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Abstract: In this article, we will solve the Bagley–Torvik equation by employing integral transform
method. Caputo fractional derivative operator is used in the modeling of the equation. The obtained
solution is expressed in terms of generalized G function. Further, we will compare the obtained results
with other available results in the literature to validate their usefulness. Furthermore, examples are
included to highlight the control of the fractional parameters on he dynamics of the model. Moreover,
we use this equation in modelling of real free oscillations of a one-degree-of-freedom mechanical
system composed of a cart connected with the springs to the support and moving via linear rolling
bearing block along a rail.
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1. Introduction

The concept of fractional calculus (FC) and entropy are very important for the investigation of
complex dynamical systems and hence got the attention of researchers, physicists and mathematicians.
Machado [1] investigated the importance of entropy for the analysis of complex dynamical systems.
Furthermore, Lopes and Machado [2] used the FC tools for the study of complex systems. Ubriaco [3]
proposed the entropy functions based on FC for the analysis of dynamical systems. Prehi et al. in [4]
and Luchko [5] discussed the entropy in non-integer order diffusion processes. For more about FC and
entropy we refer [6–8]. The non-local nature of fractional derivatives allows to describe changes in
an interval. This important property makes these derivatives suitable to simulate more physical and
complex phenomena. For more details, we refer the readers to [9–11]. As, FC is nearly as old as the
standard integral and differential calculus with a long list of applications. Since, the non-integer order
derivative parameter used in the modelling of dynamical systems behaves as the rheological parameter
and influence the properties of the dynamical systems, it is seen that different interdisciplinary
problems can likewise be solved with good accuracy by the aid of non-integer order derivatives [12].

Atanackovic and Stankovic [13] have investigated the motion of a viscoelastic bar with non-integer
order derivative type of dissipation under time dependent loading. Fa [14], for clear physical
interpretations adopted the non-integer order derivatives in the problem relating to free falling bodies.
In viscoelasticity, the first application of FC is seem to be done by Bagley and Torvik [15,16] whereas,
Makris et al. [17] approximated the applicable value of non-integer order parameter in the non-integer
order derivative model that has good compliance with the material properties of the material and
the experimental results. In addition, for the display of the linear response regime, one dimensional
viscoelastic models with fractional order generalizations are proven to be very good [18] and in
accordance with the second law of thermodynamics. Lazopoulos [19] introduces FC in the continuum
mechanics and introduced the non-local constitutive relations. Likewise, Carpinteri et al. [20] have
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proposed a fractional approach to non-local mechanics. So, list of the applications of FC is too long to
be added here. Despite of the usefulness of the FC, the major criticism regarding the use of fractional
derivatives is the inability of fractional derivatives to behave like derivatives. As, they failed to
correspond to differentials and unable to satisfy the requirements of differential topology for being
derivatives [19]. However, most of the known fractional derivatives have only operative character
instead of a derivative one.

To remove this drawback, Lazopoulos [19], proposed the fractional L-derivative but it again does
not satisfy the conditions of differential topology. Lately, Lazopoulos [21] formulated the ∧-fractional
derivative, a modification of the fractional L-derivative. This ∧-fractional derivative behaves like
classical derivative rules. Moreover, in [22] K. A. Lazopoulos and A. K. Lazopoulos solved the fractional
bending problem using the ∧-fractional derivative.

In 1983, Bagley and Torvik [15] formulated an equation to study the viscoelastically damped
structures, later in [16] they used this equation to investigate the behaviour of real material using FC.
This equation called Bagley–Torvik equation (BTE) plays a vital role in a large number of applied science
and engineering problems. More specifically, any linearly damped fractional oscillator with damping
term has fractional derivative of order 1.5 can be represented by BTE. Particularly, the equation with
half or one and the half order derivative can predict the models with materials where damping depends
on frequency. It can also describe motion of real physical systems, the modeling of the motion of a
rigid plate immersed in a viscous fluid and a gas in a fluid respectively [9,23].

