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Abstract: Fractional refined composite multiscale fuzzy entropy (FRCMFE), which aims to relieve
the large fluctuation of fuzzy entropy (FuzzyEn) measure and significantly discriminate different
short-term financial time series with noise, is proposed to quantify the complexity dynamics of the
international stock indices in the paper. To comprehend the FRCMFE, the complexity analyses of
Gaussian white noise with different signal lengths, the random logarithmic returns and volatility
series of the international stock indices are comparatively performed with multiscale fuzzy entropy
(MFE), composite multiscale fuzzy entropy (CMFE) and refined composite multiscale fuzzy entropy
(RCMFE). The empirical results show that the FRCMFE measure outperforms the traditional methods
to some extent.

Keywords: multiscale fuzzy entropy; composite multiscale fuzzy entropy; refined composite
multiscale fuzzy entropy; fractional refined composite multiscale fuzzy entropy; complexity

1. Introduction

It is generally believed that the logarithmic returns and volatility (which means absolute-price
logarithmic returns in this paper) of international stock indices often possess strong nonlinearity and
nonstationarity [1–5]. Exploring statistical characteristics, predictability and modeling of financial
variables (returns, price, volume, etc.) has been a key objective for their significant importance in
theoretical research and wide application in financial fields, such as risk management, derivatives
pricing, forecasting and modeling [1,5–7]. Of course, the primary question is to judge whether a
financial signal is worth modeling, i.e., we should judge whether the time series is random walk
or regular to some extent, and how about the structural dynamics. In addition, the complexity
of a time series is a measure, which may be related to the unpredictability and the difficulties in
predicting a signal. The larger complexity a time series has, more difficulties in predicting there is.
As expected, an irregular series should be more complex than a regular one, i.e., a pure stochastic series
should have larger complexity value than a regular one in single scale case [8], and, possessing the
partial past history and related structure information, a time series with long-range correlations has
larger complexity than a pure stochastic series in multiscale case [9]. Recently, abundant complexity
methods and corresponding improved measures have been proposed, for example, entropy measures,
Lyapunov exponents and fractal dimension [10–16], where entropy measures are the most favorite for
their simplicity in understanding and convenience for program with computing software. Enormous
revised nonlinear measures based on permutation entropy (PermEn), approximate entroy (AppEn),
sample entropy (SampEn) and fuzzy entropy (FuzzyEn) are proposed to detect the complexity
dynamics of physiological, traffic and financial time series which are typically short, and commonly
contaminated by noise [8,11–13,17–30]. Where SampEn is the improved version of AppEn with
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excluding self-matching, and FuzzyEn is the improved version of SampEn measure with fuzzy
membership function in the place of the Heaviside function [8]. Fractional sample entropy (FSE),
which combining traditional sample entropy with fractional calculus, is also an improved version of
sample entropy method, and it can sensitively explore fractional order dynamics and evolutionary
information in a nonlinear system, and hence get more accurate understanding of the series [22].
The random logarithmic returns and volatility series of financial data are proved to possess different
complexity degree [22]. Composite multiscale entropy measure is proposed to quantify complexity
of short-term financial time series, and it shows the advantages in stability and reliability of results
when compared with the conventional algorithms [11]. Refined composite multiscale permutation
entropy (RCMPE) is proposed based on PermEn and refine, composite, multiscale technologies to
overcome length dependence and hence achieve more stable estimations than MPE [25]. Fractional
fuzzy entropy (FFE) is proposed based on FuzzyEn and fractional information to explore complexity
behavior of financial dynamics [27]. Combining fuzzy entropy with multiscale, composite and refine
technologies, refined composite multiscale fuzzy entropy (RCMFE) is proposed to detect localized
defect of rolling element bearing [28], and it is first applied to explore the complexity dynamics of
returns and volatility series of the international stock indices in the paper. Many classical entropies,
distances, etc. are generalized by combining them with the concepts of fractional calculus. And the
novel measures exhibit superior sensitivity to the characteristics exhibited by each distinct type of data
by tuning the fractional order in practical applications [31–33].

