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Abstract: Statistical thermodynamics has a universal appeal that extends beyond molecular systems,
and yet, as its tools are being transplanted to fields outside physics, the fundamental question, what
is thermodynamics, has remained unanswered. We answer this question here. Generalized statistical
thermodynamics is a variational calculus of probability distributions. It is independent of physical
hypotheses but provides the means to incorporate our knowledge, assumptions and physical models
about a stochastic processes that gives rise to the probability in question. We derive the familiar
calculus of thermodynamics via a probabilistic argument that makes no reference to physics. At the
heart of the theory is a space of distributions and a special functional that assigns probabilities to this
space. The maximization of this functional generates the mathematical network of thermodynamic
relationship. We obtain statistical mechanics as a special case and make contact with Information
Theory and Bayesian inference.
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1. Introduction

What is thermodynamics? The question, so central to physics, has been asked numerous times
and has been given nearly as many different answers. To quote just a few: thermodynamics is
“the branch of science concerned with the relations between heat and other forms of energy involved
in physical and chemical processes” [1]; “the study of the restrictions on the possible properties of
matter that follow from the symmetry properties of the fundamental laws of physics” [2]; “concerned
with the relationships between certain macroscopic properties of a system in equilibrium” [3];
“a phenomenological theory of matter” [4]. Such statements, while strictly true, focus on aspects that
are far too narrow to converge to a definition of sufficient generality as to what to call thermodynamics
or how to carry it outside physics. And yet, since Gibbs [5], Shannon [6] and Jaynes [7] drew
quantitative connections between entropy and probability distributions, thermodynamics has been
spreading to new fields. The tools of statistical thermodynamics are now used in network theory [8],
ecology [9], epidemics [10], neuroscience [11], financial markets [12], and in the study of complexity
in general. What motivates the impulse to apply thermodynamics to such vastly diverse problems?
Is thermodynamics even applicable outside classical or quantum mechanical systems? And if so, what
is the scope of its applicability?

Here we answer these fundamental questions: Statistical thermodynamics is variational calculus
applied to probability distributions and by extension to stochastic processes in general; it is independent
of physical hypotheses but provides the means to incorporate our knowledge and model assumptions
about the particular problem. The fundamental ensemble is a space of probability distributions
sampled via a bias functional. The maximization of this functional expresses a distribution—any
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distribution—via a set of parameters (microcanonical partition function, canonical partition function
and generalized temperature) that are connected through a set of mathematical relationships that
we recognize as the familiar equations of thermodynamic. Entropy and the second law have simple
interpretations in this theory. We obtain statistical mechanics as a special case and make contact with
Information Theory and Bayesian inference.

2. The Calculus of Statistical Thermodynamics

Before we derive a theory of generalized thermodynamics we review the key elements of the
standard thermodynamic calculus. The central quantity of interest in statistical thermodynamics is the
probability of microstate. For a system of N particles in volume V and temperature T this probability
is given by the exponential (canonical) distribution,

Prob(microstate i) =
e−βEi

Q
, (1)

where Q is the canonical partition function, Ei is the energy of microstate, β = 1/kBT and kB is
Boltzmann’s constant. The corresponding probability to find the system in a microstate with energy E
is obtained by summing all microstates with fixed energy E and is given by

Prob(E) = Ω
e−βE

Q
, (2)

where Ω is the microcanonical partition function, also equal to the number of microstates with energy
E, volume V and number of particles N. The mean energy Ē and the parameters Ω, Q and β that
appear in Equation (2) are interrelated:

log Ω = βĒ + log Q, (3)

β =
∂ log Ω

∂Ē
, (4)

Ē = −∂ log Q
∂β

, (5)

∂2 log Ω
∂Ē2 ≤ 0. (6)

Equations (3) and (4) establish that log Ω(E, V, T) and log Q(β, V, N) are Legendre pairs;
Equation (6) states that log Ω is concave. In addition, any probability distribution pi that could
be assigned to microstate i under fixed (Ē, V, N) satisfies the inequality,