The form of BTE [9] is

λ2
d2u(t)

dt2 + λ1D
3
2
t u(t) + λ0u(t) = f (t); t > 0, (1)

with u(0) = 0, u′(0) = 0, where λ2 6= 0, the mass of the thin rigid plate immersed in the viscous fluid,
λ1 = 2A

√
µρ is the constant depending on the area of the plate immersed, density and viscosity of the

fluid, λ0 is the spring’s stiffness, f : [0, ∞]→ R is a given function denoting the applied force to the

plate and u(t) represents the motion of the plate. D
3
2
t is the non integer order differential operator in

Caputo sense [9] of order 3
2 . The existence and uniqueness of solutions to such fractional differential

equations(FDEs) and related analytical results have been presented in [9].
The importance of BTE motivated the researchers to show interest in its solutions. For example

Podlubny [9] obtained the numerical solution of the BTE with the aid of fractional Green’s function.
Numerical analytical solutions of the equation were developed adopting the Adomian decomposition
method [23–25] and hybridisable discontinuous Gelerkin method [26]. Enesiz, Keskin, and Kurnaz
in [27] proposed a new algorithm called generalized Taylor collocation algorithm for solving the BTE.
Diethelm [28] reformulate the equation into first order coupled FDE and solve the model with Adam
predictor and corrector approach. Wang and Wang [29] have studied the solution of the BTE with
half-order and one and the half order derivatives. Ghorbani and Alavi [30] used He’s variational
iteration method for the solution of BTE.

More recently, Bansal and Jain [31] discussed analytical solution of BTE by a generalized
differential transform method, Anjara and Solofoniaina [32] solved the equation by Adomian’s method,
Fazli and Nieto [33] proved the results for the existence and approximations of the solutions of
BTE. Gamel et al. [34] used the Chelyshkov–Tau approach for solving BTE. Moreover, Uddin and
Ahmad [35] formulated the numerical scheme, while Setia et al. [36] obtained the solutions of BTE by
using second kind Chebyshev wavelet.

It is important to note that, while solving the FDE numerically, for example using differential
transform method, Adomian method or even in generalized differential transform method etc., first we
have to fix the value of the fractional order parameter then we solve the problem, but the beauty of
Laplace transform method is that one has the provision to consider the arbitrary value of the fractional
order parameter for obtaining the result and finally that non integer order parameter becomes the
rheological parameter. It gives us the liberty to conveniently choose the value of the parameter so that
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the theoretical results are in accordance with the experimental result. Moreover, this parameter helps
us in the validation of our results with the existing classical results.

With these motivations, our aim is to solve the BTE in its most general form. The solution of the
BTE will be presented involving Lorenzo–Hartley generalized G function [37]. Further, the agreement
of our results with the exiting solutions as well as the control of the non-integer order parameter on the
motion of the plate is shown by graphical representations. Further, we use this equation in modelling
of real free oscillations of a one-degree-of-freedom mechanical system composed of a cart connected
with the springs to the support and moving via linear rolling bearing block along a rail.

2. Preliminaries

The fractional integral is defined as [9]

Iα
t g(t) =

1
Γ(α)

∫ t

0

g(τ)
(t− τ)1−α

dτ; 0 < α < 1.

The fractional order derivative in the sense of Caputo is defined as [9]

Dα
t g(t) =

1
Γ(1− α)

∫ t

0

g′(τ)
(t− τ)α

dτ; 0 < α < 1

and Dα
t g(t) = g′(t) when α = 1.

The Laplace transform of this fractional derivative operator is defined as

L [Dα
t g(t)] = qαG(q)− qα−1g(0)− qα−2g′(0).

The fractional order derivative in the sense of Riemann–Liouville is defined as [9]

RLDα
t g(t) =

1
Γ(1− α)

d
dt

∫ t

0

g(τ)
(t− τ)α

dτ; 0 < α < 1

and RLDα
t g(t) = g′(t) when α = 1.

Moreover, we can write RLDα
t g(t) = d

dt
(

I1−α
t g(t)

)
.

The ∧-fractional derivative is defined as [21]

∧Dα
t g(t) =

dI1−α
t g(t)
dI1−α

t t
; 0 < α < 1,

the ∧-fractional derivative behaves as traditional derivative with local properties. For more information
on ∧-fractional derivative, we refer to [21,22].

3. General Form of the Bagley–Torvik Equation and Its Solution

The Bagley–Torvik equation in generalized form is written as

λ2Dβ
t u(t) + λ1Dα+1

t u(t) + λ0u(t) = f (t); t > 0, (2)

where 1 < β < 2 and 0 < α < 1,
Subject to

u(0) = u0, u′(0) = u1, (3)

with u0 and u1 are real numbers.
Applying Laplace transform [38] and using initial conditions, we obtain

λ2(qβū(q)− qβ−1u(0)− qβ−2u′(0)) + λ1(qα+1ū(q)− qαu(0)− qα−1u′(0)) + λ0ū(q) = f̄ (q) (4)
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or

ū(q) =
u0λ2qβ−1 + u(0)λ1qα + λ2u1qβ−2 + u1λ1qα−1 + f (q)

λ2qβ + λ1qα+1 + λ0
, (5)

where q is the Laplace transform parameter.

