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Abstract: With new security threats cropping up every day, finding a real-time and smart protection
strategy for critical infrastructure has become a big challenge. Game theory is suitable for solving
this problem, for it provides a theoretical framework for analyzing the intelligent decisions from
both attackers and defenders. However, existing methods are only based on complete information
and only consider a single type of attacker, which is not always available in realistic situations.
Furthermore, although infrastructure interconnection has been greatly improved, there is a lack of
methods considering network characteristics. To overcome these limitations, we focus on the problem
of infrastructure network protection under asymmetry information. We present a novel method to
measure the performance of infrastructure from the network perspective. Moreover, we propose a
false network construction method to simulate how the defender applies asymmetric information
to defend against the attacker actively. Meanwhile, we consider multiple types of attackers and
introduce the Bayesian Stackelberg game to build the model. Experiments in real infrastructure
networks reveal that our approach can improve infrastructure protection performance. Our method
gives a brand new way to approach the problem of infrastructure security defense.

Keywords: infrastructure network; Bayesian Stackelberg game; asymmetry information

1. Introduction

Modern society is highly dependent on infrastructure, and any failure of infrastructure will
seriously affect people’s daily life. With the increase of terrorism, how to effectively prevent attacks
on infrastructure has become a worthwhile subject of research. For the protection of infrastructure,
researchers also provide many research methods, such as probabilistic risk assessment and historical
data analysis. However, because these methods need static input in the research process, it is not
suitable for the study of intelligent countermeasure behavior [1–3]. Game theory is a natural modeling
paradigm for a multi-agent intelligent interaction scenario, which can provide an accurate individual
interaction model for the research on intelligent individual confrontation. As Hall [4] mentioned,
“if the conditions creating the problems you had to deal with were natural or random, the answer
was decision analysis (which looked a lot like what we now call risk analysis). If the conditions
creating the problems you had to deal with were the result of deliberate choice, the answer was game
theory.” Feng et al. [5] proposed a game theory method to optimize the allocation of defense resources,
which combines game theory with a risk assessment to optimize the allocation of limited defense
resources in a city. Zhang et al. [6] analyzed the general intrusion detection system of infrastructure
and proposed a game theory model for infrastructure security management. Nochenson et al. [7]
obtained Nash equilibrium strategies under various cost conditions through simulation, to better
provide infrastructure administrators with possible attack behavior and possible mitigation measures.
Guan et al. [8] proposed a game theory model to study how the balanced allocation of the defender

Entropy 2019, 21, 909; doi:10.3390/e21090909 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7395-2537
http://dx.doi.org/10.3390/e21090909
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/9/909?type=check_update&version=2


Entropy 2019, 21, 909 2 of 22

and the attacker depends on the budget constraints, target valuation, cost-effectiveness of investment
and the basic defensive level of the target in the game. After our investigation, we found that game
theory as an appropriate method of infrastructure security protection research has been paid more and
more attention by researchers [6,9–15].

The models mentioned earlier are based on the simultaneous game model. However,
the sequential game model, which is more in line with the actual situation of infrastructure protection
deserves our further study. To prevent the destruction of infrastructure from affecting people’s daily life
and work, the security sector always launches defense before the attack. Therefore, the sequential game
model is more in line with the actual situation of infrastructure offensive and defensive confrontation.
The Stackelberg game is a sequential game which closely combines theory with practice. After Vincent
Conitzer and Tuomas Sandholm published the foundational paper [16] on the Stackelberg game
applied in the field of security protection in 2006, a large number of applications of the Stackelberg
game in various security issues will hopefully improve the intelligent decision-making solutions to
complex security problems. This has been verified in practical application systems such asARMOR
(Assistant for Randomized Monitoring over Routes) [17] and IRIS (Intelligent Randomization In
Scheduling) [18]. In the field of security protection, when the defender’s security resources are limited
and the critical protection targets cannot be completely covered by security protection, the allocation
of limited security resources must be rational. In the Stackelberg game, we consider two players—the
defender and the attacker. The defender, as the leader, first promises to adopt defense strategies.
The follower attacker responds based on the information of defender obtained from surveillance,
reconnaissance and even intelligence. The defender can gain the ’first-mover advantage’ through
this sequential game, which has been proved in mathematical theory [19]. In this paper, we use the
Bayesian Stackelberg game [16] to extend a single type of attacker to a variety of types of attackers and
solve it via the DOBSS (Decomposed Optimal Bayesian Stackelberg Solver) algorithm [20], which is
the fastest optimal algorithm for such games.

Although the Stackelberg game provides a more practical research model for security protection,
there is still much room for improvement in the research on infrastructure protection. The network era
has led to the emergence of network systems. Complex networks provide a suitable modeling tool
for describing complex systems in human society and nature including financial networks, ecological
networks, social networks and infrastructure networks [21–24]. The complexity of networks has
increased exponentially. Many works have been conducted on complex networks, such as community
detection [25,26], network controllability [27,28], node ranking [29,30], link prediction [31,32] and
evolutionary game [33,34]. More and more infrastructures in modern society are showing their network
characteristics. The functions of infrastructural networks depend to a great extent on their connectivity
and topology. Some single infrastructural failures may cause destructive effects on systems. Therefore,
it is necessary to model infrastructure as a network system for research. Researchers have launched
research on network disintegration based on complex network theory. In 2000, Albert et al. [35] first
analyzed the scale-free network disintegration problem and proposed the famous “coexistence of
robustness and vulnerability” problem. After that, Holme et al. [36] summarized and compared the
network disintegration effects of various disintegration strategies. In application, Quayle et al. [37]
proposed a series of strategies to disturb cancer networks; Lloyd et al. [38] proposed an optimal
disintegration strategy for epidemic transmission networks. However, in the real world, it is difficult
to obtain complete information on a network structure, so the research on network disintegration
under incomplete information has gradually attracted attention. Dezső et al. [39] proposed a biased
treatment strategy against virus transmission under uncertain information. Li Jun et al. [40] studied
the optimal attack problem based on incomplete information. Wu et al. [41] studied the impact of
imperfect information perturbed by node degree in a certain range on network collapse. Previous
research on network disintegration and protection strategies has basically been based on the success
of the strategy. However, in the confrontation scenario where both the attacker and the defender
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exist, the strategy selection problem of the attack and defense decision makers should be solved by
game theory.

