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Abstract: Programs are under continuous attack for disclosing secret information, and defending
against these attacks is becoming increasingly vital. An attractive approach for protection is to
measure the amount of secret information that might leak to attackers. A fundamental issue in
computing information leakage is that given a program and attackers with various knowledge of the
secret information, what is the maximum amount of leakage of the program? This is called channel
capacity. In this paper, two notions of capacity are defined for concurrent probabilistic programs using
information theory. These definitions consider intermediate leakage and the scheduler effect. These
capacities are computed by a constrained nonlinear optimization problem. Therefore, an evolutionary
algorithm is proposed to compute the capacities. Single preference voting and dining cryptographers
protocols are analyzed as case studies to show how the proposed approach can automatically compute
the capacities. The results demonstrate that there are attackers who can learn the whole secret of
both the single preference protocol and dining cryptographers protocol. The proposed evolutionary
algorithm is a general approach for computing any type of capacity in any kind of program.

Keywords: channel capacity; information theory; evolutionary algorithms; quantitative information
flow; concurrent probabilistic programs

1. Introduction

Preventing leakage of secret information to public sources, accessible by attackers, is an important
concern in information security. Quantitative information flow [1] is a well-established mechanism
for measuring the amount of leakage occurred in a program. It has been successfully applied to
many security applications, such as analyzing anonymity protocols [2,3] or the OpenSSL Heartbleed
vulnerability [4].

An attacker, with prior knowledge of the secret information of the program, might execute the
program and, based on the observation of public variables, infer further knowledge on the secrets
(posterior knowledge). For example, in the program (l:=h mod 2), where l is a public output
and h is a secret input, the attacker infers the rightmost bit of h by observing l; or in the program
(l:=h&(110)b), where h is a 3-bit secret input and (110)b is the 3-bit binary form of 6, the attacker
learns the two leftmost bits of h. The attacker has an initial uncertainty about the secrets, which is
the reverse of the prior knowledge and a remaining uncertainty, which is the reverse of the posterior
knowledge. Then, information leakage is defined as

information leakage = initial uncertainty − final uncertainty.

Uncertainty can be quantified using information theory concepts, such as the Renyi’s min-entropy [1].
In analyzing concurrent probabilistic programs, the effect of the scheduler of the program

should be considered, as different schedulers yield different amounts of leakage [5,6]. For example,
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consider the program (l:=1 || if l=1 then l:=h), where || is the concurrency operator with
shared variables and the initial value of l is 0. If the attacker chooses a scheduler that runs (l:=1) first,
then the amount of leakage would be 100%, but if they choose a scheduler that executes (if l=1 then
l:=h) first, then the amount of leakage would be 0. It is also common to assume an attacker that can
observe the public variables in every single step of the executions [6–10]. This observational power
results in intermediate leakages. For example, in the program (l:=1 || if l=1 then l:=h); l:=0
with a scheduler that executes (l:=1) first, there is no leakage in the final step, but the whole bits of h
get leaked in an intermediate step. Therefore, in analyzing concurrent probabilistic programs, leakage
in intermediate steps and the effect of scheduler should be taken into account.

A frequently asked question in quantitative information flow is: what is the worst-case scenario?
This wost-case leakage is called channel capacity, which is an upper bound of leakage over all
attackers with the same observational power but different prior knowledge on the secrets [11]. Many
approaches have been proposed to measure the capacity of programs. Most of these approaches
model programs using channel matrices and compute the capacity using well-known mathematical
techniques. For example, Malacaria and Chen [8] use Lagrange multipliers to compute the channel
capacity. They use channel matrices to model various programs, including concurrent probabilistic
ones. In another work [12], they use Karush–Kuhn–Tucker (KKT) to find the capacity. In using
well-known mathematical techniques such as Lagrange multipliers and KKT to compute the capacity;
it is necessary to prove the concavity of the leakage function. In most programs and leakage functions,
concavity does not hold. Therefore, it is not always possible to use mathematical techniques for
computing the capacity. Furthermore, channel matrices have exponential size [13] and are not suitable
for considering intermediate leakages and scheduler effect [5,6].

In this paper we propose a fully-automated approach, which involves using Markovian processes
for modeling programs and an evolutionary algorithm for computing the capacity. Assume a
terminating concurrent program containing sequential probabilistic modules with shared variables.
Furthermore, assume a probabilistic scheduler that determines the execution order of statements of
the modules. Suppose an attacker that is capable of observing source code of the program, executing
the program with a chosen scheduler, and observing the public variables in each step of the executions.
The secret and the public variables are shared among the modules, but the attacker can only read the
public variables. Following the approach introduced in our previous work [6], we use Markov chains
to model executions of concurrent probabilistic programs under control of a probabilistic scheduler
and compute expected and maximum leakages of a Markov chain. We then define two notions of
capacity, CE and Cmax, which are upper bounds of expected and maximum leakage over all possible
prior knowledge of attackers. Computing these capacities is a constrained nonlinear optimization
problem and concavity of the objective leakage function is not guaranteed. Thus, we propose a genetic
algorithm to measure, approximately, the capacity values of CE and Cmax. The algorithm has been
implemented in Python. Finally, we discuss the anonymity protocols, the single preference voting, and
the dining cryptographers as case studies to evaluate the proposed approach. We show how to apply
the genetic algorithm to approximate the capacities for various cases of the protocols.

