soluble materials often have surface chemical groups that are dissociated in a polar
solvent. Examples of such materials include not only mesoscopic particles, such as viruses, proteins,
polyelectrolytes, membranes, and micelles, but also macroscopic objects like a glass plate of sample
cell [1,2]. Both mesoscopic and macroscopic particles will be referred to here as ‘macroions’.
The macroions are likely to carry a total surface charge exceeding thousands of elementary charges
e, surrounded by oppositely charged counterions that are dissociated from the macroions [1,2];
counterions are electrostatically bound around macroions, due to the high asymmetry between
counterions and macroions in valence of charges.

Focusing on the counterions, the macroion systems can be rephrased as inhomogeneous
one-component ionic fluids in the presence of external fields—the one-component fluids of counterions
can be regarded as the one-component plasma (OCP) [3–5]. Systems of charged particles immersed in
a smooth neutralizing medium are commonly observed in nature, such as a suspension of dust grains
in plasmas, as well as colloidal solutions, which can be modeled by the OCP in the unscreened limit
of Yukawa fluids [3–5]. The 2D OCP has been used for the description of dusty plasmas confined by
external fields, where the motion of particles interacting via 3D electrostatic interaction potential is
restricted to a 2D surface [3–5]. There is, however, a crucial difference between counterion systems and
the OCP, due to the localization of the electrically neutralizing background. While the whole space in

Entropy 2020, 22, 34; doi:10.3390/e22010034 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5567-4315
http://dx.doi.org/10.3390/e22010034
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/1/34?type=check_update&version=4


Entropy 2020, 22, 34 2 of 15

the OCP is filled with a smooth background in either the 2D or 3D systems, counterions form a 3D
electric double layer and are not neutralized unless they are localized on the macroion surfaces [6–8].

This paper will address the strong coupling systems of counterions in the presence of one charged
plate, focusing especially on the transverse dynamics of density fluctuations around the ground state
that will be specified in Section 2.1 [8–11]. Turning our attention to the dynamics, the strongly coupled
counterion system is distinguished from the 2D OCP by one extra dimension, vertical to the macroion
surface. Accordingly, density fluctuations occur not only along the 2D plane parallel to the macroion
surface, but also along the one extra dimension. Furthermore, the strong coupling regime in the
counterion systems may be realized at room temperature, and therefore dynamics due to thermal
fluctuations need to be considered; however, there are few studies on the counterion dynamics in the
ground state.

Thus, the main aim of this paper is to investigate the anisotropic fluctuation field n(r, t) of
counterion density due to the coarse-grained dynamics of counterion density ρ(r, t) = ρ∞(r) + n(r, t)
around a ground state distribution ρ∞(r), using the stochastic density functional equation.
The stochastic density functional theory is based on the so-called Dean–Kawasaki (DK) equation
that describes the evolution of the instantaneous microscopic density field of overdamped Brownian
particles [12–20]. The stochastic density functional theory has been used as one of the most powerful
tools for describing slowly fluctuating and/or intermittent phenomena [16–20], such as glassy
dynamics, nucleation or pattern formation of colloidal particles, stochastic thermodynamics of colloidal
suspensions, dielectric relaxation of Brownian dipoles, and even tumor growth.

The original DK equation includes nonlinear terms of dynamic origin due to the kinetic coefficient
that is proportional to fluctuating field ρ(r, t) [12–20]. While the nonlinearility of the original DK
equation leads to the above successful descriptions of various phenomena [16–20], a more tractable
form is required. It has been recently demonstrated that the DK equation can be linearized with respect
to n(r, t) when n(r, t)/ρ∞(r)� 1, and that the linear stochastic equation of density fluctuations is of
great practical use [21–27]. The density fluctuations of fluids near equilibrium are surprisingly well
described by model-B dynamics of a Gaussian field theory whose effective quadratic Hamiltonian for
the density fluctuation field is constructed to yield the exact form of the static density-density correlation
function [25]. Furthermore, we have demonstrated that the DK equation can be directly linearized in
the first approximation of the driving force due to the free energy functional F[ρ] of an instantaneous
density distribution ρ, when small density fluctuations around a metastable state are considered [21].

The stochastic thermodynamics around a metastable state has been investigated using the
stochastic density functional equation (the DK equation), showing that the heat dissipated into the
reservoir is generally negligible [21]. The linear stochastic density functional theory has also been
found relevant to investigate out-of-equilibrium phenomena, including the formulations of the full
Onsager theory of electrolyte conductivity [22].