Researchers have made a preliminary exploration of the application of the game model to
infrastructure protection from the perspective of the network. Li et al. made a preliminary study of the
attack-defense game on complex networks by using simultaneous game theory [42] and sequential
game theory [43] respectively, but this problem is still worth further exploring. Our previous work
has studied the attack and defense game of infrastructure networks under asymmetric information
conditions [44]. In the protection of infrastructure networks, there is still a lack of research on various
types of attackers.

In summary, some researchers used game theory to study infrastructure network, and some
researchers began to conduct network modeling of infrastructure system. However, there is still a
lack of research that combines network science and game theory to model the infrastructure system
from the perspective of a network and to conduct offensive and defensive games for uncertain attacker
types. When facing multiple types of attackers, how to make use of the information advantage of
asymmetric information between offensive and defensive sides to improve defense payoff is the focus
of this paper. We first study the infrastructure attack-defense game based on the Bayesian Stackelberg
game under the condition of multiple types of attackers and asymmetric information. To our best
knowledge, this idea is new.

In this paper, we evaluate the network performance from the perspective of network science.
A method of constructing asymmetric information is introduced. Then, we propose an active defense
approach for the defender facing multiple types of attackers based on the Bayesian Stackelberg
sequential game to improve the defender’s payoffs by providing false information to the attacker.

2. Bayesian Stackelberg Active Deception Game Considering Multiple Types of Attackers

Consider a target network formalized in terms of an undirected graph G (V, E), where V is the set
of nodes, E ⊆ V ×V is the set of edges. The number of nodes is N = |V|. ki is the number of adjacent

edges of node vi. Denoted by 〈k〉 = 1
N

N
∑

i=1
ki the average degree of the network.

We classify players in the game as the defender and attacker. The type of defender in the model is
single and the types of the attacker in the model are multiple. In the security game, as a convention the
defender is usually assumed to be a female character and the attacker is assumed to be a male character.

In this section, we first introduce the motivation to research active deception defense with a
Bayesian Stackelberg game in Section 2.1. Subsequently, the Stackelberg active deception game
is defined in Section 2.2. Finally, we introduce the Bayesian Stackelberg active deception game
considering multiple types of attackers in Section 2.3.

2.1. Motivation of Bayesian Stackelberg Active Deception Game

The active deception game is a game model based on asymmetric information of attack and
defense, which is consistent with the fact that the target network information of attack and defense is
asymmetric. Previous studies have shown that an attacker will obtain 80 percent (some say 100 percent)
of the necessary information through public information or other intelligence sources before launching
an attack [45]. Therefore, it is appropriate to assume that the attacker will collect complete network
information before carrying out the attack. The model is studied as a sequential game model, that
is to say, the defender first promises to use his mixed defense strategy, and the attacker chooses
the attack strategy to maximize his payoff according to the defender’s promise. However, on the
other hand, the defender does not know whether the attacker has mastered the hybrid strategy
promised by the defender, which means the defender does not know whether the active deception
game is a simultaneous game or a sequential game. Zhuang and Bier have proved that the leader
gains ’first-mover advantage’ when the follower responds most to a single choice [19]. Therefore,
the defender can choose to publish her defense strategy to force the attacker to play a sequential
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game. Thus in the field of security protection, a sequential game is more practical and useful than a
simultaneous game.

Although we believe that the attacker has obtained enough disinformation (from the defender’s
active deceptive defense) before the attack, the defender still faces the challenge brought by the
uncertainty of the type of potential attacker. Therefore, to make the active deception game more
realistic and credible, it is necessary to extend the Stackelberg active deception game to the Bayesian
Stackelberg active deception game.

Our study is based on the Stackelberg active deception game. The basic settings of the Stackelberg
active deception game are described in Section 2.2.

2.2. Stackelberg Active Deception Game

The Stackelberg active deception game mainly applies the asymmetric information of both sides
of attack and defense. After the defender reveals the false network to the attacker, the defender first
promises to use a mixed defense strategy, and then the attacker chooses the optimal strategy to obtain
more attacker’s payoff. In this section, we first introduce the method for constructing false network
information. Then we describe the cost model and strategies in the Stackelberg active deception game.

2.2.1. Method for Constructing the False Network Information

Because the defender masters the target network, she grasps the real target network completely.
However, the attacker’s mastery of network information is easily disturbed by the defender. We use
α to represent the noise level of the disclosed network. Our model constructs the false network by
adding α× |E| false edges and reducing α× |E| real edges on the true network. This construction
method can keep the total number of edges in the network unchanged. Meanwhile, to control the
credibility of the false network, the noise level range in this study is α ∈ [0, 0.5]. We use di to represent
the displayed degree of node vi in the false network.