Using formula 1
x+a = ∑∞

k=0
(−1)kxk

ak+1 , last expression can be rewritten as

ū(q) =
∞

∑
k=0

(−1)kλk
1

λk+1
2

(
u0λ2q(α+1)k+β−1(

qβ + λ0
λ2

)k+1 +
u0λ1q(α+1)k+α(

qβ + λ0
λ2

)k+1 +

+
u1λ2q(α+1)k+β−2(

qβ + λ0
λ2

)k+1 +
u1λ1q(α+1)k+α−1(

qβ + λ0
λ2

)k+1 +
f̄ (q)q(α+1)k(
qβ + λ0

λ2

)k+1 ). (6)

Taking inverse Laplace transform [38], we get

u(t) =
∞

∑
k=0

(−1)kλk
1

λk+1
2

(u0λ2Gβ,(α+1)k+β−1,k+1

(
−λ0

λ2
, t
)
+

+u0λ1Gβ,(α+1)k+α,k+1

(
−λ0

λ2
, t
)
+ u1λ2Gβ,(α+1)k+β−2,k+1

(
−λ0

λ2
, t
)
+ (7)

+u1λ1Gβ,(α+1)k+α−1,k+1

(
−λ0

λ2
, t
)
+
∫ t

0
f (t− τ)Gβ,(α+1)k,k+1

(
−λ0

λ2
, τ

)
)dτ,

where G is the Lorenzo–Hartley “generalized G function” and is defined as [37]

Ga,b,c (d, t) =
∞

∑
j=0

djΓ(c + j)
Γ(c)Γ(j + 1)Γ((c + j)a− b)

t(c+j)a−b−1

and

Ga,b,c (d, t) = L−1

[
qb

(qa − d)c

]
; Re(ac− b) > 0, | d

qa |< 1.

4. Results and Discussion

In this section, by graphical illustrations, we will testify the agreement of our results with
the exiting solutions of BTE obtained by different methods in the literature, and the control of the
non-integer order parameter on the model equation.

For example, when λ2 = λ1 = λ0 = 1, u0 = u1 = 1, α = 0.5, β = 2 and f (t) = t + 1
Equation (7) becomes

u(t) =
∞

∑
k=0

(−1)k(G2, 3
2 k+1,k+1 (−1, t) + G2, 3k+1

2 ,k+1 (−1, t) + G2, 3
2 k,k+1 (−1, t) + (8)

+G2, 3k−1
2 ,k+1 (−1, t) +

∫ t

0
(t− τ + 1)G2, 3

2 k,k+1 (−1, τ) dτ).

As evident from Figure 1, it is equivalent to the Equation (25) of Bansal and Jane [31] (obtained by
using the improvement of differential transform method) as the profiles of the two solutions overlap
each other. Moreover, the profiles of Equation (7) are the same as Exp. (1) of Udin and Ahmad [35] and
example B of Setia et al. [36] respectively obtained by using integral representation in complex plane
and 2nd kind Chebyshev wavelet.
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Figure 1. Comparison of the profiles of u(t) versus t represented by Equation (8) and Equation (25)
of [31].

Similarly, for λ2 = λ1 = λ0 = 1, u0 = u1 = 0, α = 0.5, β = 2 and f (t) = 2 + 4
√

t
π + t2

Equation (7) takes the form

u(t) =
∞

∑
k=0

(−1)k
∫ t

0

(
2 + 4

√
t− τ

π
+ (t− τ)2

)
G2, 3

2 k,k+1 (−1, τ) dτ. (9)

Profiles of Equation (9) are the same (evident from Figure 2) as obtained by Bansal and Jane
(Equation (18), [31]), where the solution was obtained by using generalised differential transform
method. Moreover, for λ2 = 1, λ1 = 2

5 , λ0 = 0.25, u0 = 0, u1 = 1, α = 0.5, β = 2 and

f (t) = 1
4 t2 − 1

4 t− 8
5

√
t
π − 2 Equation (7) becomes

u(t) =
∞

∑
k=0

(−1)k
(

2
5

)k
(G2, 3

2 k,k+1

(
−1

4
, t
)
+

2
5

G2, 3k−1
2 ,k+1

(
−1

4
, t
)
+ (10)

+
∫ t

0

(
(t− τ)2 − (t− τ)

4
− 8

5

√
t− τ

π
− 2

)
G2, 3

2 k,k+1

(
−1

4
, τ

)
dτ).