To the best of our knowledge, this is the first work in quantitative information flow that uses an
evolutionary algorithm to compute the channel capacity and the first work that measures channel
capacity for the single preference voting protocol.

In summary, our contributions are

• defining two notions of capacity, CE and Cmax, for shared-memory concurrent probabilistic
programs;

• a genetic algorithm for computing, approximately, the capacities CE and Cmax;
• using the proposed approach for computing the capacities of the single preference voting protocol

and the dining cryptographers protocol, which are upper bounds of anonymity leakage; and
• a formula to measure the capacities CE and Cmax of the single preference voting protocol in general.
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The remaining of this paper is organized as follows. Section 2 reviews the related work.
Preliminary concepts and Markovian processes are presented in Section 3. The information leakage and
channel capacity of concurrent probabilistic programs are discussed in Sections 4 and 5. The proposed
evolutionary algorithm for computing the capacity of concurrent probabilistic programs is explained
in Section 6. The case studies are discussed in Section 7. Finally, Section 8 concludes the paper and
discusses future work.

2. Related Work

Channel capacity in the context of information security was introduced by Millen [14]. It has since
gained attention and has been studied in many researches. Chatzikokolakis et al. [15] compute channel
capacity of anonymity protocols that satisfy certain symmetries. They model the protocols using
channel matrices. These matrices have been used in many quantitative works and are appropriate for
analysis of sequential programs. However, their model is not suitable for computing intermediate and
scheduler-specific leakages of concurrent probabilistic programs.

Inspired by the authors of [15], Malacaria and Chen use Lagrange multipliers to compute
the channel capacity of programs with asymmetric matrix for different observational models of
attackers [8]. In order to compute the capacity of a program, they manually derive the channel matrix
of the program, consider a constrained nonlinear optimization problem, and solve a series of equations
using Lagrange multipliers. In a further work by the authors of [2], they apply their approach to
compute the capacity of anonymity protocols. In a further work by the authors of [12], they extend
their approach using KKT conditions to support constraints expressed as inequality equations, which
Lagrange multipliers are unable to handle. They have not implemented the approaches and have only
demonstrated them using small examples. The concavity of the objective function in these examples are
easily satisfied and thus they have used Lagrange multipliers and KKT to find the capacity. There are
many other programs, in which the concavity is not satisfied. Our approach is fully automatic and
considers all variants of constraints.

Biondi et al. [11] measure the capacity of deterministic systems by interval Markov chains.
They use the concept of entropy maximization in Bayesian statistics to maximize the entropy of a
Markov model and compute the capacity. They only discuss final leakages of deterministic systems
and do not consider the intermediate leakages.

Alvim et al. [16] define the additive and multiplicative notions of leakage and capacity
based on any gain function. They also discuss computational aspects of measuring capacities.
Chatzikokolakis [17] discuss more on the additive notion of leakage and capacity. In our proposed
approach, we define capacity similar to the notion of multiplicative leakage with min-entropy.
Alvim et al. state that in this case the existence of an efficient algorithm for computing the capacity is
not certain. We develop a genetic algorithm to compute this type of capacity and evaluate the proposed
algorithm using two anonymity protocols. The results show that the capacity values are not trivial.

Américo et al. [3] compute various types of channel capacities of two anonymity protocols.
They define the capacities over all prior distributions and a fixed gain function, over a fixed prior
distribution and all gain functions, etc. The Miracle theorem [18] proves that min-entropy is an upper
bound of leakage over all gain functions. Therefore, we only established the capacity definitions over a
gain function, i.e., Renyi’s min-entropy. Américo et al. use PCTL model checking of PRISM [19] to
compute the various public outputs and their probabilities, by which the capacities are computed.
They do not consider the intermediate leakages and specifying a formula using the PCTL logic requires
considerable amount of manual effort.

An interesting point of view on information flow is side-channel attacks, in which the attacker can
learn information about the secret values by observing the nonfunctional characteristics of program
behavior [20]. Examples of side channels are computational time [21], power consumption [22] and
cache behavior [23]. Side-channel attacks have been exploited in different situations, such as learning
secret data from compression algorithms [24] or recovering cryptographic keys from an OpenSSL-based
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web server [25]. Protecting against side-channel attacks is hard to achieve. Malacaria et al. [20] propose
symbolic side-channel analysis techniques to quantify information leakage for probabilistic programs.
Kopf and Basin [26] quantify information leakage of adaptive side-channel attacks using information
theory. Doychev et al. [27] discuss cache side-channel attacks for many attacker models. In our paper,
we assume there is no side-channel attack on concurrent probabilistic programs and we formalize the
channel capacity as well as propose an evolutionary algorithm to compute a near-optimum value for
the capacity.

Another point of view on information flow is qualitative information flow, in which a security
property is characterized to specify information flow requirements and a verification method is
used to check satisfiability of the property. It has been studied well in the literature. Probabilistic
noninterference [28–30] and observational determinism [10,31–35] have been used as information
flow properties to characterize the security of concurrent programs. For verifying these security
properties, type systems [28,29,31,32], algorithmic verification [10,30,33,34], program analysis [35], and
logics [36–38] have been utilized. In qualitative information flow, the security property gets rejected
when there is a leakage, even a minor one. This is a restrictive condition and results in rejection of many
trivially secure programs. For example, a password-checking program is rejected, because it reveals
information on what the password is not. In quantitative information flow, the amount of leakage is
quantified in order to allow minor leakages and reject major ones. Likewise, the channel capacity is
quantified to determine an upper bound on the amount of leakage in the worst-case scenario.