2.2.2. Cost Model

Since attacking nodes can lead to more serious consequences, we assume that both attack and
defense methods are targeted at nodes. An attack on a node will cause the connected edges to be
removed altogether. The consumption of defending and attacking a single node is positively correlated
with the degree of nodes because the degree of nodes in some infrastructure networks represents the
importance of nodes to some extent. Correspondingly, the consumption of defending and attacking
will increase with increasing importance. We use cD

i and cA
i to represent defense cost and attack cost of

node i, respectively. Defense and attack costs are defined as follows:

cD
i = qDki, cA

i = qAki . (1)

Among them, qD and qA are the defense cost coefficient and attack cost coefficient, respectively.
Research shows that protecting a single infrastructure consumes far more resources than attacking
it [45]. The defense resources allocated by the defender for node vi are rD

i = qDki = cD
i , and the attack

resources allocated by the attacker for node vi are rA
i = qAdi 6= cA

i . We define the defense resources
needed to cover the whole network as

TD =
N

∑
i=1

rD
i (2)

and the attack resources needed to cover the whole network as

TA =
N

∑
i=1

rA
i . (3)
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The resources available to the defender and the attacker are represented as RD and RA, which are
defined as follows:

RD = θDTD, RA = θATA . (4)

In our research model, the focus of our research is on the strategies adopted by both sides when
the attack and defense resources are not enough to cover the whole network. Therefore, we limit the
attack and defense resources by controlling the parameters θD and θA at [0, 1], which is not enough to
cover the whole network. When the resources allocated to the attacking and defending sides exceed the
resources needed to cover the whole network, the so-called strategic game of attacking and defending
loses its meaning and the maximum payoff can be obtained by directly covering all network nodes.

The aggregates of defended and attacked nodes are denoted as VD and VA, respectively.
The defense strategy is expressed by D = [de f1, de f2, · · · de fN ], and the attack strategy is expressed
by A = [att1, att2, · · · attN ]. If the node vi ∈ VD, then de fi = 1, otherwise de fi = 0. Similarly,
the representation of the attack strategy is similar to that of the defense strategy.

CD and CA represent the total cost of defense resources and attack resources, respectively.
We define CDand CD, and set the constraint as follows:

CD =
N

∑
i=1

de firD
i ≤ RD (5)

and

CA =
N

∑
i=1

attirA
i ≤ RA . (6)

If the node is allocated the corresponding defense resource (de fi = 1), then the node vi is the
protected node, we assume that the protected node vi will never be removed. Conversely, if an
unprotected node is attacked, that is, atti = 1 and de fi = 0, there is a probability that the node will
be removed. We define the probability of a successful attack on an unprotected node vi as the attack
success rate:

psuc
i =

{
1 di ≥ ki
di
ki

di < ki
. (7)

2.2.3. Strategies

The strategy chosen by the defender and the attacker must satisfy Equations (5) and (6),
respectively. The number of both players’ strategies will increase dramatically as the number of
node increases. Intuitively, for any complex network, the strategy space of confronting both sides
is huge. In reality, the choice of strategies for both sides can not be completely random. For the
convenience of research, we shrink the space of attack strategies to a high-degree attack strategy (HAS)
and a low-degree attack strategy (LAS). In HAS, according to the degree of nodes, the transition from
high-degree nodes to low-degree nodes is selected in turn until defensive resources are exhausted.
The purpose of HAS is to attack some high-degree nodes to achieve a better attack effect. In LAS,
on the contrary, nodes are chosen from low-degree nodes to high-degree nodes. Its purpose is to attack
a large number of low-cost nodes. Similarly, defense strategies are composed of two typical defense
strategies, namely a high-degree defense strategy (HDS) and a low-degree defense strategy (LDS).

Denoted by vector X = [xh, xl ] (xi ∈ [0, 1], xh + xl = 1) a mixed defense strategy, where
xi represents the probability of adopting strategy i, and i ∈ {h, l} represents one of the
two typical defense strategies—high-degree strategy or low-degree strategy. Similarly, Y =

[yh, yl ] (yi = 0 or 1, yh + yl = 1) represents a pure attack strategy. Denoted by SD and SA are the
defender’s mixed strategy space and the attacker’s pure strategy space, respectively.
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2.3. Bayesian Stackelberg Active Deception Game

A Bayesian Stackelberg active deception game is a Stackelberg active deception game in which
the defender faces multiple types of attackers. The defender only knows the prior probabilities of
different types of attackers. In this paper, we only focus on the uncertainty of attackers’ different types,
not the uncertainty of their attack performance.

In this paper, we consider only one type of defender and multiple types of attackers. Without loss
of generality, we assume that the defender faces only two types of attackers. One type of attacker
focuses on the overall performance of the target network and is named the ‘global-type attacker’, while
the other type focuses solely on the attack success efficiency and is called the ‘local-type attacker’.

Define T as the set of possible types of attackers and define P as the prior probability of different
types of attackers. In our study, T = {g(global), l(local)}, correspondingly, P = [pg, pl ] = [pg, 1− pg].
For a given attacker type t ∈ T, suppose Dt(X, Y) be the defender’s payoff function when the defender
chooses strategy X, and the t-type attacker adopts pure strategy Y.

The measure function of network performance is denoted by Γ. In this paper, we adopt the size
of the largest connected component as the measure function.

Thus, the defender’s payoff function is

D(X, Y) =
Γ
(
Ĝ
)

Γ (G)
∈ [0, 1] . (8)

The defender pays attention to the defense effect on the target network—the smaller Γ
(
Ĝ
)

is,
the smaller the payoff. Among them, Ĝ denotes the size of the largest connected component of the
network remained after the confrontation.