In this work, inspired by the works [21,22,28,31–33], where improved measures are proposed by
the combination of traditional measures with fractional calculus, composite technology, etc. and
can obtain more sensitive and stable analysis results, combining RCMFE with fractional order
information and refine, composite technology, a revised complexity measure—fractional refined
composite multiscale fuzzy entropy (FRCMFE)—is proposed to study the complexity behaviors of
the returns and volatility of international stock indices, which is expected to investigate complexity
behavior of noisy signal sensitively and stably with relatively short length, which is representative
nature of financial time series. Moreover, through the analyses of the Gaussian series with different
lengths and real market indices, the empirical results confirm that the proposed FRCMFE is superior
to traditional complexity measures to some extent.

The remainder of the manuscript is organized as follows. Section 2 introduces the FuzzyEn,
RCMFE, and FRCMFE methods briefly. In Section 3, Gaussian white noise is used to evaluate the
effectiveness of MFE, RCMFE and FRCMFE. Section 4 presents the entropy results of returns and
volatility series of international stock indices, followed by a conclusion in Section 5.

2. Methodologies

2.1. Fuzzy Entropy

The fuzzy entropy (FuzzyEn) measure, which combines the concept of fuzzy sets and vectors’
similarity defined in AppEn, SampEn, is a novel complexity measure, where vectors’ similarity is
defined by fuzzy similarity degree based on fuzzy membership functions and vectors’ shapes in the
place of Heaviside function.

Given a time series x = {xi, i = 1, 2, · · · , T}, the FuzzyEn value can be calculated as follows [8,21].
Construct a m-dimensional vector sequence with length T −m + 1 {Xm

i , 1 ≤ i ≤ T −m + 1} by the
well-known method proposed by Takens [34] and subtract the mean value as:

Xm
i = {xi, xi+1, · · · , xi+m−1} − x̄(i) (1)



Entropy 2019, 21, 914 3 of 12

where the parameters m is called the embedding dimension, x̄(i) is the mean value of the vector
{xi, xi+1, · · · , xi+m−1} for baseline removal, i.e.,

x̄(i) =
1
m

m−1

∑
j=0

xi+j. (2)

Every phase point of m-dimensional phase space {Xm
i } represents a certainly instantaneous state

of a system. Then, given vector series {Xm
i }, the similarity degree Dm

ij of Xm
i to its neighboring vector

Xm
j defined by a fuzzy membership function as:

Dm
ij = e−(d

m
ij /r)n

(3)

where the parameters n is the gradient of boundary, r is the width of the fuzzy function, dij is the
maximum norm of difference vector of Xm

i and Xm
j in this paper. For all vectors {Xm

i , 1 ≤ i ≤
T −m + 1}, we can get the probability Cm(r) by the mean values of Dm

ij of any two vectors as:

Cm(r) =
1

T −m

T−m

∑
i=1

(
1

T −m− 1

T−m

∑
j=1,j 6=i

Dm
ij

)
. (4)

Obviously, Cm(r) can represent similarity probability of any two vectors in the mean sense.
Similarly, there also exists the probability Cm+1(r) for m + 1 dimension vectors series {Xm+1

i , 1 ≤ i ≤
T −m} as:

Cm+1(r) =
1

T −m

T−m

∑
i=1

(
1

T −m− 1

T−m

∑
j=1,j 6=i

Dm+1
ij

)
. (5)

Finally, for the time series x, the FuzzyEn is estimated as follows:

FuzzyEn(m, n, r, T) = − ln
Cm+1(r)

Cm(r)
. (6)

Generally, m and n (m, n > 1) are set to two small values to avoid the loss of the detailed
information, n is set to be 2 in this paper, and r should be multiplied by the standard deviation (SD) of
the original dataset to avoid the effect of data magnitude, described as r× SD.

