
1

SUPPLEMENTARY INFORMATION

DERIVATIONS

This document gives derivations of results that appear in the paper. All equation

numbers not prefixed by “SI” refer to the manuscript.

Homogeneous Bias (Equation 14)

Homogeneity allows us to express logW as an integral over the variational derivatives

logw(x;h),

logW [h] =

∫
h(x)

δ logW [h]

δh
dx =

∫
h(x) logw(x;h)dx. (SI.1)

This is Eq. (14) in the text. We also have∫
h(x)δ logw(x;h)dx = 0, (SI.2)

or equivalently, ∫
h(x)

∂ logw(x;h)

∂t
dx = 0, (SI.3)

where t is any parameter other than x on which h may depend (for example, x̄, β, etc., or

any function of these variables). In the special but important case that logW [h] is linear

functional of h, i.e.,

logW [h] =

∫
h(x)a(x)dx, (SI.4)

where a(x) is a fixed function of x, Eq. (SI.1) is satisfied with logw(x;h) = a(x), and Eq.

(SI.3) is satisfied trivially, since in this case δa(x)/δh = 0 (a(x) does not depend on h).

Equations (SI.1) and (SI.3) are the equivalents of the following two results for homoge-

neous functions f(x1, x2 · · · ) of degree 1 with respect to all xi, extended to functionals:

f(x1, x2 · · · ) =
∑
i

xi
∂fi
∂x1

, (SI.5)

0 =
∑
i

xid

(
∂fi
∂x1

)
, (SI.6)

Equation (SI.1) is used throughout the paper. Equation (SI.3) is used in the derivation of

Eq. (25) later in this Supplement.
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Most Probable Distribution in Biased Sampling (Equation 20)

We maximize the generic probability functional (Eq. (16) in the paper)

log % = −
∫

h(x) log
h(x)

w(x;h)h0(x)
dx− log r, (SI.7)

with respect to h under the normalization constraint∫
h(x)dx = 1. (SI.8)

Using the Lagrange multiplier λ0, the equivalent unconstrained maximization problem is

max
h

{
−
∫

h(x) log
h(x)

w(x;h)h0(x)
dx− λ0

(∫
h(x)dx− 1

)
− log r

}
, (SI.9)

with q, λ0 and r fixed. We set the variational derivative at h = h∗ equal to zero,

0 = − log h∗(x)− 1 + logw(x;h∗) + log h0(x)− λ0, (SI.10)

and solve for h∗ to obtain

h∗(x) =
w(x;h∗)h0(x)

e1+λ0
=

w(x;h∗)h0(x)

α
, (SI.11)

with α = e1+λ0 . To evaluate r we apply the condition %[h∗|W,h0] = 1. Noting that
h∗(x)

w(x;h∗)h0(x)
=

1

α

we have:

0 = −
∫

h∗(x)
h∗(x)

w(x;h∗)h0(x)
dx− log r =

∫
h∗(x) logα dx− log r = log

α

r
,

and finally, α = r. The most probable distribution is

h∗(x) =
w(x;h∗)h0(x)

r
. (SI.12)

This is Eq. (20) in the text.

Results in Canonical Space

Canonical Probability Functional (Equation 22)

We obtain the canonical functional by setting h0(x) = βe−βx in Eq. (SI.7):

log %[h|W,β] = −
∫

h(x) log
h(x)

w(x;h)
dx+

∫
h(x) log βe−βxdx− log r

= −
∫

h(x) log
h(x)

w(x;h)
dx− βx̄− log(r/β), (SI.13)
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where x̄ is the mean of h. We define q = r/β and write the canonical functional as

log %[h|W,β] = −
∫

h(x) log
h(x)

w(x;h)
dx− βx̄− log q. (SI.14)

This is Eq. (22) in the text.

Most Probable Distribution in Canonical Space (Equation 24)

The canonical functional in Eq. (SI.14) is a special case of the generic functional in

Eq. (SI.7) with h0 = βe−βx and q = r/β. The most probable distribution of the generic

probability functional is given in Eq. (SI.12); accordingly, the most probable distribution in

the canonical space is obtained from that equation with h0(x) = βe−βx and r = qβ:

h∗(x) = w(x;h∗)
βe−βx

βq
, (SI.15)

or

h∗(x) = w(x;h∗)
e−βx

q
, (SI.16)

which is Eq. (24) in the text.