The global-type attacker focuses on network performance, so we define the payoff function of the
attacker as

Ag(X, Y) =
Γ (G)− Γ

(
Ĝ
)

Γ (G)
∈ [0, 1] . (9)

The local-type attacker focuses on the attack success efficiency, so we define the payoff function of
the attacker as

Al(X, Y) =
∑i∈Vremove ki

RA ∈ [0, 1] . (10)

Among them, Vremove is a set of nodes removed after a successful attack from the attacker’s
perspective. According to the above method, we can obtain the payoff matrix of the defender and the
two types of attackers under all strategy interactions |SA × SD|which is shown in Figure 1. In Figure 1a,
Dg

i,j is the payoff of the defender when facing the global-type attacker—the defender chooses strategy i

and the attacker adopts strategy j. At this time, the payoff of the attacker is Ag
i,j. The row and column

players are the defender and attacker, respectively. Similarly, when the defender faces the local-type
attacker, the payoff matrix of the defender and the attacker are Dl

i,j and Al
i,j, respectively, as shown in

Figure 1b.
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Figure 1. Payoff matrix of Bayesian Stackelberg active deception game. (a) Payoff matrices of the
defender and the global-type attacker; (b) Payoff matrices of the defender and the local-type attacker.

A Bayesian Stackelberg Equilibrium (X∗, Y1, Y2, · · · , Y|T|) for the Bayesian Stackelberg active
deception game is defined by Equations (11) and (12).

X∗ = arg max
X∈SD

∑
t∈T

ptDt (X, Yt (x)
)

(11)

Yt (X) = arg max
Yt∈SA

At (X, Yt) (12)

3. Solving the Active Deception Game Considering Multiple Types of Attackers

In game theory, the most common solution concept is Nash equilibrium. Under this equilibrium
strategy combination, any participant cannot increase his own payoff by unilaterally changing the
strategy [46]. Stackelberg equilibrium is a refinement of the Nash equilibrium concept in a Stackelberg
game. In this equilibrium, each player will choose the best response in each sub-game of the original
game. But when multiple strategies are not different for followers, the concept cannot guarantee
a unique solution. In order to obtain the unique solution, Leitmann [47] proposed two concepts
of Stackelberg equilibrium, which were named “Strong Stackelberg equilibrium” (SSE) and “Weak
Stackelberg equilibrium” (WSE). Strong Stackerlberg equilibrium exists in all Stackelberg games, while
Weak Stackerlberg equilibrium does not necessarily exist [48].

In the case that multiple types of attackers are considered, the attacker chooses the optimal attack
strategy after knowing the defense plan of the defender, and then the Bayesian active deception game
can be solved by Bayesian Stackelberg equilibrium (BSE).

After obtaining the payoff matrices of the defender and two types of attackers, we introduce
an efficient exact method known as DOBSS (Decomposed Optimal Bayesian Stackelberg Solver) to
calculate the Bayesian Stackelberg game equilibrium (BSE) [20].

The defender’s strategy we denote by X, which consists of a vector of probability distributions
over the defender’s pure strategies. Hence, the value xi is the proportion of times in which pure strategy
i is used. Denote by Yt the vector of strategies of attacker type t ∈ T. We also denote the payoff of the
defender and each of the attacker types t by Dt

ij and At
ij. Let M be a large positive number. Assume that
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the prior probability of the t-type attacker the defender is facing is pt, with t ∈ {g(global), l(local)},
the defender solves the following:

max
x,y,a ∑

i∈SD

∑
t∈T

∑
j∈SA

ptDt
ijxiyt

j

s.t. ∑
i∈SD

xi = 1

∑
j∈SA

yt
j = 1

0 ≤
(

mt − ∑
i∈SD

At
ijxi

)
≤
(

1− yt
j

)
M

xi ∈ [0, 1]

yt
j ∈ {0, 1}

mt ∈ < .

(13)

Among them, the prior probability of the occurrence of t-type attackers is represented by pt.
xi represents the probability that the defender adopts strategy i in the mixed defense strategy.
yt

j represents the probability that the t-type attacker adopts strategy j in a pure attack strategy.
Constraints 1 and 4 jointly restrict the value range of the probability of adopting various defense
strategies in the mixed strategy of the defender to be [0, 1], and the sum of the probabilities of various
defense strategies to be 1. Constraints 2 and 5 indicate that the attacker chooses the attack strategy
after mastering the defense strategy of the defender, so the pure attack strategy is adopted. The t-type
attacker chooses only one strategy as the optimal response strategy in the strategy set SA and yt

j can
only be 0 or 1. In constraint 3, since yt

j is 0 or 1, when yt
j is 0, since M is a large positive number, the right

part of the constraint is always satisfied, and the left part of the constraint requires mt ≥ ∑i∈SD
At

ijxi.
When yt

j is 1, constraint 3 requires mt = ∑i∈SD
At

ijxi. In other words, given the mixed defensive
strategy x of the defender, mt is the upper bound of the t-type attacker’s payoff.

We can linearize the quadratic programming problem Equation (13) through the change of
variables zt

ij = xiyt
j, thus obtaining the following mixed-integer linear programming problem:

max
y,z,a ∑

i∈SD

∑
t∈T

∑
j∈SA

ptDt
ijz

t
ij

s.t. ∑
i∈SD

∑
j∈SA

zt
ij = 1

∑
j∈SA

zt
ij ≤ 1

yt
j ≤ ∑

i∈SD

zt
ij ≤ 1

∑
j∈SA

yt
j = 1

0 ≤
(

mt − ∑
i∈SD

At
ij

(
∑

h∈SA

zt
ih

))
≤
(

1− yt
j

)
M

∑
j∈SA

zt
ij = ∑

j∈SA

z1
ij

zt
ij ∈ [0, 1]

yt
j ∈ {0, 1}

mt ∈ < .

(14)
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From the above BSE solving process, it can be seen that the BSE calculated by the DOBSS algorithm
is also a Strong Stackelberg Equilibrium. It’s just that the number of followers goes from one to multiple
with a prior probability.