2.2. Fractional Refined Composite Multiscale Fuzzy Entropy

To measure the information inherent in multiscale dataset such as financial and physiology
time series, Costa et al. [9] combine the concept of coarsegraining and entropy measure to propose
a novel statistic named Multiscale Entropy. Then, FuzzyEn is extended to multiscale case called
multiscale FuzzyEn entropy (MFE). Combining fuzzy entropy with multiscale, composite and refine
technologies, refined composite multiscale fuzzy entropy (RCMFE) is proposed to detect localized
defect of rolling element bearing [28]. The algorithm of RCMFE mainly consists of three procedures.
First, for a time series {xi, i = 1, 2, · · · , T}, coarsegraining with scale factor τ is implemented.
More precisely, the improved k − th coarse-grained time series y(τ)k = {y(τ)1,k , y(τ)2,k , · · · , y(τ)b T

τ c,k
} can

be obtained as follows:

y(τ)i,k =
1
τ

iτ+k−1

∑
j=(i−1)τ+k

xj 1 ≤ i ≤ bT
τ
c, 1 ≤ k ≤ τ (7)

where buc is the integral part of u. Then, for a given scale factor τ, the two defined functions Cm
k,τ(r)

and Cm+1
k,τ (r) are calculated for {y(τ)i,k , 1 ≤ i ≤ b T

τ c} with embedding dimension m and m + 1. Then,
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the mean of Cm
k,τ(r) and Cm+1

k,τ (r) for k denoted as C̄m
τ (r) and C̄m+1

τ (r) are computed respectively, i.e.,
C̄m

τ (r) =
1
τ ∑τ

k=1 Cm
k,τ(r). Finally, RCMFE can be estimated as

RCMFE(x, τ, m, n, r) = − ln
C̄m+1

τ (r)
C̄m

τ (r)
. (8)

Obviously, when k = 1, the RCMFE degenerates to classic MFE case.
Moreover, a revised entropy measure based on the SampEn and fractal theory in Refs. [35,36],

is developed to detect underlying properties of fractional order behavior in a complex system [22].
Inspired by the works [21,22,28], combining RCMFE with fractional order information, a revised
complexity measure fractional refined composite multiscale fuzzy entropy (FRCMFE) is proposed to
study the complexity behaviors of the returns and volatility of international stock indices in the work.

Then, the corresponding FRCMFE value of a time series {x(t), t = 1, 2, · · · , T} is calculated as:

FRCMFE(x, τ, m, n, α, r) = − ln C̄m+1
τ (r)− ln C̄m

τ (r) + ψ(1)− ψ(1− α)

Γ(α + 1)

[ C̄m+1
τ (r)
C̄m

τ (r)

]−α
(9)

where α ∈ [−1, 1] is called fractional order exponent, and when α = 0, the FRCMFE degenerates to
classic RCMFE case. As a statistic, FRCMFE vitally depends on the choice of parameters m and r,
but there are no guidelines for optimizing them. A widely accepted rule in such kinds of fractional
entropy measure by researchers is that r = l × SD (0.1 ≤ l ≤ 0.25) and m is 2 ≤ m ≤ 7. We estimate
the FRCMFE for all the considered price logarithmic returns and volatility with parameters m = 2 and
r̂ = 0.15× SD in the work, where SD is the standard deviation of coarse-grained time series of the
original price returns [22].

3. Complexity Measure for Synthetic Data

In the section, we study the complexity behavior of Gaussian white noise (GWN), which is usually
applicable to the comparative study with complex models, with different lengths and with MFE, CMFE,
and RCMFE measures. We know that the inherent dynamics of Gaussian white noise is invariant,
no matter how long series length is. RCMFE can obtain a more stable entropy statistics than MFE
and CMFE. The standard deviations of the MFE, CMFE and RCMFE for different data lengths (1000,
1500, 2000, 2500, 3000, 5000, 10000) with two scale factor (τ = 10 and τ = 20) are list in Table 1.
From Table 1, the performance of MFE,CMFE and RCMFE can be evaluated. For all Gaussian white
noise, the standard deviations of three kinds of entropy measures decrease with the increase of data
length, respectively. Therefore, the accuracy of entropy statistics is affected by the size of data samples.
In other words, the longer the length of the time series is, the higher the accuracy of the calculation
is. Moreover, compared with CMFE and MFE, the standard deviations of RCMFE in each scale factor
are smaller, hence RCMFE can produce the most stable results. It is worth noting that for a fixed data
length, standard deviations of entropy measures tends to increase when the scale factor is from 10
convert to 20. This result confirms theoretical analysis of entropy instability, which may be caused by a
shorter coarse grain sequence for a bigger scale factor.