3. Background

3.1. Information Theory

A probability distribution, Pr, over a set, Y , is a function, Pr : Y → [0, 1], such that ∑y∈Y Pr(y) =
1. We denote the set of all probability distributions over Y by D(Y). Let X denote a random variable
with the finite set of values ValX and the distribution Pr ∈ D(ValX ).

Definition 1. The Renyi’s min-entropy [1] of a random variable X is defined as

H∞(X ) = − log2 max
x∈ValX

Pr(x).

3.2. Markovian Models

We use Markov decision processes (MDPs) [39] to model operational semantics of concurrent
probabilistic programs. MDPs model executions and traces of concurrent probabilistic programs using
states and transitions. The concept of nondeterminism inherent in MDPs is used to model concurrency
between modules by considering all possible choices of statements of the modules. We also use
memoryless probabilistic schedulers, an important subclass of schedulers, to model the scheduling
policy of the modules. A memoryless probabilistic scheduler resolves nondeterminism of MDPs and
produces a Markov chain (MC), which only contains probabilistic transitions of the modules.

Suppose the program has a public output l. Formally,

Definition 2. A Markov decision process (MDP) is a tupleM = (S, Act, P, ζ, Vall , Vl) where,

• S is a set of states,
• Act is a set of actions,
• P : S → (Act → (S → [0, 1])) is a transition probability function such that for all states s ∈ S and

actions α ∈ Act:

∑
s′∈S

P(s)(α)(s′) ∈ {0, 1},

• ζ : S→ [0, 1] is an initial distribution such that ∑
s∈S

ζ(s) = 1,
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• Vall is the finite set of values of l,
• Vl : S→ Vall is a labeling function.

The function Vl labels each state with value of the public variable in that state. In fact, a state
label is what an attacker observes in a state. An MDPM is called finite if S, Act, and Vall are finite.
An action α is enabled in state s if, and only if, ∑

s′∈S
P(s)(α)(s′) = 1. Let Act(s) denote the set of enabled

actions in s. Each state s′ for which P(s)(α)(s′) > 0 is called an α-successor of s. The set of α-successors
of s is denoted by Post(s, α). The set of successors of s is defined as

Post(s) = ∪
α∈Act(s)

Post(s, α).

The state s with ζ(s) > 0 is considered as an initial state. The set of initial states ofM is denoted
by Init(M). We assume the programs always terminate and thus all paths end in a state without
any outgoing transition. We assume all blocking states correspond to the termination of the program.
For technical reasons, we include a self-loop to each blocking state s, i.e., P(s)(τ)(s) = 1, making all
blocking states absorbing. A state s is called final if Post(s) = {s}.

The intuitive operational behavior of an MDPM is as follows. At the beginning, an initial state
s0 is randomly chosen such that ζ(s0) > 0. Assuming thatM is in state s, first a nondeterministic
choice between the enabled actions needs to be resolved. Suppose action α ∈ Act(s) is selected. Then,
one of the α-successors of s is selected randomly according to the transition function P. That is, with
probability P(s)(α)(s′) the next state is s′.

An execution path ofM is an infinite sequence of states that start in an initial state and loop
infinitely in a final state. More precisely, a path is a state sequence s0s1 . . . sω

n such that si ∈ Post(si−1)

for all 0 < i ≤ n, s0 is initial and sn is final.
A trace of a path is the sequence of public values of the states of the path. Formally, the trace

of an infinite path σ = s0s1 . . . sω
n is defined as T = trace(σ) = Vl(s0)Vl(s1) . . . Vl(sn)ω. The set of

traces of M is denoted by Traces(M). Let Paths(T) be the set of paths that have the trace T, i.e.,
Paths(T) = {σ | σ ∈ Paths(M) : trace(σ) = T}.

Definition 3. A (discrete-time) Markov chain (MC) is a tupleM = (S, P, ζ, Vall , Vl) where,

• S is a set of states,
• P : S× S→ [0, 1] is a transition probability function such that for all states s ∈ S:

∑
s′∈S

P(s, s′) = 1,

• ζ : S→ [0, 1] is an initial distribution such that ∑
s∈S

ζ(s) = 1,

• Vall is the finite set of values of l,
• Vl : S→ Vall is a labeling function.

The function P determines for each state s the probability P(s, s′) of a single transition from s to s′.
MCs are state transition systems with probability distributions for transitions of each state. That is, the
next state is chosen probabilistically, not nondeterministically.

We define the occurrence probability of a trace T in an MCM as

Pr(T = T) = ∑
σ∈Paths(T)

Pr(σ),

where T is a trace variable and

Pr(σ = s0s1 . . . sω
n ) =

ζ(s0) if n = 0,

ζ(s0). ∏
0≤i<n

P(si, si+1) otherwise.
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Definition 4. LetM = (S, Act, P, ζ, Vall , Vl) be an MDP. A memoryless probabilistic scheduler forM is a
function δ : S→ D(Act), such that δ(s) ∈ D(Act(s)) for all s ∈ S.