Figure 2. Comparison of the profiles of u(t) versus t represented by Equation (9) and Equation (18)
of [31].

From Figure 3, Equation (10) is equivalent to the results shown in Exp. (3.1) by Fazli and
Nieto [33] by different technique.
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Again, for λ2 = λ1 = λ0 = 1, u0 = u1 = 1, α = 0.5, β = 2 and f (t) = t3 + 8√
π

t
3
2 + 7t + 1,

Equation (7) reduces to

u(t) =
∞

∑
k=0

(−1)k(G2, 3
2 k+1,k+1 (−1, t) + G2, 3k+1

2 ,k+1 (−1, t) + (11)

+G2, 3
2 k,k+1 (−1, t) + G2, 3k−1

2 ,k+1 (−1, t) +

+
∫ t

0

(
(t− τ)3 +

8√
π
(t− τ)

3
2 + 7(t− τ) + 1

)
G2, 3

2 k,k+1 (−1, τ) dτ).

Figure 3. Comparison of the profiles of u(t) versus t represented by Equation (10) and Exp. 3.1 of [33].

From Figure 4, it is noticed that Equation (11) is similar to the results shown in Exp. (3.2) by
Gamel et al. [34] by adopting the Chelyshkov–Tau approach for the solution of BTE as the two profiles
overlap each other.

Figure 4. Comparison of the profiles of u(t) versus t represented by Equation (11) and Exp. 3 of [34].

From these results, it is verified that our results has good agreement with the previously obtained
results by different numerical methods. Hence, obtained results could be used as the exact solutions
for the comparison of the solution of the BTE by new numerical simulations and methods.

Next, in order to get more insight about the control of the fractional order parameters α and β

on the dynamics of the plate for different modes of the applied force f (t), we discuss the following
three cases.
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4.1. Case-I: When Driving Force on the Plate Is Constant

In order to study the influence of the non integer order parameters α and β on the motion of the
plate with constant driving force of the form f (t) = H(t) applied on the plate, Figure 5 and Figure 6 are
prepared and it is noticed that the u(t) increases with the increasing values of fractional parameters.

Figure 5. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
α when f (t) = H(t).

Figure 6. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
β when f (t) = H(t).

4.2. Case-II: When Driving Force on the Plate Is a Quadratic Function of Time

Now, to study the influence of the non integer order parameters α and β on the motion of the plate
with driving force of the form f (t) = t2 + t + 1, applied on the plate, Figures 7 and 8 are prepared and
same trend is reported as in case-I.

4.3. Case-III: When Driving Force on the Plate Is a Periodic Function of Time

Finally, to study the influence of the non integer order parameters α and β on the motion of the
plate with sinusoidal driving force of the form f (t) = cos(ωt) applied on the plate Figures 9 and 10
are prepared and it is noticed that the motion of the plate increases with the increasing values of
fractional parameters.
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Figure 7. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
α when f (t) = t2 + t + 1.

Figure 8. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
β when f (t) = t2 + t + 1.

Figure 9. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
α when f (t) = cos(ωt).
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Figure 10. Comparison of the profiles of u(t) versus t represented by Equation (7) for several values of
β when f (t) = cos(ωt).

From all these Figures 5–10 it is noticed that, the influence of fractional parameters is significant
and sensitive to the driving force.

5. Modelling of Experimental One-Degree-of-Freedom Mechanical Oscillator

In spite of the fact that the original physical interpretation of the BTE is motion of a rigid plate
immersed in a viscous fluid, this section is devoted to an attempt of using this equation in modelling
of real free vibrations of mechanical system with one-degree-of-freedom composed of a cart connected
with the springs to the support and moving via linear rolling bearing block along a rail.