Table 1. Standard deviations of MFE, CMFE and RCMFE of Gaussian white noise.

Method Data Length

1000 1500 2000 2500 3000 5000 10,000

MFE (τ = 10) 0.0827 0.0794 0.0672 0.0483 0.0470 0.0339 0.0302
CMFE (τ = 10) 0.0706 0.0538 0.0449 0.0378 0.0331 0.0313 0.0185

RCMFE (τ = 10) 0.0684 0.0509 0.0466 0.0366 0.0327 0.0283 0.0180

MFE (τ = 20) 0.0885 0.0823 0.0788 0.0663 0.0717 0.0498 0.0337
CMFE (τ = 20) 0.0763 0.0681 0.0568 0.0544 0.0397 0.0340 0.0290

RCMFE (τ = 20) 0.0716 0.0658 0.0517 0.0397 0.0393 0.0337 0.0228
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Next, the MFE, RCMFE, and FRCMFE (with α = −0.04) will be comparatively analyzed in terms
of their capability to reveal structural differences on GWN series. We further analyze the time series
with different numbers of data points with these methods. The MFE, RCMFE, and FRCMFE values of
Gaussian series with different scale factor τ are displayed in Figure 1, where scale factor τ is from 1 to
20 with step size 1. In Figure 1, for all series, complexity values decrease with the increase of scale
factor τ, fluctuations of the MFE curves are significant larger than those of the RCMFE ones, and the
complexity curves with the longest length are the most stable. In addition, MFE and RCMFE cannot
discriminate these series significantly, which may cause serious defects in the practical applications.
Furthermore, we find that FRCMFE measure obtains larger separation between entropy values in GWN
sequences than MFE and RCMFE, hence, FRCMFE can discriminate these signals more significantly
than others. To sum up in conclusion, FRCMFE method can effectively overcome the shortcomings of
MFE and RCMFE methods, which cannot distinguish significantly GWN series with different length.
In addition, FRCMFE method is relatively sensitive and can better discover the inherent properties of
time series with different degree complexity.
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Figure 1. Complexity of Gaussian series with different length: (a) MFE, (b) RCMFE, (c) FRCMFE.

4. Complexity Measure for International Stock Indices

In this section, we explore the complexity behaviors of the daily price returns and volatility of
international stock indices. We choose 5 important international stock indices from three countries
(i.e., America, Japan and China) to better confirm the application of the introduced method in practical
situations. The 5 indices are S&P500 (from America market), N225 (from Japan market), SSE, SZSE,
HSI (from China market), respectively. The corresponding dataset is collected from the Yahoo Financial
web site (Available online: https://finance.yahoo.com/ (accessed on 8 May 2012)). we select analyzed
time interval of returns and volatility is from 30 June 1995 to 31 May 2017, with 4000 data points
(but there are some slight differences in time interval because of the slightly different non-trading
days in the above stock markets of three countries, and some individual missing data are added by
linear interpolation).

4.1. Complexity Measure of Returns

The MFE, RCMFE, and FRCMFE analyses are used to survey the complexity dynamics of the
price returns {r(t), t = 1, 2, · · · , 4000} of international stock indices. We fix n = 2 and r = 0.15 in the
following for simplification, and the corresponding results are displayed in Tables 2–4, and Figure 2.
Figure 2 depicts entropy measure values of returns with MFE, RCMFE and FRCMFE methods with
scale factor τ from 1 to 20 with step size 1, FRCMFE method with scale factor τ from 1 to 10 with step
size 1 (since FRCMFE value changes with scale factor τ from 10 to 20 is very small), where fractional
order exponent α is set to be −0.04 in FRCMFE method. In Figure 2, for all price returns, similar to
MFE curve, FRCMFE and RCMFE curves decrease with scale τ increase. Moreover, entropy curves of
S&P500 and N225 are under those of SSE, SZSE, and HSI in high scale, which may because the America
and Japan security markets are more mature and efficient than China security markets, and display
more random behavior, while there are long-range correlations in China security markets to some

https://finance.yahoo.com/
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extent. It confirms that the entropy value of series with long-range correlations is theoretically higher
than that of a random signal in high scales [9].
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Figure 2. Complexity of returns: (a) MFE, (b) RCMFE, (c) FRCMFE.

