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Abstract: This paper proposes an alternative geometric representation of single qudit states based
on probability simplexes to describe the quantum properties of noncomposite systems. In contrast
to the known high dimension pictures, we present the planar picture of quantum states, using the
elementary geometry. The approach is based on, so called, Malevich square representation of the
single qubit state. It is shown that the quantum statistics of the single qudit with some spin j and
observables are formally equivalent to statistics of the classical system with N2 − 1 random vector
variables and N2 − 1 classical probability distributions, obeying special constrains, found in this
study. We present a universal inequality, that describes the single qudits state quantumness. The
inequality provides a possibility to experimentally check up entanglement of the system in terms
of the classical probabilities. The simulation study for the single qutrit and ququad systems, using
the Metropolis Monte-Carlo method, is obtained. The geometrical representation of the single qudit
states, presented in the paper, is useful in providing a visualization of quantum states and illustrating
their difference from the classical ones.

Keywords: geometry of quantum states; qudit; noncomposite quantum systems; uncertainty relations

1. Introduction

In modern science quantum systems are powerful resource for information processing. Many
physical properties and phenomena are difficult to understand, but the geometric interpretations of
quantum mechanical systems deliver an elegant way of understanding and “feeling” them. That is
why the geometrical picture of physical theories draw attention in a wide range of fields from classical
and quantum mechanics to the general relativity (cf. [1]). The practical implementation of large scale
quantum communication networks and key distribution [2], quantum cryptography [3–5], quantum
random number generation [6] or a quantum computer, is the main goal of quantum information
science. However, for today only the simplest forms of the quantum random number generators and
the quantum key distribution set-ups, exposed by statistical problems in the randomness generation,
are available. That is a lot due to the fact, that for the practical use, multipartite high fidelity
entangled quantum states are needed, that are challenging to control technologically. Superpositions
are extraordinarily fragile, making it difficult to work with multiple qubits. Nowadays the quantum
computers are based on particles that serve as qubits. However, it is possible to use qudits with more
than two states simultaneously instead. The quantum computer with two 32-state qudits, would be
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able to perform as many operations as 10 qubits, fixing the problems arise working with 10 qubits
together (see [7]).

Therefore, there are more and more papers devoted to a single d-level quantum systems (qudits)
theory. The main interest is whether the quantum information protocols, that are today based on
distributed entanglement (multy-qubit systems), can instead be realized, using the single qudit
systems? What are the advantages of the these systems in comparison to the systems with subsystems?
Two-particle states are determined by the matrix of the density operator ρ̂(1, 2), which acts in the
Hilbert space H. It can be represented by a tensor product H = H1 ⊗H2 of the Hilbert spaces of
the first and second subsystems, respectively. This approach allows to construct reduced operators
(density operators), describing the states of the first and second subsystems as ρ̂(1) = Tr2ρ̂(1, 2) and
ρ̂(2) = Tr1ρ̂(1, 2). Composite systems have correlations between subsystems, so the physical meaning
of entanglement for them is determined in a natural way. The presence of correlations in systems
with subsystems is detected using Bell’s inequality (cf. [8,9]), which is violated for the entangled states
(cf. [10]), and also entropy and information inequalities, known both for the classical distribution
functions and classical observable random variables (cf. [11]), and for the density matrices of composite
systems. For two- and three-partite systems, the entropy inequalities are defined as subadditivity and
strong subadditivity inequalities that determine the degree of entanglement in the system (cf. [12,13]).

In [14–17] it was shown that the quantum properties of the systems without subsystems can be
formulated, using the invertible mappings of indices method. The correlation properties, known for
the composite systems, such as entanglement, correlation, steering and discord are formulated for the
systems without subsystems in [15,18]. The quantum correlations for the system of one qudit are used
to formulate a quantum contextuality in [19]. Thereby, the study of the single qudit as a resource for
the quantum information is a fundamental question of quantum mechanics.