The remainder of this paper is organized as follows: Section 2 provides formal background in
the case of a single charged plate system. We give the linear DK equation as a stochastic density
functional equation, after specifying a general form of the free energy functional F[ρ] of a given
density. In Section 3, the linear DK equation is applied to the strongly coupled counterion system
by considering density fluctuations n = ρ− ρ∞ around ρ∞. We can verify that the first derivative
of F[ρ] in the ground state (i.e., δF[ρ]/δρ|ρ=ρ∞ ) produces a constant, similar to the above metastable
state. Accordingly, the DK equation of the counterion system can be linearized around the ground
state. We will also see the underlying physics of anisotropic fluctuations (vertical to the plate) in terms
of the general form of the linear DK equation. In Section 4, we focus on the transverse dynamics
along the plate surface, assuming the absence of the gradient of the fluctuating density field vertical
to the plate. First, we derive the frozen dynamics over a long-range scale beyond the Wigner–Seitz
cell, reflecting the formation of the Wigner crystal on the charged plate. Furthermore, the linear
DK equation determines a crossover length lc, below which we can observe diffusive behaviors of
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counterions condensed on the plate. Our main result in this study is the quantitative evaluation of lc,
yielding lc ∼ a for Ξ ∼ 103. Section 5 contains a summary and conclusions.

2. Formal Background

2.1. Ground State of Counterion System in the Strong Coupling Limit

Let us briefly summarize what has been achieved by theoretical and simulation studies on the
OCP and the counterion systems in the strong coupling regime.

The thermodynamics of the OCP system is characterized by the coupling parameter [3–5],

Γ =
q2lB

a
, (1)

where q is the valence of counterions, lB ≡ e2/4πεkBT is the distance (the so-called Bjerrum length)
at which two elementary charges interact electrostatically with thermal energy kBT, when they are
surrounded by a polar solvent with its dielectric permittivity and temperature being ε and T, and the
Wigner–Seitz cell radius a defined by (πa2)σ = q using the surface number density σ of macroion
charges [3–5,7]. Thermodynamic properties of OCP systems have been extensively studied over
decades and accurate numerical results as well as their fits are available in the literature [3–5]. As Γ
increases, the OCP shows a transition from a weakly coupled gaseous regime (Γ � 1) to a strongly
coupled fluid regime (Γ� 1), and it eventually crystallizes. The concept of the Wigner crystallization
due to long-range electrostatic interactions underlies the formation of colloidal crystals, or photonic
crystals with large lattice constant, comparable in magnitude to the wavelength of visible light [2–5].

Meanwhile, in counterion systems, a Wigner–Seitz radius a has not been adopted in rescaling the
Bjerrum length as lB/a. We have used another coupling parameter Ξ defined by [6–11]

Ξ =
q2lB

λ
, (2)

λ =
1

2πqlBσ
, (3)

using the Gouy–Chapman length λ = 1/(2πqlBσ), a characteristic length of the electric double layer.
Inserting the relation σ = q/(πa2) into the definition of λ, we have

a
λ
= 2πqσlBa =

2q2lB
a

= 2Γ. (4)

It follows from Equations (3) and (4) that
Ξ = 2Γ2. (5)

When macroion-counterion attractions are weak, the structure of such ionic cloud, characterized
by λ, will be dispersed instead of forming the 2D OCP. The dispersed electric double layer is thus
represented by the weak coupling parameter of Ξ� 1, where the Poisson–Boltzmann approach and
its systematic improvements via the loop expansion has been found relevant [6–8]. On the other hand,
as Ξ increases while reducing λ, the electric double layer thins and the coarse-grained distribution of
counterions becomes two-dimensional [6–11]. Correspondingly, a becomes much larger than λ in the
strong coupling regime of Ξ = 2Γ2 � 1 (i.e., a� λ), as found from Equations (4) and (5).

A field theoretical treatment provides counterion density distribution, ρ∞(z0), in the ground state
of the strong coupling limit (Ξ, Γ→ ∞) [6,8]:

ρ∞(z0) =
σ

λ
exp {−J(r0) }, (6)

where J(r0) denotes the external electrostatic potential in the kBT-unit due to macroion-counterion
interactions. In a single charged plate system, J(r0) is expressed as J(r0) = z0/λ with z0 denoting
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the distance between the position r0 and the charged plate; therefore, Equation (6) implies that a
large portion of the counterions are condensed within the thin electric double layer, which supports
the observation that strongly coupled counterions behave like the 2D OCP. Extensive Monte Carlo
simulations have been performed on the strong coupling regimes of counterions, especially for one-
and two-plate systems [8–11]. Accordingly, the asymptotic behavior given by Equation (6) has been
corroborated by simulation results on the counterion distributions. The correction to Equation (6) has
also been evaluated in detail, based on the simulation results. For about two decades, a variety of
strong coupling theories have been developed to explain the above simulation results in the strong
coupling regime, focusing not only on the validation of the longitudinal distribution mimicked by the
ideal gas behavior (i.e., Equation (6)) in the vicinity of the charged plate, but also on the deviations
from Equation (6) for z0 > λ; see [8] for a recent review.