Tables 2 and 3 list MFE and RCMFE values of returns with different time scale factor τ, where we
choose scale τ to be 1, 3, 5, 7, 9, 12, 16, 20, respectively. For all series, entropy values decrease with
scale increases, and for a fix τ, entropy values of SSE, SZSE and HSI are larger than those of S&P500
and N225, which is similar to Figure 2. Table 4 and Figure 2c display FRCMFE values of returns with
different time scale factor τ. Since the FRCMFE value changes mainly focus on the scale factor from 1
to 10 with step size 1, to study more deeply, in Table 4 we take the scale factor τ as 2, 3, 4, 5, 6, 7, 8,
10, respectively. In Figure 2, for MFE and RCMFE methods, the entropy values of Asian market is
higher than that of America market, but the Asian market is not well discriminated. However, in the
FRCMFE analysis, the difference between the two kinds of markets is more significant to some extent,
the separation between entropy curves are larger. This means that FRCMFE can describe the multiscale
structure of time series. Meanwhile, we can also see that HSI is closer to the America market than
others, which may be because Hong Kong’s financial market still maintains the traditional business
mechanism of the British financial market. The entropy values of Hong Kong’s market are slightly
higher than those of the America market because its business behavior is also influenced by other
Asian markets and some Chinese rules and policies. For example, due to China’s “One Country,
Two Systems” policy, the Hong Kong stock market gradually approaches the China market with
the increase of the scale factor, and the HSI maintains a good consistency with other Asian capital
markets such as Japan. Moreover, by changing the time scale factors τ and fractal exponent α, richer
information can be obtained, and the internal dynamics of financial time series can be better detected.
Finally, FRCMFE method also clearly distinguishes SSE and SZSE. We get that SZSE has the higher
entropy value, maybe it contains more small and medium-sized enterprise (SME) board and growth
enterprise markets (GEM) with high activity. We also believe that with the opening of science and
technology innovation board (SSE STAR Market), SSE will also possesses a high activity.

Table 2. MFE of returns with different τ.

τ SSE S&P500 SZSE N225 HSI

1 0.9329 0.8888 0.9533 1.0754 0.9673
3 0.5968 0.5235 0.6029 0.6736 0.6139
5 0.4574 0.3833 0.4637 0.5034 0.4672
7 0.4049 0.3077 0.4059 0.4016 0.3750
9 0.3427 0.2518 0.3411 0.3417 0.3352

12 0.3032 0.2127 0.3050 0.2948 0.2836
16 0.2576 0.1771 0.2621 0.2317 0.2371
20 0.2346 0.1635 0.2493 0.2099 0.2131
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Table 3. RCMFE of returns with different τ.

τ SSE S&P500 SZSE N225 HSI

1 0.9329 0.8888 0.9533 1.0754 0.9673
3 0.6022 0.5263 0.6134 0.6550 0.6108
5 0.4715 0.3948 0.4824 0.5058 0.4709
7 0.3965 0.3154 0.4017 0.4070 0.3846
9 0.3414 0.2637 0.3517 0.3418 0.3272

12 0.2984 0.2116 0.3053 0.2826 0.2773
16 0.2615 0.1765 0.2722 0.2332 0.2381
20 0.2319 0.1492 0.2442 0.1975 0.2062

Table 4. FRCMFE of returns with different τ.