4. Experiments in Scale-Free Network

4.1. Game Equilibrium of Active Deception Defense Game

Because power-law networks exist widely in natural networks, a large number of infrastructure
networks show power-law characteristics. Therefore, our research takes the scale-free network
as the research object. The experimental object in this paper is the scale-free network (N = 500,
〈k〉 = 6) constructed by the BA model [49]. Our experimental results are obtained from the average of
1000 independent repeated experiments.

Figure 2 shows the equilibrium payoffs when the noise level α equals 0, 0.1, 0.5, and the defender
faces the global-type attacker and the local-type attacker separately. It can be seen that when the level
of noise increases continuously, the equilibrium payoffs of the defender facing two different types of
attackers also increase.
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(a) Global-type attacker (b) Local-type attacker

Figure 2. Stackelberg equilibrium payoffs of the defender under different α when the defender faces
the two types of attackers separately. The target network is a scale-free network whose N = 500 and
〈k〉 = 6.

In Figure 3, we show the sequential game equilibrium strategy of the defender and the attacker
when the noise level α equals 0, 0.1, 0.3 and 0.5. Figure 3a,b are equilibrium strategies for the defender
and the attacker when the defender faces the global-type and local-type attacker separately. The first
line in each subgraph is a graphical representation of the defender’s equilibrium defense strategy.
The color of the square represents the probability of adopting HDS in the mixed defense strategy.
The lighter the color of the square, the higher the probability of HDS in the equilibrium defense strategy.
The darker the color, the lower the probability of representing LDS in an equilibrium defense strategy.
The second line in each subgraph is an illustration of the attacker’s equilibrium attack strategy. The red
squares represent HAS, the orange squares represent LAS, and the yellow squares represent the same
equilibrium payoff of the defender regardless of whether the attacker plays HAS or LAS.
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(a)

(b)

Figure 3. Equilibrium strategies of the defender and the attacker when there are two types of
attackers. In the experiments, the defense budget constraint coefficient θD ∈ [0.1, 0.9], the attack
budget constraint coefficient θA ∈ [0.1, 0.9]. The first line in each subgraph is a graphical representation
of the defender’s equilibrium defense strategy. The color of the square represents the probability of
adopting high-degree defense strategy (HDS) in the mixed defense strategy. The second line in each
subgraph is an illustration of the attacker’s equilibrium attack strategy. The red squares represent
high-degree attack strategy (HAS), the orange squares represent low-degree attack strategy (LAS),
and the yellow squares represent the same equilibrium payoff of the defender regardless of whether
the attacker plays HAS or LAS. (a) Equilibrium strategies of the defender and the attacker when the
defender faces the global-type; (b) Equilibrium strategies of the defender and the attacker when the
defender faces the local-type attacker.
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We can find that, with the increase of noise level α, the attack strategies of the two types of
attackers gradually tend to choose HAS. We obtain that the displayed degree expectation of the node
vi is

E(di) = ki − E(kcut
i ) + E(kadd

i )

= ki − kiα + (N − 1− ki)
α |E|

(N
2 )− |E|

= ki +
α (N − 1)

(
|E| − N

2 ki

)
(N

2 )− |E|

=

{
1−

[
α (N − 1)

(N
2 )− |E|

]
N
2

}
ki +

α (N − 1) |E|
(N

2 )− |E|
.

(15)

Among them, E(kcut
i ) is the expected degree deduction of node vi and E(kadd

i ) is the expected
increased degree of node vi. We randomly select the false network generated at different noise levels.
As shown in Figure 4, we can see that the change trend of nodes’ displayed degree matches the
conclusions we deduced.

From Figure 4, we observed that nodes with a high degree have different degrees of decline in
different noise levels, which is matched with Equation (4). Combined with Equation (7), we find that
the false network used in our model does not change the ranking of node degree in the network,
but only changes the displayed node degree di [44].
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Figure 4. Degree pairs of nodes before and after construction of false network when α = 0.1, 0.3 and
0.5. The black line is the reference line which represents that di = ki.

4.2. Game Equilibrium of Bayesian Active Deception Defense Game

In the experiments, the defender uses the prior probabilities of the two attacker types to calculate
the payoff matrices of the defender and the two types of attackers through the function in Section 2.3.
By adopting the DOBSS, we get the defender’s mixed defense strategy, the global-type attacker’s pure
attack strategy and the local-type attacker’s pure strategy, as shown in Figures 5–7, respectively.

We observe that when pg = pl = 0.5, the defender’s defense equilibrium strategies are basically
the same as the defender’s defense equilibrium strategies when facing only the global type of attacker.
From the side, it can be seen that the global-type attacker poses a more significant threat to the defender,
which is consistent with the global-type attacker’s efforts to reduce network performance.

On the other hand, when the noise level α is increasing, the attacker tends to adopt the HAS
strategy. With the increasing noise level, the defender can use the ‘first-mover advantage’ to induce
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the attacker to adopt HAS with reduced attack success rate, to achieve the goal of improving the
equilibrium payoff of the defender.