2.2. Imposing a Given Density Distribution ρ on the Grand Potential Ω

Let ρ̂(r) be an instantaneous density of counterions located at ri (i = 1, · · · , N), where the
counterion system is rescaled as r = (x, y, z) = (x0/a, y0/a, z0/a) = r0/a. Figure 1 shows a schematic
of the rescaled system. The instantaneous density is expressed as

ρ̂(r) = a3
N

∑
i=1

δ(r− ri), (7)

the use of which macroion-counterion interaction energy for a one-plate system transforms the
configurational representation, given by Equation (A7) of Appendix B, to

∆Ucm{ρ̂} =
∫

drJ(r)ρ̂(r),

J(r) = 2Γz, (8)

which is a functional of ρ̂ (see Appendix B for the details).

Figure 1. Two schematics illustrating the side view of one charged plate system that consists of a
positively charged plate carrying a surface charge density +σe and negatively charged counterions with
valence q. Our scaling (z = z0/a) of an actual system depicted on the left side implies a coarse-grained
system on the right hand side, where a denotes a mean separation between counterions, provided
that all of the counterions are condensed on the oppositely charged plate uniformly: πa2σ = q.
The Gouy–Chapman length λ ≡ 1/(2πqlBσ) is also indicated. This paper adopts the coupling
constant Γ, defined by Γ = q2lB/a that applies to the 2D one-component plasma (OCP), instead of the
conventional one, Ξ = q2lB/λ, used for the counterion system.
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We can impose a given density distribution ρ(r) on the counterion system via the following delta
functional [14,19–21]:

∏
r

δ [ρ̂(r)− ρ(r)] =
∫

Dψ e
∫

dr iψ(r){ρ̂(r)−ρ(r)}, (9)

where the potential field ψ(r) has been introduced in the Fourier transform of the delta functional.
Multiplying the configurational integral representation of the grand potential Ω[J] (see Appendix B
for the definition) by the constraint in Equation (9), the formal expression of F[ρ] is obtained:

e−F[ρ] = ∏
r

δ [ρ̂(r)− ρ(r)] e−Ω[J]

= e−
∫

drJ(r)ρ(r)
∫

Dψ e−Ω[−iψ]−
∫

dr iψ(r)ρ(r), (10)

where J(r) given in Equation (8) represents the external potential created by the charged plate. In the
mean-field approximation, we obtain (see also Appendix C)

F[ρ] = A[ρ] +
∫

drJ(r)ρ(r), (11)

A[ρ] = Ω[ψ∗]−
∫

drψ∗(r)ρ(r), (12)

where the saddle-point potential field ψ∗ satisfies the following relation:

δ (βΩ[−iψ])
δψ(r)

∣∣∣∣
ψ=iψ∗

= −iρ(r). (13)

The first Legendre transform of Ω[ψ∗] provides the Hohenberg–Kohn free energy A[ρ] defined by
Equation (12), the central functional of the equilibrium density functional theory [28,29].

2.3. Stochastic Density Dynamics Obeying the Dean–Kawasaki Equation

Here we focus on the stochastic dynamics of a density field at time t, ρ(r, t), whose spatially
varying distribution is the same as the coarse-grained variation of ρ̂(r). What matters in terms of the
stochastic density dynamics is the free energy functional F[ρ] of a given density field ρ, rather than the
grand potential Ω in equilibrium. For the density functional, we have provided the approximate form
of F[ρ]. The driving force due to F[ρ] and the density-dependent multiplicative noise ζ[ρ,~η] creates the
stochastic dynamics that obeys the DK equation [13–20]:

∂tρ = ∇ · Dρ∇ δF[ρ]
δρ

+ ζ[ρ,~η], (14)

where we have introduced a scaled diffusion constant, D = D0/a2, using the bare diffusion constant
D0 and the spatio-temporal average of the multiplicative noise correlations is given by〈

ζ[ρ(r, t),~η(r, t)] ζ[ρ(r′, t′),~η(r′, t′)]
〉
= −2Dδ(t− t′)∇r · ρ(r, t)∇rδ(r− r′), (15)

with the vectorial white noise field~η(r, t) that has the correlation 〈ηl(r, t)ηm(r′, t′)〉 = δlmδ(r− r′)δ(t− t′).
Equation (15) can read [13–27]

ζ[ρ, η] = ∇ ·
√

2Dρ(r, t)~η(r, t). (16)

In general, the stochastic Equation (14) includes not only the multiplicative noise term, but also the
nonlinear term associated with F[ρ]. As shown below, however, a linear DK equation may be used to
investigate the stochastic density dynamics due to fluctuations of counterions in the ground state by
expanding Equation (14) around ρ∞.
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3. Stochastic Density Functional Equation for Fluctuations round the Ground State
Distribution ρ∞

3.1. Linearizing the Stochastic Dean–Kawasaki Equation (14)

Expanding the first derivative of F[ρ] around ρ∞, we have

∇ δF[ρ]
δρ(r, t)