−∑
i

pi log pi ≤ log Ω, (7)

with the equal sign only for the canonical distribution in Equation (1). This inequality is the statistical
expression of the second law. If we identify kB log Ω with entropy and −(log Q)/β with free energy
Equations (3)–(6) represent the familiar relationships of classical thermodynamics. Along with
Equations (2) and (7), which provide the probabilistic context, the above set comprises the core
relationships of statistical thermodynamics. The physical assumptions and postulates that produce
these results can be found in any standard textbook (for example [3]). We will now show that this
network of mathematical relationships arises naturally via a probabilistic construction that makes no
reference to physics and endows any probability distribution f (x), x ≥ 0 with the thermodynamic
relationships shown here.
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3. Theory

3.1. Random Sampling

Consider the continuous probability distribution h0(x) ≥ 0, x ∈ (xa, xb), normalized to unit area.
We define a discrete grid xi = xa + (i− 1)∆ with ∆ = (xb − xa)/K, i = 1, 2 · · ·K + 1, such that the
probability to sample a value of x in the ith interval is

pi = h0(xi)∆, (8)

if ∆ is sufficiently small. We sample N values from h0 and construct the frequency distribution
n = (n1, n2, · · · ), where ni is the number of sampled values that lie in the ith interval. The probability
to observe distribution n in a random sample of size N is

P(n|p, N) = N! ∏
i

pni
i

ni!
, (9)

and its logarithm is

log P(n|p, N) = −∑
i

ni log
ni

pi N
+ O(log N), (10)

where p = (p1, p2 · · · ). We define h(xi) = ni/N∆ and take the limit ∆→ 0, N → ∞ in Equation (10).
We then have P(n|p, N)→ δP(h|h0, N) and

log δP(h|h0, N)

N
= −

∫
h(x) log

h(x)
h0(x)

dx .
= −D(h||h0), (11)

where δP(h|h0, N) is the probability to sample region (h, h + δh) in the continuous space of
distributions, while taking a random sample of size N from h0 (all integrals are understood to be taken
over the domain of h0). Any probability distribution h(x) defined in the domain of h0 may materialize in
a random sample taken from h0. Clearly, the most probable distribution in this space is h0 and indeed h0

maximizes Equation (11). For all other distributions we must have δP(h|h0, N) ≤ δP(h0|h0, N) = 1, or

D(h||h0) ≥ 0, (12)

with the equal sign only for h = h0. The probability in the limit N → ∞ to obtain h0 relative to the
probability to obtain any other distribution is

δP(h0|h0, N)

δP(h|h0, N)
= eND(h||h0) → ∞. (13)

Accordingly, h0 is overwhelmingly more probable than any other distribution in its domain.
These results make contact with a broader mathematical literature. The quantity D(h||h0) in

Equation (11) is the relative entropy (Kullback-Leibler divergence) of distribution h with respect to h0,
and plays an important role in Information Theory [13–15]; Equation (12) is the Gibbs inequality, a well
known property of relative entropy; the relationship between relative entropy and the probability of
a sample drawn from h0 is a known result in the theory of large deviations [16]. The key point we
take from these results is that the process of sampling distribution h0 establishes a probability space of
distributions with the same domain as h0—these are the distributions obtained as samples. The Gibbs
inequality states the elementary fact that the most probable distribution in this space is h0. We will
now generalize this probability space and the Gibbs inequality.
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3.2. Biased Sampling

Random sampling always converges to the distribution from which the sample is taken;
the probability of all other distributions vanishes as N → ∞. We now modify the sampling process in
order to obtain some different limiting distribution h∗ while still sampling from h0. We do this
by applying a bias, such that a random sample of size N from h0 is accepted with probability
proportional to W[Nh], where Nh is the frequency distribution of the sample and W is a functional
with the homogeneous property log W[Nh] = N log W[h]. We require homogeneity so that the limiting
distribution is independent of N when N → ∞. By virtue of homogeneity, log W is written as

log W[h] =
∫

h(x) log w(x; h)dx, (14)

where log w(x; h) is the variational derivative of log W[h] with respect to h. The probability to obtain a
sample with distribution h under this biased sampling is

P(h|p, W, N) =
W[Nhi]

rN

(
N! ∏

i

pn1
i

ni!