What are the possible ways to visualise large quantum states? In quantum computation and
information science, the geometrical representation, based on the Bloch sphere, is commonly used.
The Bloch sphere provides the representation of the quantum states of the single qubit onto a unit
sphere in three real dimensions, with pure states, mapped onto the surface, and the mixed states,
lying in the interior. While the Bloch sphere representation is very useful for the qubit state, it is not
straightforward to generalize it easily to the qudit states. Many efforts are done to provide a more
general representation that extends from the qubit to the qudit system. The Hopf fibration, providing a
geometrical structure of one and two qubits, is applied in the theory of entanglement measures in [20].
In 1932 an alternative geometrical representation was proposed by Majorana in [21]. A pure state of a
spin S is express geometrically as 2S points on the surface of a unit sphere, called the Majorana sphere.
The Majorana representation is used to determine geometric phase of spins (cf. [22,23]), in studying
the symmetries of spinor Bose-Einstein condensates (cf. [24–26]), in geometrical representation of
multi-qubit entangled states (cf. [27,28]) and many other applications (cf. [29,30]). In [31,32] the
pure N-qubit states were expresses geometrically, using the mapping that associates them with a
polynomial. In [33] the study of the Majorana geometrical representation of the qutrit is presented.
The geometry of separable states is studied particularly active (cf. [34–37]). The separable states are
approximated by a polyhedron in RN2−1 (cf. [38]) and the probabilistic algorithm that provides a
convex combination of the product states, representing them, is given in [39]. Good overview on the
geometry of quantum states one can read in [1,40,41]. In our work, we want to get away from the
three-dimensional representations and introduce the geometrical representation of the single qudit
systems on the plane.

1.1. Contributions of This Paper

In this paper we would like to introduce the general geometrical picture of the qudit states, useful
in understanding the nature of the entanglement phenomena in quantum systems without subsystems
and as a visual characterization of the states quantumness. We use the probability representation
of quantum states, introduced in [42,43]. This approach is based on quantum tomograms, that can
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be experimentaly measured for an arbitrary system. The single qubit is identified with the set of
three probability distributions of spin projections on three perpendicular directions in space. This
approach is studied and illustrated by the triangle geometry of the system, using the, so called,
Malevich square representation in [44–46]. This representation, also known as quantum suprematism
approach (after the Russian painter Kazimir Malevich (1879–1935), founder of suprematism, an art
movement focused on basic geometric figures), illustrates the single qubit state in terms of three
squares on the plane, obtained, using the invertible mapping of the points in Bloch sphere onto the
probability distributions. The method gives a beautiful and clear geometrical interpretation for the
system of one qubit. The attempts to generalize the Malevich’s geometric interpretation to the case of
higher dimension quantum systems, by increasing the triples of squares with the dimension of the
system are done in [46]. However, it is not clear how the tripples are related to each other, e.g., how
to connect them in mosaic form reasonably? An essential difference of the presented in this paper
geometric interpretation from the latter one, is an increase in the number of connected squares for the
description of the higher order systems. To illustrate the quantumness in the single qudit system, we
use the whole Malevich’s suprematist composition. Such an approach allows to obtain the new universal
probability inequality in terms of the Malevich squares areas, connecting the density matrix elements
of the quantum systems of any dimension. The upper bound of the inequality for the quantum
system corresponds to a pure state just as the surface of a Bloch sphere for qubits. All the mixed
states are limited by the inequality from above. At the same time, the upper limit of the inequality
is different for the classical system and for the quantum one. We study the single qutrit and ququad
states quantumness by finding the bounds of the this inequality. Since the amount of probabilities,
characterizing the density matrix, growth sufficiently with an incising of the qudit system dimension,
we use the Metropolis Monte-Carlo (MMC) method to find the bounds of the inequality. MMC is
efficient when one thinks about big data problems and can be used to a quite large order qudit systems.

1.2. Physical Application

The uncertainty relations for both discrete and continuous variables lie in the heart of quantum
theory, especially important in the context of quantum information theory. The basic concept of the
uncertainty relation was introduced by Heisenberg in [47], demonstrating the impossibility of the
simultaneous precise measurement of the position and momentum of an electron. Robertson [48]
and Schrödinger [49] proposed an improvement of the uncertainty relation, incorporating both
commutators and anticommutators of more general observables. The Robertson-Schrödinger
uncertainty relation is applied for distinguishing pure and mixed states of discrete variables. Since
that time in literature appeared several variations of the uncertainty relations. The generalizations
and improvements are mainly focused on the uncertainty relation that are valid for the systems with
more then two observables (qutrit, qudit). Namely, the Heisenberg-type uncertainty relation for three
canonical observables is introduced in [50] and for arbitrary incompatible observables in [51]. The
relations for more incompatible observables can be found in [52,53]. One can see, that in practice more
then two incompatible observables can appear in the measurement, it is important to study uncertainty
relations for many incompatible observables. The Malevich’s inequality is such uncertainty relation.