= ∇
[

δF[ρ]
δρ(r, t)

∣∣∣∣
ρ=ρ∞

+
∫

dr′
δ2F[ρ]

δρ(r, t)δρ(r′, t)

∣∣∣∣
ρ=ρ∞

n(r′)

]

= ∇
[
−
∫

dr′c(r− r′)n(r′, t) +
n(r, t)
ρ∞(z)

]
, (17)

ρ(r, t) = ρ∞(r) + n(r, t), (18)

due to

∇ · Dρ(r) ∇ F[ρ]
δρ

∣∣∣∣
ρ=ρ∞

= 0; (19)

See Appendix D for the details. It follows from Equations (17) and (19) that the right-hand side (rhs) of
Equation (14) reads

∇ · Dρ∇ δF[ρ]
δρ(r, t)

+ ζ[ρ,~η] = ∇ · Dρ∞

(
1 +

n(r, t)
ρ∞

)
∇
{
−
∫

dr′c(r− r′)n(r′ , t) +
n(r, t)
ρ∞(z)

}
+ ζ

[
ρ∞

(
1 +

n(r, t)
ρ∞

)
,~η
]

≈ ∇ · Dρ∞∇
{
−
∫

dr′c(r− r′)n(r′ , t) +
n(r, t)
ρ∞(z)

}
+ ζ[ρ∞ ,~η], (20)

when n/ρ∞ � 1. It is to be noted that the ideal gas distribution ρ∞(r) given by Equation (6) reproduces
only the longitudinal distribution of simulation results in the vicinity of a highly charged plate,
resulting from attractive and repulsive Coulomb interactions in the strong coupling limit (see also
Appendix A). Correspondingly, Equation (20) reveals that the dynamics of fluctuating density n(r, t) is
governed by the strong Coulomb interactions as represented by the contribution,−

∫
dr′c(r− r′)n(r′, t),

on the rhs of Equation (20). In Equations (17) and (20), the direct correlation function c(r − r′)
appears because F[ρ] is expressed using the Hohenberg–Kohn free energy functional A[ρ] as given by
Equation (12) [28,29]. We also have

∂t{ρ∞(z) + n(r, t)} = ∂tn(r, t), (21)

due to ∂tρ∞ = 0, on the left hand side of the DK Equation (14).
Combining Equations (14), (20), and (21), we obtain the linear DK equation:

∂tn(r, t) = D∇2n(r, t) + Dρ∞(z)∇2ψn(r, t)−∇ · j⊥(r, t) + ζ[ρ∞,~η], (22)

where ψn denotes a fluctuating Coulomb potential defined by

ψn(r, t) ≡ −
∫

dr′c(r− r′)n(r′), (23)

and the longitudinal current j⊥(r, t) = (0, 0, jz), which is along the z-axis vertical to the charged plate,
arises from the gradient of the ground density distribution∇ρ∞. Incidentally, in the rescaled system of
ρ∞(r, t) = a3ρ∞(r0, t), Equation (6) is rewritten as

ρ∞(z) =
σa3

λ
e−2Γz, (24)

thereby providing
∇ρ∞ = (0, 0, −2Γρ∞), (25)
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in the rescaled system. In the next subsection, we will discuss the details of j⊥(r, t) associated with the
presence of ∇ρ∞ in the longitudinal direction.

Equation (22) appears to be a simple extension of the Poisson–Nernst–Planck equation [30] when
the longitudinal current j⊥(r, t) disappears. However, in actuality, the Poisson-like equation in the
second term on the rhs of Equation (22) differs from the conventional Poisson equation because the
interaction potential is replaced by the direct correlation function. In this paper, we adopt the direct
correlation function, being of the following form [31–33]:

−c(r) =
∫

dr′
Γ

|r− r′| ga(r′) = Γ ṽL(r), (26)

ga(r− r′) =
e−|r−r′ |2/m

(mπ)3/2 =
e−|r0−r′0|2/(ma2)

(ma2π)3/2 (m = 1.08−2), (27)

ṽL(r) =
erf(1.08r)

r
(r ≡ |r| = |r0|/a), (28)

which gives

∇2ψn(r, t) ≡ −
∫

dr′∇2c(r− r′)n(r′, t)

= −4πΓ
∫

dr′ga(r− r′)n(r′, t)

= −4πΓñ(r, t), (29)

where ñ(r, t) denotes a coarse-grained density that is smeared by the Gaussian distribution function
ga(r − r′) over a range of the Wigner–Seitz radius a. The above form of the direct correlation
function has been demonstrated to be available for the OCP in the strong coupling regime of Γ� 1.
In Equation (26), the bare electrostatic potential (∼ 1/r) is modified using the Gaussian distribution
function ga(r), and the second equation of Equation (26) introduces the function of ṽL(r) = erf(1.08r)/r
that represents the long-range part of the Coulomb interaction potential [31,32]. It is to be noted that the
internal energy of the OCP, obtained using this direct correlation function, or Equation (26), exhibits an
error of less than 0.8% in the strong coupling regime [31].