As all nondeterministic choices in an MDPM are resolved by a scheduler δ, a Markov chainMδ

is induced. Formally,

Definition 5. LetM = (S, Act, P, ζ, Vall , Vl) be an MDP and δ : S→ D(Act) be a memoryless probabilistic
scheduler onM. The MC of M induced by δ is given by

Mδ = (S, Pδ, ζ, Vall , Vl)

where

Pδ(s, s′) = ∑
α∈Act(s)

δ(s)(α).P(s)(α)(s′)

4. Leakage of Concurrent Probabilistic Programs

In this section, we explain how to compute expected and maximum leakages of concurrent
probabilistic programs, considering intermediate states. For further information, please see the work
by the authors of [6].

Let P be a terminating concurrent probabilistic program and δ be a probabilistic scheduler. Suppose
P has one public variable l, one secret variable h, and possibly several neutral variables. In case
there are more public or secret variables, they can be encoded into one public or secret variable.
Let Vall and Valh denote the finite sets of values of l and h, respectively, and Pr(h) denotes the
attacker’s prior knowledge on the secret variable. Operational semantics of P is represented by an MDP
MP = (S, Act, P, ζ, Vall , Vl), which models all possible interleavings of the modules. The scheduler is
represented by a memoryless probabilistic scheduler δ. As the MDPMP is executed under the control
of the scheduler δ, all nondeterministic transitions are resolved and an MC

MP
δ = (S, Pδ, ζ, Vall , Vl)

is produced. Each state ofMP
δ shows the current values of h, l, possible neutral variables, and the

program counter. Since states ofMP
δ contain the program counter, loops of the programs are unfolded

in MP
δ , and the programs always terminate, therefore MP

δ contains no loops (ignoring self-loops
of final states). It takes the form of a directed acyclic graph (DAG), with initial states as roots of
the DAG and final states as leaves. Thus, reachability probabilities inMP

δ coincide with long-run
probabilities [40].

As the attacker is able to observe the public values, the labeling function is restricted to l, i.e.,
Vl : S→ Vall and states are labeled by the value of l in the corresponding state. The initial distribution
ζ is determined by the prior knowledge of the probabilistic attacker Pr(h). Let the function Vh(s)
determine the value of the variable h in the state s ∈ S. Then, ζ(s0) = Pr(h = Vh(s0)) for all
s0 ∈ Init(MP

δ ).
The uncertainty of the attacker can be computed using either Shannon entropy, Renyi’s

min-entropy, or any other gain function. Shannon entropy is used for attackers that guess the secret
information in multiple tries, whereas Renyi’s min-entropy is a better measurement for computing
uncertainty of attackers that guess the secret in only one try [1]. On the other hand, according to
the Miracle theorem [18], Renyi’s min-entropy is an upper bound of leakage over all gain functions.
Therefore, we measure the uncertainty of the attacker by the Renyi’s min-entropy.

The attacker’s initial knowledge is represented by the prior distribution Pr(h) and his final
knowledge after executing the program and observing the traces is represented by the posterior
distribution Pr(h|T). Therefore, the expected leakage ofMP

δ is computed as the difference of initial
uncertainty and remaining uncertainty.

Definition 6. The expected leakage of the MCMP
δ is computed as



Entropy 2019, 21, 885 7 of 17

LE (Pδ) = H∞(h)−H∞(h|T),

whereH∞(h) is the initial uncertainty and is computed as

H∞(h) = − log2 max
h∈Valh

Pr(h = h)

andH∞(h|T) is the remaining uncertainty and is computed as

H∞(h|T) = ∑
T∈Traces(MP

δ )

Pr(T = T).H∞(h|T = T),

whereH∞(h|T = T) is defined as

H∞(h|T = T) = − log2 max
h∈Valh

Pr(h = h|T = T)

and Pr(h = h|T = T) is computed by

Pr(h = h|T = T) =
Pr(h = h, T = T)

Pr(T = T)
.

Pr(h, T) is the joint probability of h and T and is calculated by

Pr(h = h, T = T) = ∑
σ∈Paths(T), Vh(σ[0])=h

Pr(σ),

where Pr(σ) is the occurrence probability of the path σ and Pr(T = T) is the occurrence probability of the
trace T.

Another measure for quantifying the security of a program is maximum leakage [6], which is the
maximal value of leakages occurred in all execution traces of the program. Maximum leakage, denoted
Lmax(Pδ), is an upper bound of leakage that an attacker with prior knowledge Pr(h) can infer from Pδ.

Definition 7. The maximum leakage of the MCMP
δ is computed as

Lmax(Pδ) = H∞(h)− min
T∈Traces(MP

δ )
H∞(h|T = T).

5. Capacity of Concurrent Probabilistic Programs

Capacity is an upper bound of leakage over all possible distributions of the secret input. We
consider two types of leakages, expected and maximum. Therefore, two types of capacities are defined:
CE and Cmax. Formally,

Definition 8. The capacity CE of the MCMP
δ is defined as

CE (Pδ) = max
Pr(h)∈D(Valh)

LE (Pδ)

= max
Pr(h)∈D(Valh)

(
H∞(h)− ∑

T∈Traces(MP
δ )

Pr(T = T).H∞(h|T = T)
)

whereH∞(h), Pr(T), andH∞(h|T = T) depend on Pr(h).

Definition 9. The capacity Cmax of the MCMP
δ is defined as

Cmax(Pδ) = max
Pr(h)∈D(Valh)

Lmax(Pδ)

= max
Pr(h)∈D(Valh)

(
H∞(h)− min

T∈Traces(MP
δ )
H∞(h|T = T

)
whereH∞(h), Pr(T), andH∞(h|T = T) depend on Pr(h).
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Note that for every program we have CE ≤ Cmax.