Taking pg = 0.1 and 0.9 as examples, we show the experimental results at θD = 0.3
and θA = 0.8. When pg = 0.1 and pl = 0.9, the probability of occurrence of a local-type
attacker is large, and the probability of a global-type attacker is small. When the noise level
α equals 0, 0.1, 0.3 and 0.5, respectively, the defender equilibrium mixed strategy (xh, xl) is
(0.4995, 0.5005), (0.502, 0.498), (0.5016, 0.4984) and (0, 1), respectively. Observing the defender’s
committed mixed strategy, if the attacker is the global-type, his best response would be playing
HAS, HAS, HAS and HAS when the noise level α = 0, 0.1, 0.3 and 0.5, respectively. While if the
attacker is the local-type, his best response would be playing LAS, LAS, HAS and HAS when the
noise level α = 0, 0.1, 0.3 and 0.5, respectively. We can obtain the payoffs of the players on the
Bayesian Stackelberg equilibrium. If the attacker is the global-type, the defender’s payoff would be
0.2607, 0.385, 0.5708 and 0.6999, the global-type attacker’s payoff would be 0.8106, 0.7898, 0.7655 and
0.9529; if the attacker is the local-type, the defender’s payoff would be 0.2434, 0.3098, 0.4311 and 0.5632,
while the local-type attacker’s payoff would be 0.7501, 0.7504, 0.7506 and 0.8737 when the noise level
α = 0, 0.1, 0.3 and 0.5, respectively. Therefore, by adopting the mixed defense strategy resulting from
the Bayesian Stackelberg equilibrium, the defender’s expected payoff is 0.2451, 0.3173, 0.4451 and
0.5769 when the noise level α = 0, 0.1, 0.3 and 0.5, respectively.

When pg = 0.9 and pl = 0.1, the probability of occurrence of a global-type attacker is large, and the
probability of a local-type attacker is small. When the noise level α equals 0, 0.1, 0.3 and 0.5, respectively,
the defender equilibrium mixed strategy (xh, xl) is (0.5762, 0.4238), (0.5728, 0.4272), (0.5016, 0.0.4984)
and (0, 1), respectively. Observing the defender’s committed mixed strategy, if the attacker is the
global-type, his best response would be playing LAS, HAS, HAS and HAS when the noise level
α = 0, 0.1, 0.3 and 0.5, respectively. While if the attacker is the local-type, his best response would
be playing LAS, LAS, HAS and HAS when the noise level α = 0, 0.1, 0.3 and 0.5, respectively. We
can obtain the payoffs of the players on the Bayesian Stackelberg equilibrium. If the attacker is
the global-type, the defender’s payoff would be 0.301, 0.4114, 0.5708 and 0.6999, the global-type
attacker’s payoff would be 0.7829, 0.7623, 0.7655 and 0.9529; if the attacker is the local-type, the
defender’s payoff would be 0.2169, 0.283, 0.4311 and 0.5632, while the local-type attacker’s payoff
would be 0.7693, 0.7684, 0.7506 and 0.8737 when the noise level α = 0, 0.1, 0.3 and 0.5, respectively.
Therefore, by adopting the mixed defense strategy resulting from the Bayesian Stackelberg equilibrium,
the defender’s expected payoff is 0.2926, 0.3986, 0.5568 and 0.6862 when the noise level α = 0, 0.1, 0.3
and 0.5, respectively.
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Figure 5. Equilibrium strategies of the defender when the defense budget constraint coefficient
θD ∈ [0.1, 0.9], the attack budget constraint coefficient θA ∈ [0.1, 0.9]. The numbers represented
by colors in the blocks are the probabilities of the HDS in the defender’s mixed-Strong Stackelberg
Equilibriums (SSEs). (a) P = [0.1, 0.9]. (b) P = [0.5, 0.5]. (c) P = [0.9, 0.1].
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Figure 6. Equilibrium strategies of the global-type attacker when the defense budget constraint
coefficient θD ∈ [0.1, 0.9], the attack budget constraint coefficient θA ∈ [0.1, 0.9]. The red and orange
blocks represent HAS and LAS, respectively. (a) P = [0.1, 0.9]. (b) P = [0.5, 0.5]. (c) P = [0.9, 0.1].
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Figure 7. Equilibrium strategies of the local-type attacker when the defense budget constraint coefficient
θD ∈ [0.1, 0.9], the attack budget constraint coefficient θA ∈ [0.1, 0.9]. The red and orange blocks
represent HAS and LAS, respectively. (a) P = [0.1, 0.9]. (b) P = [0.5, 0.5]. (c) P = [0.9, 0.1].

4.3. Sensitiveness Analysis

From the previous experiments and analysis, we know that before calculating the Bayesian
Stackelberg game equilibrium, the defender must obtain the prior probability of multiple types of
attackers. However, in real life, it is difficult for the defender to estimate the exact prior probability
P = [pexact

g , 1− pexact
g ]. The defender must infer the occurrence probability of multiple types of attackers

through data. We define the defender’s estimate of P as P′ = [pestimate
g , 1− pestimate

g ]. Then, the defender
employs the Bayesian Stackelberg active defense game and uses P′ as input to calculate her optimal
strategy. We calculate the equilibrium defense strategy that the defender considers to be optimal at
this time and then calculate the real expected defender payoff by the accurate prior probability P.
We compare the calculated real expected defender payoff with the defender’s equilibrium payoff,
calculated with the accurate prior probability P as input. To test the sensitivity of the equilibrium
payoff to prior probability P, we present two groups of experimental data. In the first group of
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experiments, pestimate
g = 0.5, pexact

g = 0.1. The experimental result is shown in Figure 8. In the other
group, pestimate

g = 0.5, pexact
g = 0.9. The experimental result is shown in Figure 9.
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Figure 8. P′ = [0.5, 0.5], P = [0.1, 0.9]. The data on the Z-axis in the figure represents the decrease in
the defender’s payoffs in the case of prior probability’s misjudgment compared with that in the case of
accurate prior probability P as input.
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Figure 9. P′ = [0.5, 0.5], P = [0.9, 0.1]. The data on the Z-axis in the figure represents the decrease in
the defender’s payoffs in the case of prior probability’s misjudgment compared with that in the case of
accurate prior probability P as input.
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In the first group of experiments, in the case of P′ = [0.5, 0.5], P = [0.1, 0.9], when the noise levels
are 0, 0.1, 0.3 and 0.5, respectively, the average payoffs of reduction are 0.0230, 0.0211, 0.0162 and 0.0103,
respectively. In the other group of experiments, in the case of P′ = [0.5, 0.5], P = [0.9, 0.1], when the
noise levels are 0, 0.1, 0.3 and 0.5, respectively, the average payoffs of reduction are 0.0054, 0.0102, 0.0072
and 0.0050, respectively.