Considering that the Fourier transform ṽL(k) of ṽL(r0/a) is given by

ṽL(k) =
4π

k2 e−k2(ma2)/4, (30)

Equation (29) is rewritten in the original coordinate of r0 as

∇2ψn(r0, t) = −k2ψn(k, t)

= −4πq2lBe−k2(ma2)/4 n(k, t), (31)

using the Fourier transforms of ψn(r0, t) and n(r0, t): ψn(k, t) and n(k, t). In the limit of a → 0,
Equation (29) is reduced to the conventional Poisson equation. It follows from Equations (29) and (31)
that the Fourier transform ñ(k, t) of the coarse-grained density ñ(r0, t) reads

ñ(k, t) = e−k2(ma2)/4 n(k, t), (32)

implying the cut-off of ñ(k, t) at a high wavenumber in correspondence with the coarse-graining of
n(r, t).
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3.2. Implications of Longitudinal Contributions Given by Equation (33)

As described in Section 3.1, the gradient of ρ∞(r) has only the z-component as found from
Equation (25). The z-component given by ∂zρ∞ = −2Γρ∞ yields the longitudinal contribution,
−∇ · j⊥(r, t), to the rhs of Equation (22):

−∇ · j⊥(r, t) = −∂z jz(r, t)

= 2ΓD∂zn(r, t)− D∂zρ∞(z)ΓEz(r, t)

= 2ΓD {∂zn(r, t) + ρ∞(z)ΓEz(r, t)} , (33)

where ΓEz(r, t) denotes the z-component of fluctuating electric field E(r, t) defined by

E(r, t) = −∇ψn(r, t) = Γ

 Ex(r, t)
Ey(r, t)
Ez(r, t)

 . (34)

It is found from Equations (23), (33), and (34) that −∇ · j⊥(r, t) disappears in the absence of the
longitudinal variance in n(r, t) (i.e., ∂zn(r, t) = 0) as well as ρ∞(r), which is the reason why j⊥(r, t) has
been referred to as the longitudinal current. The two terms on the rhs of Equation (33) are expressed in
the original coordinate as follows:

2ΓD∂zn(r, t) =
a
λ

(
D0

a2

)
∂zn(r, t) =

D0

λ
∂z0 n(r0, t), (35)

2ΓDρ∞(z)ΓEz(r, t) =
a
λ

(
D0

a2

)
ρ∞(z)q2lBEz(r0, t) = D0ρ∞(z)

{
q2lBEz0(r0, t)

λ

}
. (36)

Equation (35) represents a vertical advection of fluctuating density field n(r0, t). Putting this
advection term given by Equation (35) on the left hand side of Equation (22), the combination of
Equations (33)–(36) transforms Equation (22) to

∂tn(r0, t)−D0

λ
∂z0 n(r0, t) = D0∇2n(r0, t)− D0q2lBρ∞(r0, t)

{
4πñ(r0, t)−Ez0(r0, t)

λ

}
+ ζ[ρ∞,~η] (37)

in the original coordinate representation, where the underlined terms corresponding to the longitudinal
contributions. The former contribution, the second term on the left hand side of Equation (37),
suppresses density fluctuations, whereas the latter, the third term on the rhs of Equation (37), acts as a
positive feedback to enhance counterion condensation in proximity to the charged plate. Figure 2 is a
schematic of such opposite roles of longitudinal contributions from the above underlined terms.

On the one hand, the underlined term on the left hand side of Equation (37) represents the
advective flow term. The advection velocity is given by D0/λ, which increases as the Gouy–Chapman
length λ, a characteristic length of the electric double layer, is shorter. The negative sign of this term
indicates that the flow direction is always in the opposite direction to the z-axis. Figure 2 illustrates
translation of whole fluctuating density field n(r, t), like a Goldstone-mode, due to the advection flow.
Figure 2 shows the case of ∂z0 n < 0 where the increase from ρ∞(0) (i.e., n(r0, t) > 0 at z0 = 0) is
lowered when ∂z0 n < 0, and vice versa because of the fixed direction of the advection flow. In other
words, density fluctuations are suppressed due to the former longitudinal contribution associated with
advection flow.