Example 1. Consider the following program P1.

l:=0;
l:=h/2 || l:=h mod 2 (P1)

where h is the secret input with Valh = {0, 1, 2}, l is the public output, and || is the parallel operator.
The Markov chainMP1

uni of the program, running under control of a uniform scheduler uni, is depicted
in Figure 1.

s0

s1 s2

s3

s4

s5 s11

s12 s6

s7

s8 s13

s10 s9

1
2

1
2

1

1

1

1
2

1
2

1 1

11

1
2

1
2

1 1

11

h = 0

l = 0

l = 0 l = 0

l = 0

h = 1

l = 0

l = 0 l = 1

l = 1

l = 0

h = 2

l = 0

l = 0 l = 1

l = 1
l = 0

Figure 1.MP1
uni: MC of the program P1 with the uniform scheduler.

In this MC, each state is labeled by the value of l in that state and each transition is labeled by a probability.
For instance, the transition from s0 to s1 has the probability Puni(s0, s1) =

1
2 .

Assume the attacker’s prior knowledge over the secret variable h is

Pr(h) = {0 7→ p0, 1 7→ p1, 2 7→ p2}

where pi is the probability of choosing h = i. The initial uncertainty is quantified as the Renyi’s min-entropy of
h in the initial states:

initial uncertainty =H∞(h) = − log2 max
i∈{0,1,2}

pi.

The remaining uncertainty is quantified as the Renyi’s min-entropy of h after observing the traces. There
are three traces with different occurrence probabilities:

T0 =< 0, 0, 0ω >, Pr(T = T0) = p0,

T1 =< 0, 0, 1ω >, Pr(T = T1) =
1
2
(p1 + p2),

T2 =< 0, 1, 0ω >, Pr(T = T2) =
1
2
(p1 + p2).

Each trace results in different sets of final states, with different posterior distributions:

Pr(h|T = T0) = {0 7→ 1},

Pr(h|T = T1) = {1 7→
p1

p1 + p2
, 2 7→ p2

p1 + p2
},

Pr(h|T = T2) = {1 7→
p1

p1 + p2
, 2 7→ p2

p1 + p2
}.
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Consequently, the remaining uncertainty is quantified as

remaining uncertainty = ∑i∈{0,1,2}Pr(Ti).H∞(h|T = Ti)

= −(p1 + p2) ∗ log2 max{ p1
p1+p2

, p2
p1+p2

}

and the expected leakage of the program P1uni is computed as

LE (P1uni) =
(
− log2 max

i∈{0,1,2}
pi
)
+ (p1 + p2) ∗ log2 max{ p1

p1 + p2
,

p2

p1 + p2
}.

These yield the capacity CE of the program P1uni is computed as

CE (P1uni) =max
pi

((
− log2 max

i∈{0,1,2}
pi
)
+ (p1 + p2) ∗ log2 max{ p1

p1 + p2
,

p2

p1 + p2
}
)

subject to ∑
i∈{0,1,2}

pi = 1.

Now, we explain how to compute the capacity Cmax of P1uni. Since the minimum Renyi’s min-entropy in
the final states is 0, then the maximum leakage of P1uni is

Lmax(P1uni) = − log2 max
i∈{0,1,2}

pi ,

and the capacity Cmax of P1uni is computed as

Cmax(P1uni) = max
pi

(
− log2 max

i∈{0,1,2}
pi
)

subject to ∑
i∈{0,1,2}

pi = 1.

Now, suppose the attacker’s prior knowledge is a uniform distribution on h

Pr(h) = {0 7→ 1
3 , 1 7→ 1

3 , 2 7→ 1
3}

i.e., pi =
1
3 , i = 0, 1, 2. Then, the expected and the maximum leakages of P1uni are computed as

LE (P1uni) = 1.585− 0.667 = 0.918 (bits),

Lmax(P1uni) = 1.585 (bits),

whereas, for the distribution

Pr(h) = {0 7→ 1
4 , 1 7→ 1

2 , 2 7→ 1
4}

on h, we have

LE (P1uni) = 1− 0.439 = 0.561 (bits),

Lmax(P1uni) = 1 (bit).

In order to compute the capacities CE (P1) and Cmax(P1), we use the proposed evolutionary algorithm of
Section 6. The capacity CE of P1 is 1 bit and is achieved by the distribution

Pr(h) = {0 7→ 1
2 , 1 7→ 0, 2 7→ 1

2}

on h. On the other hand, the capacity Cmax of P1 is 1.585 bits and is achieved by the uniform distribution on h.

Computing the capacities CE and Cmax is a constrained nonlinear optimization problem.
The objective function for the problem is expected or maximum leakage ofMP

δ . Recall that the leakage
functions are computed as the difference of initial and remaining uncertainties and the uncertainties
are computed using the Renyi’s min-entropy. The concavity of the objective functions is not necessarily
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satisfied. For example, Figure 2 depicts the expected leakage function of P1uni for various values of p0,
p1 and p2.

Figure 2. The expected leakage of P1uni (LE (P1uni)).

As demonstrated in this figure, the channel capacity for the expected leakage is 1 bit and occurs in
the distributions d2 = {0 7→ 0.5, 1 7→ 0, 2 7→ 0.5} and d3 = {0 7→ 0.5, 1 7→ 0.5, 2 7→ 0}. An interesting
point in the figure is that the uniform distribution d1 on h is not the channel capacity.

