
entropy

Article

A Geometric Interpretation of Stochastic Gradient
Descent Using Diffusion Metrics

Rita Fioresi 1,*, Pratik Chaudhari 2 and Stefano Soatto 3

1 Dipartimento di Matematica, piazza Porta San Donato 5, University of Bologna, 40126 Bologna, Italy
2 Department of Electrical and Systems Engineering, University of Pennsylvania,

Philadelphia, PA 19104, USA; pratikac@seas.upenn.edu
3 Computer Science Department, University of California, Los Angeles, CA 90095, USA; soatto@cs.ucla.edu
* Correspondence: rita.fioresi@unibo.it

Received: 30 November 2019; Accepted: 10 January 2020; Published: 15 January 2020
����������
�������

Abstract: This paper is a step towards developing a geometric understanding of a popular algorithm
for training deep neural networks named stochastic gradient descent (SGD). We built upon a recent
result which observed that the noise in SGD while training typical networks is highly non-isotropic.
That motivated a deterministic model in which the trajectories of our dynamical systems are described
via geodesics of a family of metrics arising from a certain diffusion matrix; namely, the covariance of
the stochastic gradients in SGD. Our model is analogous to models in general relativity: the role of
the electromagnetic field in the latter is played by the gradient of the loss function of a deep network
in the former.
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1. Introduction

Deep neural networks are high-dimensional machine learning models that have demonstrated
impressive performance on a number of challenging tasks in computer vision, natural language
processing and reinforcement learning [1,2]. These models are typically trained to minimize the
misprediction error compared to large amounts of human-annotated data. A large number of diverse
models with varying properties are prevalent in these application domains. Despite this diversity,
stochastic gradient descent (SGD) is the gold standard for training deep neural networks. It has been
shown to obtain good generalization performance; i.e., to train a model that performs well on new data,
across a wide range of applications. In spite of this popularity and efficacy, a precise understanding of
SGD for deep learning remains elusive.

This paper develops a geometric understanding of stochastic gradient descent. We build upon the
work of [3], wherein the authors model the dynamics of SGD as a stochastic differential equation with
state-dependent Gaussian noise. We interpret the covariance of this noise, called the diffusion matrix
henceforth, as a metric on the parameter space. Our result provides a deterministic Equation (10)
that can be compared to SGD near equilibrium points Equation (1). We write the diffusion matrix
D(x) in the form Equation (3) to show how it fundamentally captures the anisotropy of the dynamical
system underlying SGD. This clarifies how D(x) is one of the key factors that differentiates steady-state
solutions of SGD from those of ordinary gradient descent GD (see comparison in [3–5]). Using the
diffusion matrix, we then define a family of metrics on the parameter space that we call diffusion
metrics. We then take the Einstein equation describing the geodesic on a Riemannian manifold, for the
motion of a particle subject to a gravitational and electromagnetic field. We replace the electromagnetic
force by the ordinary gradient while gravity is taken into account using the diffusion metric itself. After
some mild hypotheses on the architecture of the neural network, we obtain the result that geodesics
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with respect to this equation correspond precisely to the evolution of a dynamical system, which is not
subject to Euclidean gradient descent but to relativistic gradient descent (RGD) with respect to the
family of diffusion metrics.

In the end, we obtain Equation (10), which is along the same vein as natural gradient descent in [6],
but whose significance is much deeper in the context of SGD, since it stems from the anisotropy of the
gradients with respect to the various parameters. This anisotropy encodes the difference between the
dynamics of GD and those of SGD. We also compare our result with the ones in [3] and show them to
be perfectly compatible. In the end we provide Appendix A for the reader convenience, with a quick
review of some key facts of Riemannian geometry.

2. Continuous-Time SGD and the Diffusion Matrix

Stochastic gradient descent performs an update of the weights x of a neural network, replacing
the ordinary gradient of the loss function f = 1

N ∑N
i=1 fi with ∇B f :

dx = −∇B f dt, ∇B f =
1
|B| ∑

i∈B
∇ fi, (1)

where dx represents the continuous version of the weight update at step j: xj+1 = xj − η∇B f (xj), with
the learning rate η incorporated into the expression of ∇B f , and B is the mini-batch. In the expression
of the loss function f = 1

N ∑N
i=1 fi, fi is the loss relative to the i-th element in our dataset Σ of size

|Σ| = N. We assume that weights belong to a compact subset Ω ⊂ Rd and that the fis satisfy suitable
regularity conditions (see [3] Section 2 for more details).