)
, (15)

where rN is a normalizing constant; the logarithm of this probability in the continuous limit is

log δP(h|h0, W, N)

N
= −

∫
h(x) log

h(x)
w(x; h)h0(x)

dx− log r. (16)

We define the probability functional

log $[h|h0, W]
.
= −

∫
h(x) log

h(x)
w(x; h)h0(x)

dx− log r, (17)

so that the probability to observe a distribution within (h, h + δh) in a biased sample taken from h0 is
δP(h|h0, N) = $N [h|h0, W]. The ratio of the probability to sample the most probable distribution h∗

relative to that for any other distribution in the continuous limit is

δP(h∗|h0, W, N)

δP(h|h0, W, N)
=

(
$[h∗|h0, W]

$[h|h0, W]

)N
→ ∞. (18)

As in random sampling, the most probable distribution is overwhelmingly more probable than
any other feasible distribution. Then we must have

$[h|h0, W] ≤ 1, (19)

with the equal sign only for the most probable distribution h∗. This distribution is (see Supplementary
Information).

h∗(x) = w(x; h∗)
h0(x)

r
, (20)

with r determined by normalization. If we choose w(x; h) = f (x)/h0(x), where f is any other
normalized distribution in the domain of h0, we obtain h∗ = f . Therefore, a suitable bias can always
be constructed such that any distribution in the domain of h0 may be obtained as the most probable
distribution by biased sampling of h0; conversely, any distribution h0 may be used to generate a sample
of any other distribution f over the same domain by biased sampling.

3.3. Canonical Sampling

We now choose the generating distribution h0 to be the normalized exponential distribution with
parameter β,
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h0(x) = βe−βx; 0 ≤ x < ∞, (21)

and write the probability functional $ in Equation (17) as

log $[h|W, β] = −
∫

h(x) log
h(x)

w(x; h)
dx− βx̄− log q, (22)

where q = r/β and x̄ is the mean of h(x). We call this probability space canonical. The probability of h
is $N [h|W, β] and by the same argument that led to Equation (19) we now have

$[h|W, β] ≤ 1. (23)

The equal sign defines the most probable distribution h∗; this distribution is

h∗(x) = w(x; h∗)
e−βx

q
. (24)

The parameter q is fixed by the normalization condition and satisfies

x̄ = −d log q
dβ

. (25)

(Details are given in Supplementary Information).

3.4. Microcanonical Sampling

Next we define the microcanonical space as the subset of distributions with fixed mean x̄.
The generating distribution is again the exponential function, which we now write as

h0(x) =
e−x/x̄

x̄
, (26)

with x̄ fixed. The probability to observe distribution h while sampling h0 is still given by
Equation (16) except that r is replaced with a new normalizing factor r′. We define the microcanonical
probability functional

log $[h|W, x̄] = −
∫

h(x) log
h(x)

w(x; h)
dx− log ω, (27)

with log ω = 1 + log x̄ + log r′ and write the probability of h as $N [h|W; x̄]. The argument that
produced Equations (19) and (23) now gives

$[h|W, x̄] ≤ 1. (28)

This functional is maximized by the same distribution h∗ that maximizes the canonical functional,
Equation (24), except that both q and β are now Lagrange multipliers and are fixed by normalization
and by the known mean x̄. As in the canonical case, h∗ is overwhelmingly more probable than
any other distribution in the microcanonical space and its mean satisfies Equation (25). We insert
Equation (24) into (28) to obtain

log ω = S[h∗] + log W[h∗], (29)

where S[h∗] is the Gibbs–Shannon entropy of the most probable distribution,

S[h∗] = −
∫ ∞

0
h∗(x) log h∗(x)dx. (30)
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Substituting Equation (24) for h∗ in (29) we obtain a relationship between ω, β, q and x̄:

log ω = βx̄ + log q. (31)

In combination with Equation (25), this result defines log ω(x̄) as the Legendre transformation of
q(β) with respect to β. By the reciprocal property of the transformation we then have

β =
d log ω

dx̄
. (32)

Given Equation (31), the canonical probability functional in Equation (22) and the microcanonical
functional in Equation (27) are seen to be the same. The difference is that in canonical maximization x̄ is
a floating parameter, whereas in the microcanonical maximization it is held constant. Both functionals
are maximized by the same distribution and have the same β, q, ω at same x̄: the two ensembles
are equivalent. Finally, the maximization of the microcanonical functional implies that $[h; W, x̄] is a
concave functional in h. It follows that log ω is a concave function of x̄, therefore we must have

d2 log ω

dx̄2 =
dβ

dx̄
≤ 0. (33)

The details are shown in Supplementary Information.