Figure 2 shows that the expected leakage function LE (P1uni) is not concave. Therefore,
well-known mathematical techniques such as Lagrange multipliers [41,42] and Karush–Kuhn–Tucker
(KKT) [42] cannot be used for optimizing the objective functions of CE and Cmax. In this paper, a
genetic algorithm is proposed to compute, approximately, the channel capacity of the concurrent
probabilistic programs.

6. An Evolutionary Algorithm for Computing Capacity

The evolutionary algorithm proposed for computing near-optimum values for the two types of
capacities is shown in Algorithm 1.

Problem space. The problem space is the probability space of the secret values. That is, for the i-th
value of a secret variable, pi defines the probability of the attacker choosing that value. Note that sum
of the probabilities must be equal to 1.

Coding method. The chromosome structure should contain sufficient information about the
probability space. Hence, considering a vector of bits to encode a probability space is sufficient.
In classical genetic algorithms, the chromosome structure consists of bits. In this paper for each
probability of the secret values, a string of ten bits is considered. Therefore, the chromosome size is
equal to 10 ∗ |Valh|.

Initial population. The set of chromosomes is called a population. The initial population is
randomly generated by a uniform distribution. The number of chromosomes in the population and
the maximum number of generations are set to 1500 and 2000, respectively.

Fitness function. During each generation, chromosomes are evaluated using the fitness function.
For the evaluation, each chromosome is converted to a value between 0 and 1 to represent a probability
value. For example, the chromosome “0100100011” is considered as the binary number 0.0100100011,
and then converted to the probability 0.284. Based on these probability values, the expected leakage for
CE or the maximum leakage for Cmax is computed using Definitions 6 or 7, respectively. Note that sum
of the probabilities should be equal to 1. This is a constraint to the fitness function. In this situation, a
penalty can be used for the fitness values of those chromosomes that do not satisfy the constraint [43].
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We considered the absolute difference between the sum of the probabilities of a chromosome and 1 as
a penalty, and is subtracted from the fitness value of the chromosome.

Selection, crossover, and mutation. In this paper, the roulette wheel method [44] is used to
select chromosomes for mating (crossover) and producing new offspring. Chromosomes with higher
fitness value have higher probability of mating and chromosomes with lower fitness value have lower
probability of mating. After selection, the single-point crossover is used to mate the selected parents
with probability pc (line 5 of Algorithm 1). In the single-point crossover, a point is chosen randomly
and bits to the right of the chosen point are swapped between the two parent chromosomes. Thus,
some genetic information from both parents are carried to the new offspring. To maintain the genetic
diversity from one generation to the next and to avoid local minimum, the resulted offspring is mutated
with probability pm (line 6 of Algorithm 1). In the mutation process, a point in the resulted offspring’s
chromosome is picked randomly and the bit in that position is flipped.

Algorithm 1 An evolutionary algorithm for computing capacity

Input:
The Markov chainMP

δ

pc: Crossover probability
pm: Permutation probability
n_generations: Number of generations

Output:
The capacity CE or Cmax of the concurrent probabilistic program Pδ

1: Initialize the chromosomes; // initial population
2: Evaluate the fitness of each chromosome (candidate solution) usingMP

δ ;
3: for i in n_generations do
4: parents = Select the fittest chromosomes for the next generation;
5: offspring = Mate the pairs of selected parents with the probability pc;
6: offspring = Mutate the resulted offspring with the probability pm;
7: Evaluate the fitness of the generated offspring usingMP

δ ;
8: Replace the offspring in the population considering the elitism;
9: end for

10: return best fitness of the population as capacity;

7. Implementation and Case Studies

As case study, two anonymous protocols, the single preference voting protocol [45] and the dining
cryptographers protocol [46] are discussed. We show how to apply the proposed genetic algorithm to
approximately compute the capacities for different cases of these protocols.

We used the PRISM language [19] to implement the case studies and the PRISM-Leak tool [6] to
build the Markov model of the programs and extract the set of traces and their probabilities. These
traces and probabilities were given as input to the genetic algorithm to compute the capacity values.
The PRISM source codes of the protocols and the genetic algorithm are publicly available from the
work by the authors of [47].

7.1. Case Study A: The Single Preference Voting Protocol

Assume a voting protocol with c candidates, n voters, and a winner (with majority votes). Each
voter expresses a single preference to one of the candidates. Then, votes of each candidate are summed
up and the candidate with the most votes wins the voting. In order to preserve the anonymity of the
voters, only the counting results are publicly announced. Therefore, votes are secret and counting
results are public. Votes and results are encoded into a single secret variable and a single public
variable. There are cn secret values and thus the secret variable has a size of n log2 c bits.



Entropy 2019, 21, 885 12 of 17

The capacity values computed for the single preference protocol are shown in Table 1. In this
table, LE denotes the expected leakage (Definition 6) and Pruni(h) shows the the uniform distribution
on h. The percentages are computed as the amount of leakage over the initial uncertainty.

Table 1. Capacity values in bits for the single preference protocol.

c n LE with Pruni(h) CE Cmax

2 2 1.5 (75%) 1.58 (100%) 2 (100%)

3 1.81 (60%) 2 (100%) 3 (100%)

3 2 2.5 (78%) 2.58 (100%) 3.17 (100%)

3 3.12 (65%) 3.33 (100%) 4.75 (100%)

4 2 3.25 (81%) 3.33 (100%) 4 (100%)

3 4.14 (69%) 4.33 (100%) 6 (100%)

As expected, in all cases of Table 1, Cmax is greater than or equal to CE , and both capacity values
are greater than the expected leakage with uniform distribution. However, the percentages for the
capacities are all 100% and the votes get completely leaked.