We define the diffusion matrix as the product of the size of the mini-batch |B| and the variance of
∇B f , viewed as a random variable, φ : Σ −→ Rd, φ(zi) = ∇ fi:

D(x) = E[(φ−E[φ])(φ−E[φ])t] (2)

Notice that D(x) ∈ Rd×d and does not depend on the size of the mini-batch; it only depends on
the weights x, loss function f and the dataset Σ. With a direct calculation one can show that:

D = 1
N ∑k(∇ fk)(∇ fk)

t − (∇ f )(∇ f )t = 1
N2 (〈∂r f̂ , ∂s f̂ 〉) (3)

where:
f̂ = ( f1 − f2, f1 − f3, . . . , fN−1 − fN) ∈ RN(N−1)/2

and 〈, 〉 is the euclidean scalar product. In fact:

Drs = 1
N ∑N

k=1 ∂r fk ∂s fk − 1
N2 ∑N

i,j=1 ∂r fi ∂s f j

= 1
N2 [N(∂r f1 ∂s f1 + · · ·+ ∂r fN ∂s fN)+

−(∂r f1 ∂s f1 + ∂r f1 ∂s f2 + · · ·+ ∂r fN ∂s fN)] =

= 1
N2 [(N − 1)∂r f1 ∂s f1 − ∂r f1 ∂s f2 − · · · − ∂r f1 ∂s fN+

−∂r f2 ∂s f1 + (N − 1)∂r f2 ∂s f2 − · · · − ∂r f2 ∂s fN + . . .

−∂r fN ∂s f1 − ∂r fN ∂s f2 + · · ·+ (N − 1)∂r fN ∂s fN ]
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which gives:

Drs = 1
N2 [(∂r f1 − ∂r f2)(∂s f1 − ∂s f2) + (∂r f1 − ∂r f3)(∂s f1 − ∂s f3) + . . .

+(∂r f1 − ∂r fN)(∂s f1 − ∂s fN) + (∂r f2 − ∂r f3)(∂s f2 − ∂s f3) + . . .

+(∂r fN−1 − ∂r fN)(∂s fN−1 − ∂s fN) =
1

N2 (〈∂r f̂ , ∂s f̂ 〉).

The diffusion matrix measures effectively the anisotropy of our data: D = 0 if and only if
∂r( fi) = ∂r( f j) for all r = 1, . . . , d and i, j = 1, . . . , N. In other words, the diffusion matrix measures
how the loss of each datum depends, at first order, on the weights in a different way with respect to
the loss of each of the other data-points. So, it tells us how much we should expect the SGD dynamics
to differ from the GD one. Notice that the expression (Equation (3)) gives us immediately a bound on
the rank of D; namely, rk(D) ≤ N − 1.

The Table 1 suggests that in many algorithms currently available, the diffusion matrix has low
rank; hence, it is singular; this just by comparing the size d of D and its rank which bound by N. This
fact turns out to be very important in the construction of the diffusion metrics, as we will see below.

3. Diffusion Metrics and General Relativity

The evolution of a dynamical system in general relativity takes place along the geodesics according
to the metric imposed on the Minkowski space by the presence of gravitational masses. The equation
for such geodesics, once Einstein’s equation is solved, is:

d2xµ

dt2 + Γµ
ρσ

dxρ

dt
dxσ

dt
=

q
m

Fµ
ν

dxν

dt
, (4)

where Γµ
ρσ are the Christoffel symbols for the Levi–Civita connection:

Γw
uv =

1
2

gwz (∂ugvz − ∂zguv + ∂vguz) (5)

and q
m Fµ

ν is a term regarding an external force; e.g., one coming from an electromagnetic field.
If we take the time derivative of the differential equation underlying the ordinary (i.e., non

stochastic) gradient descent:
d2xµ

dt2 = − d
dt

∂µ f

and compare with Equation (4), observe that − d
dt ∂µ f effectively replaces the force term (q/m)Fµ

ν
dxν

dt .
Hence, the geodesic equation Equation (4) models the ordinary GD equation if we take a constant
metric and replace the force term with the gradient of the loss; furthermore, this corresponds to the
condition D = 0 in SGD dynamics Equation (1).

This suggests that one may define a metric dependent on the diffusion matrix; this metric should
become constant when D = 0. As a side remark, notice that since D is singular in many important
practical applications (see Table 1), it is not reasonable to use it to define the metric itself. On the other
hand, since D measures the anisotropy of the weight space, it is reasonable to employ it to perturb the
euclidean metric. So the stochastic nature of the dynamical system ruled by the SGD is replaced by a
perturbation of the dynamics for the ordinary gradient descent. As an analogy, the presence of (small)
masses in space, in the weak field approximation (see [7]) of general relativity, generates gravity; this
motivates our (small) deformation of the euclidean metric using the diffusion matrix.
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Table 1. Values for N and d for various architectures on CIFAR and SVHN datasets (see [8]).