4. Generalized Statistical Thermodynamics

These results can be summarized in the form of the following theorem:

Theorem 1. Given normalized distribution f (x), x ≥ 0, with mean x̄, it is possible to construct a functional
W such that:

(a) All distributions h(x), x ≥ 0, with mean x̄ satisfy the inequality

log W[h]−
∫ ∞

0
h(x) log h(x)dx ≤ log ω (34)

with the equal sign only for h = f , a condition that defines ω;
(b) f can be expressed in canonical form as

f (x) = w(x)
e−βx

q
, (35)

where log w is the variational derivative of log W[ f ]; and
(c) parameters x̄, β, q and ω satisfy

x̄ = −d log q
dβ

, (36)

β =
d log ω

dx̄
, (37)

log ω = βx̄ + log q, (38)

d2 log ω

dx̄2 ≤ 0. (39)

The existence of W is established by the fact that the functional

log W[h] =
∫ ∞

0
h(x) log f (x)dx, (40)



Entropy 2019, 21, 890 7 of 14

satisfies the theorem. This is a linear functional whose derivative is log f for all h. More generally,
any homogeneous functional log W[h] of degree 1, linear or non-linear, whose derivative at h = f is
given by

δ log W[h]
δh

∣∣∣∣
h= f

= log f (x) + a0 + a1x .
= log w(x), (41)

where a0 and a1 satisfy
da0

da1
= −x̄, (42)

but are otherwise arbitrary, also satisfies the theorem. The inequality in Equation (39) follows from the
concave requirement that ensures the maximization of Equation (34).

We recognize Equation (35) as the canonical distribution of statistical mechanics, Equations (36)–(38)
and (33), which relate its parameters, as the core set of thermodynamic relationships, and Equation (34)
as the inequality of the second law. The probabilistic interpretation is that any distribution f may
be obtained as the most probable distribution under a probability measure defined via a suitable
functional W. Whereas in statistical mechanics the central stochastic variable is the mechanical
microstate, in generalized thermodynamics it is the probability distribution itself. Thermodynamics
may be condensed into the microcanonical inequality in Equation (34), a generalized expression of the
second law that defines the most probable distribution in the microcanonical space. All relationships
between ω (microcanonical partition function), q (canonical partition function), β (generalized inverse
temperature) and x̄ follow from the maximization of this inequality and have equivalents in familiar
thermodynamics. The derivatives d log q/dβ and d log ω/dx̄ in Equations (36) and (37) may be
viewed as equations of change along a path (“process”) in the space of distributions under fixed
bias W. This path is described parametrically in terms of x̄ and represents a nonstationary stochastic
process. We call this process quasistatic—a continuous path of distributions that maximize locally the
thermodynamic functional.

4.1. Contact with Statistical Mechanics

The obvious way to make contact with statistical mechanics is to take f to be the probability
of microstate at fixed temperature, volume and number of particles. The postulate of equal a priori
probabilities fixes the selection functional and its derivative to W = w = 1; if we identify x as
the energy Ei of microstate i, β as 1/kBT, q as the thermodynamic canonical partition function,
ω as the thermodynamic microcanonical partition function, Equations (24)–(33) map to standard
thermodynamic relationships. From Equation (29) we obtain $ = eS[h]/ω: the canonical probability f
maximizes entropy and thus we obtain the second law.