The q-β-x̄ Relationship (Equation 25)

We write Eq. (24) as

q =

∫
w(x;h∗)e−βxdx

and take the derivative d(log q)/dβ:

d log q

dβ
= −

∫
xw(x;h∗)

e−βx

q
dx︸ ︷︷ ︸

x̄

+

∫
∂w(x;h∗)

∂β

e−βx

q
dx = −x̄+

∫
∂ logw(x;h∗)

∂β
h∗(x)dx︸ ︷︷ ︸

=0

= −x̄.

(SI.17)

The last integral is identically equal to zero by virtue of Eq. (SI.3). The final result is

d log q

dβ
= −x̄, (SI.18)

which is Eq. (25) in the text.
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Results in Microcanonical Space

Microcanonical Probability Functional (Equation 27)

The microcanonical functional in the continuous limit is

log %[h|h0, x̄] = −
∫

h(x) log
h(x)

w(x;h)h0(x)
dx− log r′, (SI.19)

with r′ such that normalization is satisfied. Setting h0 = e−x/x̄/x̄ we obtain

log %[h|h0, x̄] = −
∫

h(x) log
h(x)

w(x;h)
dx+

∫
h(x) log

(
e−x/x̄

x̄

)
− log r′

= −
∫

h(x) log
h(x)

w(x;h)
dx− 1− log x̄− log r′. (SI.20)

Setting logω = −1− log x̄− log r′ we obtain

log %[h|W, x̄] = −
∫

h(x) log
h(x)

w(x;h)
dx− logω, (SI.21)

which is Eq. (27) in the text.

Most Probable Distribution in Microcanonical Space (Equation 24)

We now show that that the distribution that maximizes the microcanonical functional

is given by the same distribution as in the canonical case (Eq. 24 of the manuscript). We

maximize the microcanonical functional

log %[h|W, x̄] = −
∫

h(x) log
h(x)

w(x;h)
dx− logω, (SI.22)

with respect to h under the constraints∫
h(x)dx = 1,

∫
xh(x)dx = x̄. (SI.23)

The equivalent unconstrained maximization is

max
h

{
−
∫

h(x) log
h(x)

w(x;h)
dx− logω −λ0

(∫
h(x)dx− 1

)
− λ1

(∫
xh(x)dx− x̄

)}
,

(SI.24)

where λ0 and λ1 are Lagrange multipliers and x̄ and ω are fixed. We set the variational

derivative with respect to h equal to zero:

0 = − log h∗(x)− 1 + logw(x;h∗)− λ0 − λ1x (SI.25)
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and solve for h∗:

h∗(x) = w(x;h∗)e−1−λ0−λ1x (SI.26)

Setting q = e1+λ0 , β = λ1 we obtain

h∗(x) = w(x;h∗)
e−βx

q
. (SI.27)

This is the same as the most probable distribution in the canonical space.

Relationships for logω (Equations 29 and 31)

We write the microcanonical probability functional in the equivalent form

log %[h|W, x̄] = − log h(x) log h(x)dx+

∫
h(x) logw(x;h)− logω. (SI.28)

With Eq. (SI.1) for logW [h] this becomes

log %[h|W, x̄] = S[h] + logW [h]− logω, (SI.29)

where

S[h] = −
∫

h(x) log h(x)dx. (SI.30)

Applying the condition %[h∗|W, x̄] = 1 we obtain

logω = S[h∗] + logW [h∗], (SI.31)

which is Eq. (29) in the text.

The entropy of the most probable distribution is

S[h∗] = −
∫

h∗(x) log

(
w(x;h∗)

e−βx

q

)
dx

= −
∫

h∗(x) logw(x;h∗)dx+

∫
(x+ log q)h∗(x)dx

= − logW [h∗] + βx̄+ log q. (SI.32)

We substitute this result into Eq. (SI.31) to obtain

logω = βx̄+ log q. (SI.33)

This is Eq. (31) in the text.
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Curvature of logω (Equation 33)