Comparing the defender payoff reductions in both cases, we find that the defender payoff
reductions in the first group of experimental data are significantly greater than the second group of
experimental data. We know that in the first case, the defender’s defender strategy is the same as in
Figure 5b. The actual optimal mixed defense strategy is consistent with the Figure 5a. In the second
case, the defender’s defender strategy is still the same as the Figure 5b, and the optimal mixed strategy
in the actual situation is consistent with the Figure 5c. The optimal pure attack strategy for both types
of attackers is the same in both cases, consistent with the Figure 6b and the Figure 7b.

From the defender’s strategy, the defense strategy adopted by the defender after misjudging the
prior probability of the attacker type is closer to the overall trend of the optimal defense strategy in the
second case.

In the most extreme case, the defender does not take into account two types of attackers.
The defender’s misjudgment of the attacker’s type inevitably leads to the decline of defender’s payoff.
We conducted experiments on the situation of complete misjudgment. In Figure 10, the defender
misjudges that the attacker is the local type, but is actually the global type, that is, P′ = [0, 1] and
P = [1, 0]. In Figure 11, the defender misjudges that the attacker is the global type, but is actually the
local type, that is, P′ = [1, 0] and P = [0, 1]. From Figures 10 and 11, we can see that misjudgment of
the attacker type will bring about a decrease in the defender’s payoff. Therefore, it is necessary to
study the situation of the defender facing multiple types of attackers.

In the case of P′ = [0, 1], P = [1, 0], when the noise levels are 0, 0.1, 0.3 and 0.5, respectively,
the average payoffs of reduction are 0.0854, 0.0719, 0.0592 and 0.0296, respectively. In the case of
P′ = [1, 0], P = [0, 1], when the noise levels are 0, 0.1, 0.3 and 0.5, respectively, the average payoffs of
reduction are 0.0230, 0.0210, 0.0188 and 0.0025, respectively. Figures 10 and 11 also show that it is better
to overestimate a dangerous enemy (i.e., the global-type attacker) than to underestimate it. This is
because the global-type attacker who pays equal attention to the overall performance of the network
as the defender will cause greater losses to the infrastructure network.

From Figure 2, we can find that with the increase of noise level α, the equilibrium payoff of the
defender increases, whether in the face of global-type attacker or local-type attacker. The improvement
of noise level α can effectively improve the final payoff of the defender. Meanwhile, by observing
Figure 8 (P′ = [0.5, 0.5], P = [0.1, 0.9]), Figure 9 (P′ = [0.5, 0.5], P = [0.9, 0.1]), Figure 10 (P′ = [1, 0],
P = [0, 1]) and Figure 11 (P′ = [1, 0], P = [0, 1]), we find that the final payoff of the defender is
that the higher the noise level α is, the smaller the gap is between the false judgment of the prior
probability of the two types of attackers and the correct judgment of the prior probability of the two
types of attackers.
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Figure 10. The defender misjudges that the attacker is the local type, but is actually the global type.
The data on the Z-axis in the figure represents the decrease of the defender’s payoffs in the case of
misjudgment compared with that in the case of an accurate judgment of the attacker’s type. P′ = [0, 1]
and P = [1, 0].
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Figure 11. The defender misjudges that the attacker is the global type, but is actually the local type.
The data on the Z-axis in the figure represents the decrease of the defender’s payoffs in the case of
misjudgment compared with that in the case of an accurate judgment of the attacker’s type. P′ = [1, 0]
and P = [0, 1].
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5. Conclusions and Discussions

With the emergence of terrorism, the protection of infrastructure has attracted the attention
of more and more researchers. Moreover, with the continuous development of science and
technology, infrastructure is becoming more interconnected, which makes infrastructure exhibit
network characteristics. This allows us to consider infrastructure protection from a network perspective.
The existing infrastructure network game model basically stays at the initial stage, assuming that
both sides of attack and defense move at the same time, and both sides have complete information.
For this reason, the Bayesian Stackelberg active deception defense game proposed in this paper mainly
studies the defense actively transferring false network information to attackers under the condition of
asymmetric information, and facing multiple types of attackers.

Firstly, we introduced a false network construction method to simulate the defender apply of
asymmetric information to defend against the attacker actively.

Secondly, we apply the Bayesian Stackelberg game to simulate the reality that the defense of the
infrastructure faces multiple types of attackers.

Finally, we conducted experiments on the scale-free network. Through experiments, we find
that using false networks for active defense does improve the defender’s equilibrium return.
After analyzing the attacker’s equilibrium strategy, it is found that the defender applies the ‘first-mover
advantage’ to induce the attacker to adopt HAS whose attack success rate decreases. By analyzing
the sensitivity of the prior probability of attacker type to the defender’s equilibrium payoff, we verify
that the global-type attacker poses a greater threat to the infrastructure network. The defender
should overestimate the probability of the dangerous attacker (i.e., a global-type attacker) rather than
underestimate the probability of the dangerous attacker.

Although the model we built is closer to reality than that in previous research, we still have
much room for improvement compared with the complexities of reality. Next, we need to consider
irrational attackers based on our model. The existing research on using game theory to improve
infrastructure network performance is based on rational attackers. However, in real life, an attacker
is not necessarily rational. Modeling adversary bounded rational behavior should be considered.
The SHARP (Stochastic Human behavior model with AttRactiveness and Probability weighting) model
based on success or failure of the adversary’s past actions on exposed portions of the attack surface to
model adversary adaptiveness [50] provides a good choice for our model of irrational attackers. Next,
we will combine the bounded rational game model with network science to study the protection of
infrastructure networks. Our research in this article is aimed at a single type of defender and multiple
types of attackers, but the number of defenders and attackers is unique. In reality, multiple attackers
and multiple defenders will also appear at the same time. Evolutionary game theory provides a train
of thought for solving evolutionary stable strategy (ESS) by modeling a group dynamic game under
the conditions of bounded rationality and incomplete information [51].