This is not the only way to establish contact with statistical mechanics. We may choose f to
be some other probability distribution, for example, the probability to find a macroscopic system of
fixed (T, V, N) at energy E. We write the energy distribution in the form of Equation (24) with w,
β and q to be determined. From Equations (25), (31) and (32) with x̄ = Ē we make the identifications
β→ 1/kBT, log q→ −F/kBT (free energy), log ω → thermodynamic entropy. To identify w we require
input from physics and this comes via the observation that the probability density of macroscopic
energy E is asymptotically a Dirac delta function at E = Ē. Then S[ f ] = 0 (this is the entropy of the
energy distribution, not to be confused with thermodynamic entropy). From Equations (14) and (29)
we find log W[ f ] = log w(x; f ) = log ω, and conclude that log ω is the thermodynamic entropy.
This establishes correspondence between generalized thermodynamics and macroscopic (classical)
thermodynamics. If we further postulate, again motivated by physics, that w(E) is the number of
microstates under fixed volume and number of particles, we establish the microscopic connection.
Since f (E) is proportional to the number of microstates with energy E and individual microstates
are unobservable, we may as well ascribe equal probability to all microstates. Thus we recover the
postulate of equal a priori probabilities (statistical thermodynamics). Finally, by adopting a physical
model of microstate, classical, quantum or other, we obtain classical statistical mechanics, quantum
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statistical mechanics or yet-to-be-discovered statistical mechanics, depending on the model. In all cases
the thermodynamic calculus is the same, only the enumeration of microstates—that is, W— depends
on the physical model.

4.2. What is W?

Once the selection functional W is specified the most probable distribution is fixed and all
canonical variables become known functions of x̄. But what is W? The selection functional is a
placeholder for our knowledge, hypotheses and model assumptions about the stochastic processes
that gives rise to the probability distribution of interest. This knowledge fully specifies the distribution.
The opposite is not true: given distribution f there is an infinite number of functionals W that produce
that distribution as the most probable distribution in their probability space. This nonuniquness is
a feature, not a bug: it allows models that are quite different in their details to produce the same
final distribution. Here is an example. The unbiased functional W[h] = w(x) = 1 produces the
exponential distribution

h∗(x) =
e−βx

q
, (43)

with canonical parameters
β = 1/x̄, q = x̄, log ω = 1 + log x̄. (44)

Now consider the nonlinear selection functional

log W[h] = S[h] = −
∫ ∞

0
h(x) log h(x)dx, (45)

whose logarithm is equal to entropy. The corresponding microcanonical probability functional is
obtained by inserting this into Equation (27),

log $[h|W, x̄] = −2
∫ ∞

0
h(x) log h(x)dx− log ω (46)

and is maximized by (see Supplementary Information)

h∗(x) = w(x)
e−βx

q
, (47)

with
w(x) = x̄ex/x̄, β = 2/x̄, q = x̄2, log ω = 2 + 2 log x̄. (48)

We have arrived at the exponential distribution, the same distribution that is obtained by the
unbiased functional w(x) = 1, but with different canonical parameters because the probability space
from which it arises is now different. If all we know is that the probability distribution in a stochastic
process is exponential, it is not possible to determine whether it was obtained using W[h] = 1,
W[h] = eS[h], or any other functionals that is capable of reproducing the exponential distribution.
While the selection bias identifies the most probable distribution uniquely, the opposite is not true.

The selection functional represents external input to thermodynamics and is fixed by the rules
that govern the stochastic process that produces the distribution in question. In the case of statistical
mechanics it is fixed by the postulate of equal a priori probabilities. In another example, recently
given for stochastic binary clustering, it is fixed by the aggregation kernel, a function that determines
the aggregation probability between clusters of different sizes [17]. The selection functional is the
contact point between generalized statistical thermodynamics—a mathematical theory for generic
distributions—and physics, i.e., our knowledge in the form of model assumptions and postulates about
the process that gives rise to the observed distribution. It is interesting to point out that the variational
derivative w in Equation (27) appears in the form of Bayesian prior [18]. In the context of generalized
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thermodynamics w is not a prior distribution—although it might if a0 = a1 = 0 in Equation (41).
In general, w is a non normalizable derivative of the functional that represents our knowledge about
the process, an improper prior that points nonetheless to a proper distribution.