Here we show that logω is concave function of x̄. Consider the microcanonical spaces of

distributions with means x̄1 and x̄2 and let h∗
1 and h∗

2 be the most probable distributions in

these spaces. We form the distribution h by linear combination of h∗
1 and h∗

2,

h = αh∗
1 + (1− α)h∗

2, (0 ≤ α ≤ 1), (SI.34)

whose mean is x̄ = αx̄1 + (1− α)x̄2. Let h∗ be the most probable distribution in the space

of distributions with mean x̄. We then have:

logω(x̄) = log %[h∗|W, x̄] ≥ log %[αh∗
1 + (1− α)h∗

2|W, x̄] (SI.35a)

≥ log %[αh∗
1|W, x̄1] + log %[(1− α)h∗

2|W, x̄2] (SI.35b)

≥ α log %[h∗
1|W, x̄1] + (1− α) log %[h∗

2|W, x̄2] (SI.35c)

= α logω(x̄1) + (1− α) logω(x̄2). (SI.35d)

Here Eq. (SI.35a) expresses the microcanonical inequality in the ensemble (h; x̄); Eq. (SI.35b)

expresses the concave property of log %; Eq. (SI.35c) expresses the homogeneity of log %; Eq.

(SI.35d) expresses Eq. (SI.31) in microcanonical ensembles (h1; x̄1) and (h2; x̄2). The final

result is

logω(αx̄1 + (1− α)x̄2) ≥ α logω(x̄1) + (1− α) logω(x̄2) (SI.36)

and states that logω(x̄) is a concave function of x̄. It follows that

∂2 logω

∂x̄2
≤ 0, (SI.37)

which is Eq. (33) in the text.

Existence of W (Equation 41)

Given the functional derivative

logw(x) = log f(x) + a0 + a1x, (SI.38)

the selection functional is obtained via the Euler theorem

logW [h] =

∫ ∞

0

h(x) logw(x)dx =

∫ ∞

0

h(x) log f(x)dx+ a0 + a1x̄ (SI.39)
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and the functional on the left-hand side of Eq. (34) becomes

J [h] = −
∫ ∞

0

h(x)
h(x)

f(x)
dx+ a0 + a1x̄. (SI.40)

This is maximized by h = f (a0, a1 and x̄ are constant) and its maximum is J [f ] = a0+a1x̄.

We set

q = log a0, β = a1, logω = a0 + a1x̄, (SI.41)

then using Eq. (SI.38) along with Eq. (42) we note that Eqs. (35), (36), (37) and (39) are all

satisfied. The selection functional in Eq. (40) is a special case of (SI.38) with a0 = a1 = 0,

therefore it also satisfies the theorem.

Entropic selection functional Eq. (45)

First we write the entropy functional in the homogeneous form

S[h] = −
∫ ∞

0

h(x) log
h(x)

µ0[h]
dx, (SI.42)

where µ0[h] is the zeroth order moment of h:

µ0[h] =

∫
h(x)dx. (SI.43)

This entropy functional is homogeneous in h with degree 1 and reverts to the Shannon/Gibbs

entropy functional when h is normalized to unit area. The functional derivative of the

homogeneous entropy functional is

δS[h]

δh
= − log

h(x)

µ0[h]
(SI.44)

and satisfies the Euler theorem,

S[h] =

∫ ∞

0

h(x)

(
δS[h]

δh

)
dx. (SI.45)

The entropic selection functional is logW [h] = S[h] and its functional derivative for h

normalized to unit area is logw(x) = − log f(x) from which we obtain

w(x) = 1/f(x). (SI.46)

We insert this into Eq. (47),

f(x) =
1

f(x)

e−βx

q
, (SI.47)
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and solve for f(x):

f(x) =
e−βx/2

√
q

. (SI.48)

We obtain the parameters β and q from the zeroth and first order moments:

1 =

∫ ∞

0

e−βx/2

√
q

dx =
2

β
√
q

(SI.49)

x̄ =

∫ ∞

0

x
e−βx/2

√
q

dx =
4

β
√
q

(SI.50)

We find

β = 2/x̄, q = x̄2. (SI.51)

In combination with (SI.46) and (SI.48) we obtain w in the form

w(x) = x̄ex/x̄. (SI.52)

The microcanonical partition function is

logω = x̄β + log q = 2 + 2 log x̄. (SI.53)

Equations (SI.51), (SI.52) and (SI.53) summarize the results of the entropic selection func-

tional.
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