Architecture d = |Weights| N = |Data|, CIFAR N = |Data|, SVHN
ResNet 1.7 M 60 K 600 K
Wide ResNet 11 M 60 K 600 K
DenseNet (k = 12) 1 M 60 K 600 K
DenseNet (k = 24) 27.2 M 60 K 600 K

At each point x ∈ Ω, we define a metric called diffusion metric as

g(x) = id + E(x)D(x) (6)

with E(x) < 1/Mx, where Mx = max{λk : λk is an eigenvalue of D(x)}. This ensures that g is
non-singular at each x ∈ Ω. We have, thus, defined a family of metrics that depend on the real
parameter E . We expect this model to approximate the solution to the Fokker–Planck equation when
the parameter β−1, whose interpretation is related with the temperature, is very small (see [3] for the
notation and more details).

Notice that our heuristic hypothesis on E allows us to make the so called weak field approximation
(see [7]):

g−1 = id− ED(x).

Hence, we have the following expression for the Christoffel’s symbols (in this approximation we
discard O(E2)):

Γw
uv =

1
2 ∑

z
(δwz − Edwz) E (∂udvz − ∂zduv + ∂vduz) =

E
2
(∂udvw − ∂wduv + ∂vduw) (7)

where dij are the coefficients of D, and δwz is the Kronecker delta.
Let us now compute the Christoffel’s symbols and then substitute them into the geodesic equation

given by Equation (4).

Γk
ij = E

2N2 [〈∂i∂j f̂ , ∂k f̂ 〉+ 〈∂j f̂ , ∂i∂k f̂ 〉 − 〈∂i∂k f̂ , ∂j f̂ 〉 − 〈∂i f̂ , ∂k∂j f̂ 〉

+〈∂j∂k f̂ , ∂i f̂ 〉+ 〈∂k f̂ , ∂i∂j f̂ 〉] = E
N2 〈∂i∂j f̂ , ∂k f̂ 〉.

Let us substitute in Equation (4) (writing the sum now):

d2xk

dt2 +
E

N2 ∑
i,j
〈∂i∂j f̂ , ∂k f̂ 〉dxi

dt
dxj

dt
=

d
dt

∂k f . (8)

Let us concentrate on the expression:

E
N2 ∑i,j〈∂i∂j f̂ , ∂k f̂ 〉 dxi

dt
dxj

dt = E
N2 ∑i,j,α ∂i∂j f̂α ∂k f̂α

dxi

dt
dxj

dt

= E
N2 ∑α

d2 f̂α

dt2 ∂k f̂α.

Now, we take the integral in dt (we compute the parts twice):

E
N2

∫
∑α

d2 f̂α

dt2 ∂k f̂α dt = E
N2 ∑α

[
d f̂α

dt ∂k f̂α −
∫ d f̂α

dt
∂k f̂α

dt dt
]

= E
N2 ∑α

[
d f̂α

dt ∂k f̂α − f̂α
d
dt ∂k f̂α +

∫
f̂α

d2

dt2 ∂k f̂α dt
]

.
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Notice that, in many practical applications we have:

d2

dt2 ∂k f̂α = 0 (9)

because ∂i∂j∂k f̂ = 0.
Hence

E
N2

∫
∑α

d2 f̂α

dt2 ∂k f̂α dt = E
N2 ∑α,`

[
∂` f̂α

dx`
dt ∂k f̂α − f̂α

d
dt ∂k f̂α

]
= E ∑` dk,`

dx`
dt −

E
N2 ∑α f̂α

d
dt ∂k f̂α.

We now substitute the obtained expression into the Equation (8), taking the integral in dt:

dxk

dt
+ E∑

`

dk,`
dx`

dt
− E

N2 ∑
α

f̂α
d
dt

∂k f̂α = −∂k f .

We may assume E
N2 very small, as motivated by Equation (1); hence, discard this term. Writing

the equation into vector form, we have:

dx
dt

+ ED
dx
dt

= −∇ f .

By the weak field approximation (I + ED)−1 ∼= (I − ED), we can write:

dx
dt

= −(I − ED)∇ f = −∇D f , (10)

where ∇D f is the gradient computed according to the diffusion metric Equation (6).
We can summarize our result as follows: the SGD equation Equation (1) can be replaced, provided

the approximation Equation (9) holds, by the deterministic equation Equation (10), where the
dynamical system evolves with respect to the gradient computed according to the diffusion metric
Equation (6).