Consider the case where c = 2 and n = 2. In this case, the secret values are “1-1”, “2-2”, “1-2”, and
“2-1”. The secret value “1-2” means that the first voter has chosen the candidate 1 and the second one
has picked the candidate 2. The secret size is n log2 c = 2 bits. An attacker that only knows the number
of candidates and the number of voters, i.e., a uniform distribution on the secret values, observes
four different traces. Each of the secret values “1-1” and “2-2” results in just one trace, and thus the
attacker can infer the whole secret (who voted whom) by observing the corresponding trace. Both
secret values “1-2” and “2-1” result in two traces and hence the attacker has to guess the secret value
by a success probability of 50%. Therefore, the expected leakage of the single preference protocol
for c = 2 and n = 2 becomes 1.5 and the maximum leakage becomes 2. The latter occurs because
there are two traces that leak the whole secret (traces of “1-1” and “2-2” ). Now consider an attacker
that knows the secret values belong to {“1-1”, “2-2”, “2-1” }, which results in the prior distribution
{“1− 1′′ 7→ 1

3 , “2− 2′′ 7→ 1
3 , “2− 1′′ 7→ 1

3}. When this attacker executes the program of the single
preference protocol, they observe only one trace for each secret value and can infer each secret value
by observing its corresponding trace. Therefore, the expected leakage for this attacker is equal to the
whole secret size, that is, log2 3 = 1.58 (100%). The other attackers with the same observational power
but different prior knowledge on the secrets infer less or equal information than the latter attacker.
Thus, CE for c = 2 and n = 2 is 1.58 bits. Since the maximum leakage is 2 (100%), it is clear that Cmax

would be 2 (100%), too.

Lemma 1. The capacity CE for the single preference protocol with n voters and c candidates corresponds to

log2

(
n + c− 1

n

)
.

Proof. All permutations of the same set of vote values produce the same set of traces. For instance
for c = 3 and n = 2, there are nine secret values: “1-1”, “2-2”, “3-3”, “1-2”, “2-1”, “1-3”, “3-1”,
“2-3”, and “3-2”. The secret value “1-3” means that the first voter has chosen the candidate 1 and
the second one has picked the candidate 3. The secret values “1-3” and “3-1” produce the same set
of traces and the attacker cannot distinguish between the traces. Thus, the secret values “1-3” and
“3-1” form an equivalence class (a combination of vote values). Due to the fact that the maximum
value of min-entropy is achieved by a uniform distribution, to compute the channel capacity of the
program, it is sufficient to choose only one permutation of the secret values from each class and assign
an equal probability to the selected classes. Since, the number of classes is equal to the number of the
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combinations of c candidates in n places with repetitions, and the selected secret values have the same
probability, the channel capacity for the expected leakage corresponds to

log2

(
n + c− 1

n

)
.

For c = 3 and n = 2, there are six equivalence classes of the votes: “1-1”, “2-2”, “3-3”, “1-2”, “1-3”,
and “2-3”. A distribution that assigns 1

6 to each class and 0 to the other secret values, i.e., “2-1”, “3-1”,
and “3-2”, leads to the value 2.58 for CE .

Lemma 2. The capacity Cmax for the single preference protocol with n voters and c candidates corresponds to

n log2 c,

which is achieved by a uniform distribution on the secret values.

Proof. There is only one trace for each combination of the same vote values. For instance, for the case
of c = 3 and n = 2, there is one trace for each of “1-1”, “2-2”, and “3-3”, and the attacker can learn the
whole secret value by observing the trace. Thus, the remaining Renyi’s min-entropy of these traces
is 0. To compute the channel capacity for the maximum leakage, it is enough to maximize the initial
Renyi’s min-entropy. This is obtained by a uniform distribution on all secret values and the channel
capacity is equal to log2 of the secret size, i.e., n log2 c.

7.2. Case Study B: The Dining Cryptographers Protocol

The dining cryptographers protocol [46] is an anonymous broadcasting protocol. In this protocol,
a number of cryptographers are sitting around a round table to have dinner. They are informed that the
dinner has been paid by either one of them or their master. The cryptographers intend to understand
whether the master is paying or not. To solve the problem, each cryptographer tosses an unbiased coin
and shows the result to his right side cryptographer. Then, he announces 1 if his coin and his left side
cryptographer’s coin is the same or 0 if not. Of course, if the cryptographer is the payer, he lies and
announces the inverse. To understand whether the payer is master or not, XOR of all announcements
is computed. For an even number of cryptographers, a result of 1 implies that the master is the payer
(none of the cryptographers is the payer) and a result of 0 shows that one of the cryptographers is the
payer. This is reverse for an odd number of cryptographers.

Suppose an attacker who aims to infer the identity of the payer. The attacker can be

• internal, i.e., one of the cryptographers, who can see his own coin, the left side cryptographer’s
coin, and also the announcements of all cryptographers, or

• external, i.e., none of the cryptographers or master, who can see the announcements of all
cryptographers and XOR of the announcements;

and the payer can be

• one of the cryptographers, i.e., Valpayer = {c1, . . . , cN},
• the master (m, for short) or one of the cryptographers, i.e., Valpayer = {m, c1, . . . , cN}.