5. Thermodynamic Sampling of Distributions

We have shown that any distribution f (x) defined in R+ can be viewed as the most probable
distribution in an appropriately constructed probability space. Here we will show that any distribution
f in this domain can be obtained as the equilibrium distribution of reacting clusters under an
appropriately constructed equilibrium constant. Consider a population of M identical particles
(“monomers”) distributed into N clusters and let m = (m1, m2 · · · , mN) be an ordered list of N cluster
masses with total mass M such that mk is the mass of the kth cluster in the list (“configuration”).
The complete set of configurations with N clusters and total mass M comprises the cluster ensemble
(M, N). Let n = (n1, n2 · · · ) be the size distribution of the clusters in configuration m such that ni is
the number of clusters with i monomers. With M, N → ∞ at fixed M/N = x̄, the cluster ensemble
contains every discrete distribution hi = ni/N with mean x̄. We now construct the following stochastic
process: given a configuration m, pick two clusters at random, merge them, then split them back into
two clusters at random. This amounts to an exchange of mass between two clusters that is represented
schematically by the reaction

mi + mj −→ m′i + m′j (49)

and transforms the parent configuration m into an new configuration m′ with the same number of
clusters N and total mass M. This process may also be represented as a reaction that transforms a
parent configuration into an offspring,

m K−→ m′. (50)

We define the equilibrium constant of this reaction as

Km→m′ =
W(n′)
W(n)

, (51)

where n′ and n are the cluster size distributions of the product and reactant configurations, respectively,
and W(n) is the selection functional applied to distribution n. The change δn of the corresponding
distributions upon the exchange reaction is a change of −1 in the number of cluster masses mi and mj
on the reactant side, and +1 for cluster masses on the product side. By virtue of the homogeneous
property of log W, its change for large M and N is a differential that can be expressed in terms of the
derivatives of log W

log W(n′)− log W(n) = − log w(mi)− log w(mj) + log w(m′i) + log w(m′j), (52)

where log w is the functional derivative of log W evaluated in distribution n. Using this result the
equilibrium constant becomes

Km→m′ =
w(m′i)w(m′j)

w(mi)w(mj)
. (53)

This has the standard form of an equilibrium constant for the reaction in Equation (49). We may
identify w(x) as the “fugacity” of species x and “species” as a cluster with mass x. The reaction can be
simulated by Monte Carlo using the Metropolis transition probabilities

Pn→n′ =

{
rnd if rnd ≤ Kn→n′ ,

1 if rnd > Kn→n′ ,
(54)
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where rnd is a uniform random number in (0, 1). This forms a reducible Markov process that samples
the microcanonical space of distribution n with fixed zeroth order moment N and first moment M.
Its stationary distribution is [19]

h∗(x) = w(x)
e−βx

q
. (55)

where log w(x) is the functional derivative of log W evaluated at h = h∗ and the parameters β and q
are obtained by solving the set of equations

q =
∫ ∞

0
w(x)e−βxdx, (56)

x̄ =
1
q

∫ ∞

0
xw(x)e−βxdx. (57)

With W[h] = w[x] = 1 we obtain the exponential distribution, which implies that the exchange
reaction with equilibrium constant K = 1 for all transitions is equivalent to unbiased sampling from
an exponential distribution with fixed mean x̄ = M/N.

Once the selection functional W is given the most probable distribution is fixed and may be
obtained either by simulation or in many cases analytically. We will now construct W such that
the most probable distribution is any distribution f defined in R+. We construct the linearized
selection functional

log W[h] =
∫ ∞

0
h(x) log w(x)dx (58)

with w from Equation (41), which we write in the form

w(x) = f (x)ea0+a1x (59)

and a0 and a1 arbitrary constants. It is easy to show that the selection of a0 and a1 is immaterial because
both constants drop out of Equation (53). If we choose a0 = a1, then w(x) = f (x); alternatively, we may
choose these constants so as to obtain simpler forms for w(x). We demonstrate the construction of w
with three examples using the exponential, the Weibull, and the uniform distribution.

1. Exponential distribution
f (x) = e−x/x̄/x̄. (60)

The function w is

w(x) =
e−x/x̄+a0+a1

x̄
. (61)

Choosing a0 = log x̄, a1 = 1/x̄ we obtain wexp(x) = 1, which represents the unbiased
selection functional.

2. Weibull distribution

f (x) =
(

k
λ

)( x
λ

)k−1
e−(x/λ)k

.