We now want to compare our result Equation (10) with [3] Section 1, in order to understand how
the steady state solutions of Equation (10) compare to the SGD steady state solutions described by
Equation (1). In [3], the authors regard SGD as minimizing the function Φ instead of our loss f . Let us
focus on (8) in [3], where the relation between f and Φ is discussed. In our case, we take ∇Φ = ∇D f
so that Equation (10) becomes

−∇ f (x) + D̃(x)∇Φ(x) = 0, (11)

where D̃(x) = (I + ED(x)) is the diffusion metric. If the term D(x) in (8) in [3] is spelled out as our
D̃(x), we can write such equation as:

j(x) = −∇ f (x) + D̃(x)∇Φ(x)− β−1∇ · D̃(x). (12)

Notice that according to our approximation Equation (9), ∇ · D̃(x) = 0. Hence, Equation (12)
(that is (8) in [3]) is perfectly compatible with our treatment, and furthermore, the assumption 4 in [3]
is fully justified by the fact that j(x) = 0.

4. Conclusions

The general relativity (GR) model helps to provide a deterministic approach the evolution of
the dynamical system described by SGD, through the use of the diffusion metric accounting for the
anisotropy of the system. Our results are compatible with [3]; moreover, they give GD for an isotropic
system. We plan to explore deep neural networks mixing our GR model with energy models in a
forthcoming paper (see also [9]). This will provide new geometric insight to the theory.
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Appendix A. Riemannian Geometry

We collected a few well known facts of Riemannian geometry, and invite the reader to consult [10]
for more details.

In Riemannian geometry, we define a metric g on a smooth manifold M, as a smooth assignment
p 7→ gp, which gives, for each p ∈ M, a (non degenerate) scalar product on Tp(M), the tangent space of
M at p. Usually, this scalar product is assumed to be a positive definite; however, for general relativity,
it is necessary to drop this assumption, so that we speak of a pseudometric, because our main example
is the Minkowski metric. To ease the terminology, we say "metric" to include this more general setting
as well.

Once a metric is given, we say that M is a Riemannian manifold. In local coordinates, x1, . . . , xn,
we express the metric using 1-forms:

g = ∑
i,j

gij dxi ⊗ dxj.

where

gij|p := gp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
and

{
∂

∂x1 |p, . . . ,
∂

∂xn |p
}

is a basis of the tangent space Tp M.
For example Rn, identified with its tangent space at every point, has a canonical or standard

metric given by:

gcan
p : TpRn × TpRn −→ R,

(
∑

i
ai

∂

∂xi , ∑
j

bj
∂

∂xj

)
7−→∑

i
aibi.

Here, gcan
ij = δij.

Usually, we drop the ∑ symbol, following Einstein’s convention.
An affine connection ∇ on a smooth manifold M is an bilinear map (X, Y) 7→ ∇XY associating

with a pair of vector fields X, Y on M another vector field ∇XY, satisfying:

1. ∇ f XY = f∇XY for all functions f on M;
2. ∇X( f Y) = d f (X)Y + f∇XY.

Once this definition is given, it is possible to define ∇ on tensors of every order.
On a Riemannian manifold we have a unique affine connection, the Levi–Civita connection ∇,

which is torsion free and preserves the metric; i.e., ∇g = 0. In local coordinates the components of the
connection are called the Christoffel symbols:

∇ ∂
∂xi

∂

∂xj = Γk
ij

∂

∂xk .

By the above -mentioned uniqueness, the Γk
ijs are expressed in terms of the metric components gij:

Γl
jk =

1
2 glr

(
∂kgrj + ∂jgrk − ∂rgjk

)
,
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where as usual, gij are the coefficients of the dual metric tensor; i.e., the entries of the inverse of the
matrix (gkl). The torsion freeness is equivalent to the symmetry

Γl
jk = Γl

kj.

In Rn, the gradient of a scalar function f is the vector field characterized by the property: grad( f ) ·
v = Dv (we shall denote it with ∇( f ) so that no confusion arises). In other words, its scalar product
(in the euclidean metric) with a tangent vector v gives the directional derivative of f along v. When M
is a Riemannian manifold with metric g, the gradient of a function f on M is defined in the same way,
except that the scalar product is now given by g. So, in local coordinates, we have:

∇g f =
∂ f
∂xi gij ∂

∂xj .

Notice that when gij = δij, we retrieve the usual definition in Rn.
We end our short summary of the key concepts, with the notion of geodesic.
A geodesic γ on a smooth manifold M with an affine connection ∇ is a curve defined by the

following equation:
∇γ̇γ̇ = 0

Geometrically, this expresses the fact that the parallel transport, given by ∇, along the curve γ

preserves any tangent vector to the curve. In local coordinates this becomes:

d2γλ

dt2 + Γλ
µν

dγµ

dt
dγν

dt
= 0 .

Notice that when the metric is constant, we have the familiar equation:

d2γλ

dt2 = 0;

that is, the geodesics are straight lines.
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