On the other hand, the underlined contribution of the third term on the rhs of Equation (37) arises
from the z0-component ΓEz0 of a fluctuating electric field E(r0, t); however, this term reduces the third
term on the rhs of Equation (37), or the smeared density ñ(r0, t) induced by E(r0, t) itself. We should
remember that, in the limit of a→ 0, the second term on the rhs of Equation (37) corresponds to the
electrostatic term that is associated with the Poisson equation: we have −D0q2lBρ∞(r0, t)4πn(r0, t)
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with ñ(r0, t) replaced by the original density n(r0, t), indicating the electrostatically restoring term
to n(r0, t)→ 0 as represented by the negative sign. Accordingly, the latter longitudinal contribution
plays a role of positive feedback for counterion condensation, as opposed to the above electrostatic
suppression. In actuality, the latter term increases the strength of longitudinal fluctuating field
when Ez0 > 0, or ∂z0 n(r0, t) < 0, which means that the counterions have become more condensed.
Meanwhile, the negative sign of Ez0 < 0 yields the restoring contribution to n(r0, t) → 0 when
accumulated counterions leave the charged plate: ∂z0 n(r0, t) > 0. In both cases of Ez0 > 0 and
Ez0 < 0, the latter longitudinal enhances counterion condensation, which is represented as electrical
reverse-flow for ∂z0 n(r0, t) < 0 in Figure 2.

Figure 2. A schematic of anisotropic fluctuations due to longitudinal terms underlined in Equation (37).
Here we consider the case that the fluctuating density n(r0, t) decreases with z0, and n(0.t) and n(λ, t)
are abbreviations of n(r0, t)|z0=0 and n(r0, t)|z0=λ, respectively. The advective flow, or migration of
density fluctuations as a whole, is always in the negative direction along the z0-axis. Meanwhile,
the electrical reverse-flow is also in the negative direction, irrespective of the sign of ∂z0 n, or Ez.
Accordingly, the latter flow acts as a positive feedback of density fluctuations for ∂z0 n < 0.

4. Density-Density Correlations Due to Transverse Dynamics along the Plate Surface

Supposing that ∂z0 n(r0, t) = 0, we can focus on the transverse dynamics parallel to the charged
plate at z0 = 0, which we will investigate quantitatively. With the use of the Fourier transform n(k, t)
of n(r0, t), Equation (37) becomes

∂tn(k, t) = −D0

{
k2 + 4πq2lBρ∞(0)e−k2(ma2)/4

}
n(k, t) + ζ[ρ∞,~η]

= −D0Ξ G(k)n(k, t) + ζ[ρ∞,~η], (38)

G(k) = k2

Ξ
+ 4πσe−k2(ma2)/4, (39)

given that ∂z0 n(r0, t) = 0. In Equation (39), the conventional coupling constant Ξ = q2lB/λ given by
Equation (2) appears using ρ∞(0) = σ/λ. In both of the strong coupling regime (Ξ� 1) and the low
wavenumber region (ka� 1), the propagator G(k) is approximated by

G(k) ≈ 1
a2

{
(ka)2

Ξ
+ 4q

}
≈ 4q

a2 = 4πσ, (40)

using the relation σ = q/(πa2).
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Now we have the analytical solution to Equation (38) in the following form [25]:

n(r0, t) = e−tD0Ξ G(r0)n(r0, 0) +
∫ t

0
dse−(t−s)D0Ξ G(r0)ζ[ρ∞(z0), η(r0, s)]. (41)

Considering the real space representation that D0ΞG(r0) ≈ 4πD0Ξσ in the above approximation of
Equation (40), the above exponential factors, e−tD0Ξ G and e−(t−s)D0Ξ G (s < t), are negligible due to
Ξ� 1. Hence, Equation (41) is reduced to n(r0, t) = ζ[ρ∞(z0), η(r0, s)], thereby providing〈

n(r0, t)n(r′0, t′)
〉
=
〈
ζ[ρ∞(z0),~η(r0, t)]ζ[ρ∞(r′0),~η(r

′
0, t′)]

〉
= 2D0ρ∞(z0)δ(r0 − r′0)δ(t− t′). (42)

It is found from Equation (42) that there is no correlation of transverse density fluctuations,
which represents a coarse-grained frozen dynamics in the strong coupling regime of coarse-grained
2D OCP.

We can determine a crossover scale lc. or associated crossover wavenumber kc = 2π/lc by
comparing two terms on the rhs of Equation (39). In the above approximation, the first term on the rhs
of Equation (39) has been neglected based on the condition that Ξ� 1 and ka� 1. While increasing the
wavenumber and maintaining the strong coupling of Ξ� 1, we arrive at the crossover wavenumber
kc that is defined by the following relation:

k2
c

Ξ
= 4πσe−k2

c (ma2)/4, (43)

stating that the two terms on the rhs of Equation (39) are comparable to each other. We now introduce
the main branch W0(x) of the Lambert W-function [34], so that Equation (43) is converted to

ν = W0(νeν) = W0(qmΞ),

ν ≡ k2
c(ma2)/4, (44)

based on another expression of Equation (43) as follows:

νeν = πσΞ(ma2) = qmΞ. (45)

The approximate form of W0(x) ≈ ln x for x � 1 [34] applies to Equation (44) because of qmΞ� 1.
It follows that Equation (44) reads