This experimental system, presented in Figure 11, is a special case of reconfigurable experimental
rig, used for studying mechanical systems of multi-degree-of-freedom with impacts, magnetic springs,
and different kinds of forcing [39,40]. Position of the cart is measured by the use of Hall sensors and
magnetic tape integrated with the rail. Previous investigations have shown that sum of Coulomb
friction and viscous damping is a good model of resistance forces in the rolling bearings. In this
work, the extension of the model with partial derivatives will be tested. It is proposed the following
mathematical description of free oscillations of a cart

Dβ
t u(t) + λ1mDα+1

t u(t) + λ0mu(t) = −T0msign
(
u′(t)

)
i f u′(t) 6= 0 (12)

= λ0mu(t) i f u′(t) = 0, | λ0mu(t) |< T0m

and

Dβ
t u(t) + λ1mDα

t u(t) + λ0mu(t) = −T0msign
(
u′(t)

)
i f u′(t) 6= 0 (13)

= λ0mu(t) i f u′(t) = 0, | λ0mu(t) |< T0m

where λ1m = λ1
λ2

, λ0m = λ0
λ2

and T0m is a parameter corresponding to the constant friction force.

Figure 11. Experimental stand.
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Figure 12. Profiles of the selected versions of mathematical model fitted to the experimental
fee oscillations.

The Equations (12) and (13) are the Bagley–Torvik equation with piecewise constant external
force f (t) and the solution is obtained through gluing the segments of the solutions presented in the
previous sections and corresponding to different regimes of motion defined in Equations (12) and (13).

The parameters are identified minimizing numerically the objective function

FO(α, β, λ0m, λ1m, Tom)

defined as average squared difference between the experimental and theoretical displacement of the
cart. It is used on experimental free motion of the trolley, with the initial part of the solution cut off,
so it starts from the extremum. Initial velocity in the model is assumed to be zero, while initial position
is taken from the experimental solution. There are identified parameters of different versions of the
model presented in Table 1, where the values of the parameters in italics denote constant values during
the identification process. For example model A using Equation (12) corresponds to the differential
equations of motion with integer derivatives. In the case of model B using Equation (13) both the
derivatives are non-integer and all the parameters are identified. However, the solution has not been
found better than in the case of model A (see the corresponding values of the objective function) and
the derivatives are almost integer. In the case of models C–F using Equation (12), there are different
tested cases where there are assumed different constant and non-integer values of the derivatives. It is
found an interesting feature that the investigated experimental solution can be modelled assuming
different values of non-integer derivatives and the final result are almost the same, however the
parameters have different values. Figure 12 exhibits solutions to the selected versions (A and F) of
mathematical model fitted to the experimental free oscillations. Since the solutions are very similar,
they overlap each other.

Table 1. The identified parameters for different versions of the model.

Model α β λ0m λ1m T0m F0[mm2]
A 0 2 196.359 1.73345 0.436005 0.328796
B 0.9999946 1.99999 196.394 1.73192 0.436556 0.328778
C 0.5 2 224.652 092534 0.500898 0.361783
D 0.9 2 3761.75 25.1388 8.53502 0.420043
E 0 1.95 167.157 0.74288 0.370936 0.361385
F 0 1.85 120.003 0.60625 0.265951 0.51812

6. Conclusions and Future Work

In this article the well-known Bagley–Torvik equation is solved by employing integral transform
method and examined its validation by comparing them graphically with the existing results
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in literature as well as the experimental rig of real free oscillations of one degree of freedom
mechanical system.

The main features of our general results are:
The obtained solution is expressed in terms of generalized G function, and could be used to

recover the results for different values of initial conditions and applied force to the plate. Regarding
the control of the fractional parameters, it is reported that the motion of the plate is an increasing
function of the fractional parameters and their influence is sensitive to the applied force to the plate.
The accuracy of the obtained results is tested by comparing them graphically with the existing results
in literature, developed usually by some numerical techniques and the results are in good agreement
with them. Moreover, the existing numerical solutions for BTE are for short interval of time, while the
results obtained in the paper have the potential to show the response for large intervals of time.

Furthermore, using BTE in modelling of real free vibrations of mechanical system with
one-degree-of-freedom composed of a cart connected with the springs to the support and moving via
linear rolling bearing block along a rail, it is observed that with certain values of the fractional order
parameters, the proposed model is in good agreement with the experimental results.

In the present work, we have employed the fractional derivative definition in the sense of Caputo,
but in future work we are intended to formulate BTE using the fractional ∧-derivatives to have clearer
geometrical and physical basis of the model.
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