τ SZSE SSE HSI N225 S&P500

2 0.5990 0.5972 0.5960 0.5957 0.5943
3 0.5962 0.5951 0.5939 0.5942 0.5927
4 0.5948 0.5939 0.5934 0.5935 0.5927
5 0.5945 0.5939 0.5931 0.5930 0.5924
6 0.5942 0.5935 0.5929 0.5927 0.5920
7 0.5937 0.5930 0.5926 0.5924 0.5920
8 0.5933 0.5928 0.5924 0.5923 0.5919

10 0.5930 0.5924 0.5924 0.5922 0.5918

Then we use the FRCMFE analysis to explore the complexity dynamics of the returns. Table 5
lists the FRCMFE with different fractional order exponent values α from −0.3 to 0.5 with step size
0.1 and α = −0.04. As exponent α increases, the FRCMFE values increase to the maximum and then
decrease quickly. According to Table 5, FRCMFE achieves the maximum value with α at approximately
−0.04. Figure 3 depicts FRCMFE (with α = −0.04) curves of return series of different financial indices
with different fractional exponent values α, where all curves are significantly separated. This further
verifies the feasibility of the FRCMFE method, which can better discriminate different financial time
series with different degrees of complexity.

Table 5. FRCMFE of returns with different α.

α SSE S&P500 SZSE N225 HSI

−0.3 0.4811 0.4795 0.4817 0.4801 0.4803
−0.2 0.5457 0.5439 0.5465 0.5445 0.5448
−0.1 0.5877 0.5856 0.5887 0.5863 0.5867
−0.04 0.5958 0.5934 0.5967 0.5942 0.5946

0 0.5913 0.5889 0.5924 0.5897 0.5901
0.1 0.5341 0.5314 0.5353 0.5323 0.5328
0.2 0.3822 0.3794 0.3854 0.3803 0.3808
0.3 0.0794 0.0767 0.0806 0.0776 0.0780
0.4 −0.4777 −0.4800 −0.4767 −0.4792 −0.4788
0.5 −1.5028 −1.5038 −1.5024 −1.5034 −1.5033
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Figure 3. FRCMFE of returns with different α (for τ = 5).

4.2. Complexity Measure of Volatility

The MFE, RCMFE, and FRCMFE analyses are used to survey the complexity dynamics of the
volatility {|r(t)|, t = 1, 2, · · · , 4000} of international stock indices, and the corresponding results are
displayed in Tables 6–9, and Figure 4. Table 6 lists the FRCMFE of {|r(t)|} with different fractional
exponent values α, where α ranges from −0.3 to 0.5 with step size of 0.1 and α = −0.04, the FRCMFE
values first increases and get the maximum around α = −0.04, and then decreases.

Table 6. FRCMFE of |r(t)| with different α.

α SSE S&P500 SZSE N225 HSI

−0.3 0.4798 0.4789 0.4800 0.4793 0.4794
−0.2 0.5442 0.5432 0.5444 0.5435 0.5437
−0.1 0.5860 0.5848 0.5862 0.5852 0.5854
−0.04 0.5938 0.5929 0.5941 0.5930 0.5933

0 0.5893 0.5879 0.5896 0.5884 0.5887
0.1 0.5319 0.5304 0.5322 0.5309 0.5312
0.2 0.3799 0.3783 0.3802 0.3788 0.3792
0.3 0.0771 0.0756 0.0775 0.0761 0.0764
0.4 −0.4796 −0.4809 −0.4793 −0.4804 −0.4802
0.5 −1.5036 −1.5041 −1.5035 −1.5039 −1.5038

Tables 7 and 8 list MFE and RCMFE of {|r(t)|} with different time scale factor τ =

1, 3, 5, 7, 9, 12, 16, 20, similar to Tables 2 and 3, entropy values decrease with scale increases,
and for a fix τ, almost all entropy values of SSE, SZSE and HSI are larger than those of S&P500 and
N225. It is interesting that entropy values of all volatility series are smaller than those of returns in
low scale and larger than those of returns in high scale for a fix τ, which confirms that the entropy
value of series with long-range correlations is theoretically higher than that of a random signal [9],
since volatility clustering reveals that absolute return series exhibit significant autocorrelation.