2π

(
a
lc

)
= kca ≈ 2

m1/2

√
ln(qmΞ) = 2.16

√
ln(qmΞ), (46)

which is our main result in this study. Below this scale specified by the crossover length lc,
we can observe the diffusive behavior of counterions, instead of frozen correlations represented
by Equation (42). Taking qmΞ = 104 (or Ξ ∼ 103 for q ∼ 10) as an example of the strong coupling
regime, Equation (46) provides

kca ≈ 6.56,

lc
a
≈ 2π

6.56
. (47)

The latter relation implies that the transverse dynamics of strongly-coupled counterions still retain
diffusive behaviors within each Wigner–Seitz cell (i.e., lc ∼ a), which is physically plausible (see also
Figure 3).
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Figure 3. A schematic of dynamical crossover, showing that diffusive dynamics of strongly
coupled counterions along the plate surface can be observed within the scale of Wigner–Seitz cell.
The determining equation for the crossover scale kc is also given, based on the expression of propagator
G(k) given by Equation (39).

5. Summary and Conclusions

We have investigated stochastic density fluctuations n = ρ − ρ∞ around the ground state
distribution (ρ∞ ∝ e−z0/λ) of strongly coupled counterions near a single charged plate, focusing
especially on the transverse dynamics parallel to the charged plate at z0 = 0. The key to treating
the stochastic dynamics is to use the DK equation of overdamped Brownian particles [13–27] that is
linearized by expanding the first derivative of a free energy functional of given density, (δF[ρ]/δρ)
around the ground state density ρ∞. As a result, we have obtained the linear DK Equation (37), which is
applicable to the longitudinal and transverse dynamics of counterions in the strong coupling regime
where the stationary density distribution has been investigated using Monte Carlo simulations [8–11].

The linear DK equation allows us to quantitatively investigate the dynamical crossover of
transverse density fluctuations along the plate surface. Accordingly, we have found a crossover
scale, given by Equations (46) and (47), above which the transverse density dynamics appear frozen,
generating white noise that is uncorrelated with respect to time and space. Below the crossover
scale, on the other hand, diffusive behavior of counterions can be observed along the plate surface,
as illustrated in Figure 3. For instance, the crossover length lc is of the order of the Wigner–Seitz
radius a when Ξ ∼ 103. Furthermore, the longitudinal dynamics vertical to the plate arises from
the gradient of a fluctuating density field along the z-axis, producing additional contributions to
the transverse dynamics, such as electrical reverse-flow as well as advective flow (see Figure 2).
The electrical reverse-flow would be crucial in experimental situations where mobile ions, including
not only counterions but also added salt, are affected considerably by the longitudinal dynamics.
This remains to be addressed in a quantitative manner, by extending the present formulation to
multi-component systems.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Electrostatic Interaction Energies: General Forms When Rescaled by the
Wigner–Seitz Radius a

The counterion number N is imposed on the global electroneutrality condition, −qN + σΣ = 0
(Σ—the surface area of a macroion). The system has electrostatic interaction energy U = Ucc +Ucm +Umm,



Entropy 2020, 22, 34 12 of 15

i.e., the sum of the counterion-counterion interaction energy Ucc, the macroion-counterion interaction
energy Ucm, and the self-energy energy of macroion Umm due to electrostatic interactions between
charged groups fixed on the macroion surface. In the thermal energy unit, we have

Ucc{r01, · · · , r0N} =
q2 lB

2

(
N

∑
i,j=1

v(r0i − r0j)− N v(0)

)

Ucm{r01, · · · , r0N} = −q lB σ
N

∑
i=1

∮
dS0 v(r0i − R0), (A1)

where the interaction potential v(r0) in the kBT unit is represented by an ion-ion separation vector,
r0 = (x0, y0, z0), as v(r0) ≡ 1/r0 with r0 = |r0| , and

∮
dS denotes that the integration of the macroion

charge position R0 is restricted to the surface of the macroion.
Let us rescale the system as r = (x, y, z) = (x0/a, y0/a, z0/a) = r0/a, using the mean

counterion-counterion separation a (or the Wigner–Seitz radius a) that is evaluated from the electrical
neutrality condition, πa2σ = q, supposing that all counterions located on the macroion surface
are uniformly distributed. Since the coupling constant Γ defined by Equation (1) gives qlBσ =

q2lB/(πa2) = Γ/(πa), Equation (A1) reads

U{r1, · · · , rN} = Ucc{r1, · · · , rN}+ Ucm{r1, · · · , rN}+ Umm

Ucc{r1, · · · , rN} =
Γ
2

(
N

∑
i,j=1

v(ri − rj)− Nv(0)

)

Ucm{r1, · · · , rN} = − Γ
π

N

∑
i=1

∮
dS v(ri − R), (A2)

where we have used the relation dS = dS0/a2. Equation (A2) implies that the electrostatic interaction
energies become extremely large in the strong coupling limit of Γ→ ∞.