Using a0 = k log λ− log k and a1 = 0 in Equation (59) we obtain

wWeibull(x) = xk−1e−(x/λ)k
. (62)

3. Uniform distribution

f (x) =

{
1/(b− a) a ≤ x ≤ b

0 otherwise.
(63)

With a0 = a1 = 0 we obtain
wuniform(x) = f (x). (64)
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We implement thermodynamic sampling using Monte Carlo. We begin with an ordered list of
N integers i > 0 whose sum is M. We then pick two numbers at random and implement a random
exchange reaction to produce a new pair of integers with the same combined sum. The new pair
replaces the old with acceptance probability computed according to Equation (54) using Keq from
Equation (53) and the function w(x) obtained above. Following a successful trial we calculate the
distribution of the current configuration. The mean distribution is obtained by averaging over a large
number of trials. For these simulations N = 100, M = 3000, x̄ = 30, and the mean distribution is
calculated over 20,000 trials. As we discuss elsewhere, the mean distribution and the most probable
distribution converge to each other unless the system exhibits phase separation [17,19,20]. The results
in Figure 1 make it clear that thermodynamic sampling converges indeed to the distribution for which
the w function was derived. Any discrete distribution hi, and with proper scaling, any continuous
distribution h(x), may be associated with the equilibrium distribution of reacting clusters under a
suitable equilibrium constant.

exchange reaction

Figure 1. Cont.
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exchange reaction

Figure 1. The exchange reaction transfers mass between two clusters and samples the space of
all distributions with fixed number of clusters N and fixed total number of monomers M. We may
construct the equilibrium constant of this reaction so as to to obtain any desired equilibrium distribution.
Any distribution f (x), x ≥ 0, may be obtained as the equilibrium distribution. In this example we
obtain (a) the exponential distribution; (b) the Weibull distribution with λ = 33.8514, k = 2; and (c) the
uniform distribution between a = 20 and b = 40. In all cases x̄ = 30.

The selection functionals constructed by the procedure discussed here apply the variational
derivative at f to all distributions h, i.e., they are linearized at the most probable distribution.
Any nonlinear functional log W with the same derivative at h = f will produce the same distribution
as the stationary distribution under exchange reactions. One example is the entropic functional in
Equation (45), a nonlinear functional that produces the exponential distribution. Even though the
entropic and unbiased functionals both produce the same distribution (Figure 2a), their corresponding
ensembles are distinctly different because each functional assigns different probabilities to the
distributions of the ensemble. This difference can be seen in the fluctuations (Figure 2b). The entropic
functional is more selective than the unbiased, which picks configurations with equal probability.
Accordingly, fluctuations in the entropic ensemble have narrower distribution. This can be clearly
seen in Figure 2b that shows the fluctuations in the number of monomers for the entropic and the
unbiased functionals.
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Figure 2. (a) The entropic selection functional, W[h] = eS[h], and the unbiased functional, W[h] = 1,
both produce the same equilibrium distribution (exponential). Nonetheless the two selection functionals
represent distinctly different ensembles, as can be seen in fluctuations of the number of monomers (b).
The entropic functional is more selective than the unbiased and produces a tighter distribution
of fluctuations.
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6. Conclusions

Stripped to its core, what we call statistical thermodynamics is a mapping between a probability
distribution f and a set of functions, {w, β, q, ω} from which the distribution may be reconstructed.
What we call classical thermodynamics is the set of relationships among {β, q, ω, x̄}—relationships that
are the same for all distributions. What we call second law is the variational condition that identifies the
most probable distribution in the domain of feasible distributions. What we call quasistatic process is a
path in the space of distributions under fixed W. Physics enters through W. This generic mathematical
formalism applies to any distribution. To use an analogy, thermodynamics is a universal grammar
that becomes a language when applied to specific problems. It is a fitting coincidence—or perhaps an
inevitable consequence—that it was the human desire to maximize the amount of useful work in the
steam engine that would eventually make contact with the variational foundation of thermodynamics.
Gibbs’s breakthrough was to connect thermodynamics to a probability distribution, and that of
Shannon and Jaynes to transplant it outside physics. In the time since, the vocabulary of statistical
thermodynamics has felt intuitively familiar across disciplines in a déjà vu sort of manner, even as
its grammar remained undeciphered. This intuition can now be understood: The common thread
that runs through every discipline that has adopted the thermodynamic language is an underlying
stochastic process, and where there is probability, there is statistical thermodynamics.
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