Table 7. MFE of |r(t)| with different τ.

τ SSE S&P500 SZSE N225 HSI

1 0.9614 0.7745 0.8403 0.7986 0.8148
3 0.6337 0.4977 0.4889 0.5158 0.5367
5 0.5148 0.4080 0.3897 0.4275 0.4427
7 0.4538 0.3826 0.3299 0.3783 0.3967
9 0.4301 0.3523 0.3021 0.3633 0.3747

12 0.4057 0.3409 0.2895 0.3496 0.3539
16 0.3661 0.3314 0.22782 0.3505 0.3519
20 0.3909 0.3230 0.2785 0.3615 0.3433
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Table 9 lists FRCMFE of {|r(t)|} with different time scale factor τ = 2, 3, 4, 5, 6, 7, 8, 10, (since
the FRCMFE value changes are not significantly on the scale factor from 10 to 20 with step size 1.)
similar to Tables 7 and 8, entropy values decrease with scale increases, and for a fix τ, almost all
entropy values of SSE, SZSE and HSI are larger than that of S&P500.

Table 8. RCMFE of |r(t)| with different τ.

τ SSE S&P500 SZSE N225 HSI

1 0.7986 0.7745 0.8148 0.9614 0.8403
3 0.5236 0.4868 0.5245 0.6238 0.4876
5 0.4284 0.3985 0.4418 0.5123 0.3783
7 0.3821 0.3668 0.3876 0.4522 0.3261
9 0.3631 0.3519 0.3684 0.3684 0.3056

12 0.3537 0.3410 0.3535 0.4037 0.2954
16 0.3494 0.3280 0.3437 0.3904 0.2851
20 0.3491 0.3197 0.3440 0.3868 0.2791

Table 9. FRCMFE of |r(t)| with different τ.

τ SSE S&P500 SZSE N225 HSI

2 0.5328 0.5311 0.5335 0.5318 0.5317
3 0.5316 0.5306 0.5321 0.5312 0.5310
4 0.5313 0.5305 0.5316 0.5309 0.5308
5 0.5310 0.5304 0.5314 0.5308 0.5307
6 0.5308 0.5303 0.5312 0.5306 0.5305
7 0.5308 0.5303 0.5311 0.5306 0.5305
8 0.5307 0.5303 0.5309 0.5306 0.5305

10 0.5306 0.5302 0.5308 0.5305 0.5308

Figure 4 depicts FRCMFE curves of volatility series with different fractional exponent values
α. Compared with Figure 3, Figure 4 has the similar dynamics behaviors. Moreover, the FRCMFE
of volatility series are significantly decrease, which means that the volatility series exhibit lower
complexity than the return series. Figure 5 depicts the complexity of financial volatility time series with
MFE, RCMFE, and FRCMFE with scale factor τ from 1 to 20 with step size 1, where fractional order
exponent α is set to be −0.04. Similar to Figure 2, for all price returns, MFE, FRCMFE, and RCMFE
curves decrease with scale τ increase.
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Figure 4. FRCMFE of volatility series with different α (for τ = 5).
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Figure 5. Complexity of volatility series: (a) MFE, (b) RCMFE, (c) FRCMFE.

5. Conclusions

In the work, a novel complexity measure, i.e., FRCMFE, is presented by combining RCMFE
method with fractal theory, which can stably evaluate structural dynamics and detect underlying
fractional order behavior in a complex system. Then, we survey the complexity behavior of GWN
series with different lengths with MFE, CMFE, RCMFE and FRCMFE measures, which shows that
RCMFE and FRCMFE is more stable and sensitive than traditional methods (showing larger separation
between entropy values of financial series than traditional measures), and they are suited to analyze
short-term financial time series with noise. Next, we investigate the complexity behavior of price
logarithmic returns and volatility of international stock indices. The results show that entropy values
of all volatility series are smaller than those of returns in low scale and larger than those of returns
in high scale for a fix τ, which coincides with previous literature of multiscale entropy. Moreover,
FRCMFE can distinguish different financial markets sensitively and significantly.
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