The 2D OCP formed on the macroion surface has been often regarded as a ground state of strongly
coupled counterions. For incorporating this analogy to the ground state of the 2D OCP into our
formulation, we set the base energy U{R1, · · · , RN} given by

U{R1, · · · , RN} = Ucc{R1, · · · , RN}+ Ucm{R1, · · · , RN}+ Umm. (A3)

We write Umm, a constant interaction energy, as Umm = Num using the interaction energy umm of one
charged group located at a reference position of Rref, which is expressed as

umm =
Γ

2π

∮
dS v(Rref − R). (A4)

The base energy vanishes (U{R1, · · · , RN} ≈ 0) in the approximation that

Ucc{R1, · · · , RN} ≈ Numm

Ucm{R1, · · · , RN} ≈ −2Numm. (A5)

It is also convenient to introduce the reference energy Um associated with the charged groups on
macroion surface:

U{R1, · · · , RN} = Ucc{R1, · · · , RN}+ Um

Um ≡ Ucm{R1, · · · , RN}+ Umm ≈ −Numm, (A6)

where the reference energy Um can be regarded as a constant energy, as found from the above
approximation in Equation (A5).
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Appendix B. The Grand Potential Ω[J] for a One-Plate System

To clarify the underlying physics behind the macroion-counterion electrostatic interactions in a one
charged plate system, it is useful to consider the difference between the actual energy Ucm{r1, · · · , rN}
and the base energy Ucm{R1, · · · , RN} in a condensed state that all counterions are attached to the
plate with their locations distributed uniformly:

∆Ucm{r1, · · · , rN} = Ucm{r1, · · · , rN} −Ucm{R1, · · · , RN}

=
N

∑
i=1

J(ri), (A7)

where J(ri) denotes the external potential that is experienced by the i-th counterion due to the one
charged plate and is defined by

J(ri) =
Γ
π

∮
dS {v(ri − R)− v(Ri − R)} . (A8)

In the coordinate setting of a schematic system depicted in Figure 1, we have R = rδ(z) and J(r)
simply reads

J(r) =
z0

λ
= z

( a
λ

)
= 2Γz, (A9)

where we have used the relation in Equation (4) in the above equality.
The electrostatic interaction energy U given by Equation (A2) thus reads, for a one-plate system,

U{r1, · · · , rN} = Ucc{r1, · · · , rN}+ Um + ∆Ucm{r1, · · · , rN}. (A10)

We can now define the grand potential Ω[J] of the counterion system under the external field of J(r)
created by the one charged plate. The configurational representation of Ω[J] is represented as

e−Ω[J] = e−Um Tr exp

{
−Ucc{r1, · · · , rN} −

N

∑
i=1

J(ri)

}

Tr ≡
∞

∑
N=0

eNβµ 1
N!

∫
dr 1 · · ·

∫
dr N , (A11)

where µ denotes chemical potential and the expression of Equation (A7) has been used.

Appendix C. A Remark on Equation (11)

Going beyond the mean-field approximation, the free energy functional F[ρ] is not identified
with A[ρ]. We have an additional contribution ∆F[ρ] to F[ρ] that is obtained from the functional
integration over fluctuating potential field φ = ψ− ψ∗ around the saddle-point field ψ∗ determined by
Equation (13):

e−∆F[ρ] =
∫

Dφ e−∆H[ρ,φ], (A12)

where

∆H[ρ, φ] = ∆Ω +
∫

dr iρ(r)φ(r),

∆Ω = Ω[−iφ + ψ∗]−Ω[ψ∗]. (A13)
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The free energy functional F[ρ] of a given density is thus written as

F[ρ] = A[ρ] +
∫

drJ(r)ρ(r) + ∆F[ρ]. (A14)

In the Gaussian approximation, ∆F[ρ] corresponds to the logarithmic correction term [21], which we
have neglected in Equation (11) as the first approximation of the strong coupling regime of Γ� 1.

Appendix D. Details of Equation (19)

In the mean-field approximations of Equations (11) to (13), we have

δF[ρ]
δρ

∣∣∣∣
ρ=ρ∞

=
δA[ρ]

δρ

∣∣∣∣
ρ=ρ∞

+ J(r0)

= ln ρ∞(z0)− c(1)(r0, ρ∞)− umm + J(r0)

= ln ρ∞(0)− c(1)(r0, ρ∞)− umm

≈ ln ρ∞(0), (A15)

where the first member of the hierarchy of the direct correlation function, c(1)(r, ρ∞), corresponds to the
effective potential due to counterion-counterion interactions, and the last approximate equality ignores
the difference −c(1)(r, ρ∞)− umm between the effective potentials created by condensed counterions
and charged plate, in comparison with ln ρ∞(0) = ln(σ/λ). Equation (A15) indicates that spatial
dependence of δF[ρ]/δρ|ρ=ρ∞ is negligible, thereby verifying Equation (19).
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