We note that the method of constructing a fake network is not unique, and its essence is to provide
an incorrect or indeterminate degree of network nodes. The literature [52] gives us inspiration. Next,
we will explore the influence of the information entropy of incomplete and imperfect information on
offensive and defensive games from the perspective of information theory.
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39. Dezső, Z.; Barabási, A.L. Halting viruses in scale-free networks. Phys. Rev. E 2002, 65, 055103. [CrossRef]
[PubMed]

40. Jun, L.; Jun, W.; Yong, L.; Hong-Zhong, D.; Yue-Jin, T. Optimal attack strategy in random scale-free networks
based on incomplete information. Chin. Phys. Lett. 2011, 28, 068902.

41. Wu, J.; Tan, S.Y.; Liu, Z.; Tan, Y.J.; Lu, X. Enhancing structural robustness of scale-free networks by
information disturbance. Sci. Rep. 2017, 7, 7559. [CrossRef] [PubMed]

42. Li, Y.P.; Tan, S.Y.; Deng, Y.; Wu, J. Attacker-defender game from a network science perspective.
Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 051102. [CrossRef]

43. Li, Y.; Qiao, S.; Deng, Y.; Wu, J. Stackelberg game in critical infrastructures from a network science perspective.
Phys. A Stat. Mech. Appl. 2019, 521, 705–714. [CrossRef]

44. Zeng, C.; Ren, B.; Li, M.; Liu, H.; Chen, J. Stackelberg game under asymmetric information in critical
infrastructure system: From a complex network perspective. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083129.
[CrossRef]

45. Brown, G.; Carlyle, M.; Salmerón, J.; Wood, K. Defending critical infrastructure. Interfaces 2006, 36, 530–544.
[CrossRef]

46. Korzhyk, D.; Yin, Z.; Kiekintveld, C.; Conitzer, V.; Tambe, M. Stackelberg vs. Nash in security games:
An extended investigation of interchangeability, equivalence, and uniqueness. J. Artif. Intell. Res. 2011,
41, 297–327. [CrossRef]

47. Leitmann, G. On generalized Stackelberg strategies. J. Optim. Theory Appl. 1978, 26, 637–643. [CrossRef]
48. Breton, M.; Alj, A.; Haurie, A. Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl.

1988, 59, 71–97. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2018.02.069
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.3390/e21050533
http://dx.doi.org/10.1109/TKDE.2016.2563425
http://dx.doi.org/10.1063/1.5030899
http://www.ncbi.nlm.nih.gov/pubmed/29857655
http://dx.doi.org/10.1103/PhysRevE.90.042804
http://www.ncbi.nlm.nih.gov/pubmed/25375546
http://dx.doi.org/10.3390/e20040261
http://dx.doi.org/10.1209/0295-5075/119/18001
http://dx.doi.org/10.1073/pnas.1424644112
http://www.ncbi.nlm.nih.gov/pubmed/25659742
http://dx.doi.org/10.1209/0295-5075/111/68002
http://dx.doi.org/10.1063/1.5040714
http://dx.doi.org/10.1073/pnas.1707505115
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1103/PhysRevE.65.056109
http://www.ncbi.nlm.nih.gov/pubmed/12059649
http://dx.doi.org/10.1016/j.physa.2006.03.031
http://dx.doi.org/10.1126/science.1061076
http://www.ncbi.nlm.nih.gov/pubmed/11360990
http://dx.doi.org/10.1103/PhysRevE.65.055103
http://www.ncbi.nlm.nih.gov/pubmed/12059627
http://dx.doi.org/10.1038/s41598-017-07878-2
http://www.ncbi.nlm.nih.gov/pubmed/28790416
http://dx.doi.org/10.1063/1.5029343
http://dx.doi.org/10.1016/j.physa.2019.01.119
http://dx.doi.org/10.1063/1.5100849
http://dx.doi.org/10.1287/inte.1060.0252
http://dx.doi.org/10.1613/jair.3269
http://dx.doi.org/10.1007/BF00933155
http://dx.doi.org/10.1007/BF00939867


Entropy 2019, 21, 909 22 of 22

49. Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef]
[PubMed]

50. Kar, D.; Fang, F.; Delle, F.; Sintov, N.; Tambe, M. “A Game of Thrones”: When Human Behavior Models
Compete in Repeated Stackelberg Security Games. In Proceedings of the International Conference on
Autonomous Agents & Multiagent Systems, Istanbul, Turkey, 4–8 May 2015.

51. Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156.
[CrossRef]

52. Khouzani, M.; Malacaria, P. Information Theory in Game Theory; Princeton University Press: Princeton, NJ,
USA, 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1016/0025-5564(78)90077-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Bayesian Stackelberg Active Deception Game Considering Multiple Types of Attackers
	Motivation of Bayesian Stackelberg Active Deception Game
	Stackelberg Active Deception Game
	Method for Constructing the False Network Information
	Cost Model
	Strategies

	Bayesian Stackelberg Active Deception Game

	Solving the Active Deception Game Considering Multiple Types of Attackers
	Experiments in Scale-Free Network
	Game Equilibrium of Active Deception Defense Game
	Game Equilibrium of Bayesian Active Deception Defense Game
	Sensitiveness Analysis

	Conclusions and Discussions
	References