The capacity values for the external attacker and the internal attacker with uniform scheduler are
shown in Tables 2 and 3, respectively. In these tables, N denotes the number of cryptographers and
µuni shows the uniform distribution on h. In all cases of Tables 2 and 3, Cmax is greater than or equal
to CE .
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Table 2. Capacity values in bits for the external attacker of the dining cryptographers protocol.

Valpayer N LE with µuni CE Cmax

{m, c1, . . . , cN}
3 0.811 (40%) 1 (100%) 2 (100%)
4 0.721 (31%) 1 (100%) 2.32 (100%)
5 0.65 (25%) 1 (100%) 2.58 (100%)

{c1, . . . , cN}
3 0 0 0
4 0 0 0
5 0 0 0

Table 3. Capacity values in bits for the internal attacker of the dining cryptographers protocol.

Valpayer N LE with µuni CE Cmax

{m, c1, . . . , cN}
3 1.5 (75%) 1.58 (100%) 2 (100%)
4 1.37 (59%) 1.58 (100%) 2.32 (100%)
5 1.25 (48%) 1.58 (100%) 2.58 (100%)

{c1, . . . , cN}
3 0.918 (58%) 1 (100%) 1.58 (100%)
4 0.811 (40%) 1 (100%) 2(100%)
5 0.72 (31%) 1 (100%) 2.32 (100%)

In the last three cases of Table 2, the leakage and capacity values are all 0. This demonstrates
that when the master is not a payer candidate, the payer can not be recognized by the external
attacker and the dining cryptographers protocol is secure. Another interesting point is that in both
Tables 2 and 3, except the last three rows of Table 2, Cmax is equal to log2 |Valpayer|, i.e., 100% leakage.
This demonstrates that the attacker identifies the payer.

In the first three cases of Table 2, where the attacker is external and Valpayer = {m, c1, . . . , cN},
CE is equal to 1 bit for all values of N. This is achieved by a probability distribution, in which the
probabilities of the payer being master and one of the cryptographers are equal to 50% and other
probabilities are equal to 0. Likewise, in the last three rows of Table 3, where the attacker is internal
and the payer is one of the cryptographers, CE is also 1 bit for all values of N. This is achieved by a
distribution, in which the probabilities of two cryptographers are equal to 50% and the others are 0.
Furthermore, in all cases that the attacker is internal and Valpayer = {m, c1, . . . , cN}, the capacity CE is
equal to 1.58. This is the result of a probability distribution, in which the probabilities of the master
and two of the cryptographers are equal to 1

3 and the others 0. This demonstrates that the internal
attacker identifies the payer.

Stability evaluation. The evolutionary algorithms, including genetic algorithms, are meta-heuristic
optimizers. Therefore, to rely on the results, the algorithm should be run multiple times and stability
of the results be evaluated. The stability is defined as closeness of the results to each other in various
runs. To evaluate the stability, t-test and Levene’s test [48], two well-known statistical techniques, are
used. The Levene’s test investigates the equal variance assumption and based on its results, t-test
verifies the equality of means of two independent groups of results.

For the evaluation, the proposed genetic algorithm was executed 30 times and the capacity CE
was computed for a single case, i.e., internal attacker, N = 3 and Valpayer = {c1, c2, c3}. The CE and
this case were chosen as an example of all possible capacities and cases. The results were divided into
two groups of 15 runs.

The stability test for the experimental results of the dining cryptographers protocol is
demonstrated in Table 4.
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Table 4. The stability test of the experimental results for the significance level of 0.01.

Levene’s Test for
Equality of Variances T-test for Equality of Means

Sig. Sig. (2-tailed)

99% Confidence Interval
of the Difference

Lower Upper

Fitness

Equal variances
assumed 0.207 0.235 −0.008736 0.003403

Equal variances
not assumed - 0.235 −0.00874 0.003410

Since the significant value (Sig.) of the Levene’s test for equality of variance (0.207) is greater
than the significance level 0.01, the equal variance assumption is accepted and the first row of t-test
is considered. The significance level (0.235) is greater than 0.01 and the interval of the difference
between means contains 0; it follows that with a confidence of 99% there are no statistically significant
differences between means of the results in the groups. Thus, the algorithm results are stable in the
sense that the number of runs is enough.

8. Conclusions and Future Work

In this paper, we discussed how to compute the channel capacity of concurrent probabilistic
programs. We modeled the programs via Markovian processes and defined two types of capacities,
which are upper bounds on expected and maximum leakages. These capacities range over all prior
distributions of the secret. We proposed a genetic algorithm to approximate the capacity values.
To show the applicability and feasibility of the proposed approach, the single preference voting and
the dining cryptographers protocols were discussed. A t-test was performed to evaluate the stability of
results produced by multiple runs of the evolutionary algorithm for the dining cryptographers protocol.

Our definition of capacities were of type multiplicative. As future work, we aim to define additive
variants of capacity, ranging over all gain functions and all initial distributions. We plan to apply
the proposed genetic algorithm to approximate these different types of capacities. As another future
work, we will analyze other anonymity protocols, such as crowds and TOR, to observe how these
protocols leak sensitive information in the worst-case scenarios. An interesting future work would be
to compute the capacity of nonterminating concurrent probabilistic programs.
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