In [54,55] an experimental investigation of several Heisenberg-type uncertainty relations is
reported. In our turn, we rewrite Malevich’s inequalities for the single qubit and qutrit in terms
of the measurable observables to obtain inequalities similar to those, verified experimentally in the
articles listed. Our Malevich’s inequality for the single qubit, compared with eight uncertainty relations
known from the literature, showed one of the best lower bounds according to MMC simulation. Further,
Malevich’s inequality for the qutrit system was rewritten in experimentally measurable observables,
that allows its experimental verification along with several known inequalities provided in [53,54].
Thus, Malevich’s inequalities can serve as uncertainty relations for the systems of high dimensions
and successfully compete with already known inequalities.
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The paper is organized as follows. In Section 2 a short review on the qudit state probability
description is presented. In Section 3 the quantum suprematism geometric representation of the
single qubit system is given. In Section 4 we present a new polygon geometry representation of the
single qudit state. The inequality on the sum of the areas of the Malevich’s squares, given by the
probability distribution, associated with the triangle geometry of the single qudit state, is presented.
Next, in Section 5 the MMC algorith is constructed to find the aper bound of the this inequality.
The efficiency of the method is illustrated by the example of the single qutrit and ququad systems.
The example of the Werner state is studied in details. In Section 7 the Malevich’s inequality is compared
with several experimentally verified uncertainty relations. Conclusions and perspectives are presented
in Section 8.

2. Parametrization of Density Matrices

In quantum physics states are represented by the density matrices on the complex Hilbert space H
of the system. The density matrix ρ on the Hilbert space is a linear operator such that ρ ≥ 0, Tr(ρ) = 1,
ρ = ρ†. As it was mentioned in [56], the simplex of classical probabilities can be described in a quantum
framework. Every probability vector is associated with a coadjoint orbit of the unitary group, acting
on the dual space of its Lie algebra. The probability vector (p1, p2, . . . , pN) is rewritten as the density
matrix by setting

ρ(U,~p) = U


p1 0 . . . 0
0 p2 . . . 0

. . . . . . . . . . . .
0 0 . . . pN

U†.

The classical simplex is quantized by considering the union over it of the corresponding coadjoint
orbits, each one going through the probability vector, identified with the diagonal elements of the
density matrix.

The main difficulty is the positivity constraint ρ ≥ 0. This condition can not be written
in polynomials for the matrices of the dimension N > 4. Despite their are different matrix
parametrizations, providing the positivity condition, the common view of the high order density
matrices is not yet known. In [57] a good review on the recent studies on the structure and general
from of the density matrix is given. In the case of N = 2 the Block-sphere representation is commonly
used (see Figure 1).

Figure 1. Geometric interpretation of the qubit in the probanility representation. The surface of the
Bloch sphere represents the pure states of the two-dimensional quantum system, whereas the interior
corresponds to the mixed states.
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Three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

together with the identity matrix I2 form a basis of the complex vector space of Hermitian 2× 2
matrices. Hence the density matrix of the single qubit state can be written as

ρ2 =
1
2

(
1 + z x− iy
x + iy 1− z

)
,

in which the coefficients x, y, z are chosen such that all the eigenvalues of ρ2 are non-negative. The
positivity condition of the eigenvalues provides the set of parameters that forms a closed unit Bloch
ball in R3 with the center at 0, e.g., x2 + y2 + z2 ≤ 1, holds. Hence, the parameters x, y and z associate
the qubit states with the points either on the surface of the Block sphere, that corresponds to the pure
states case, or inside the sphere for the mixed states case. That provides the geometric interpretation of
the qubit states in terms of the points on the Bloch sphere.

Since we want the elements of the density matrix to have the notion of probabilities, let the density
matrix be rewritten as follows

ρ2 =

 p2 p0 −
1
2
− i(p1 −

1
2
)

p0 −
1
2
+ i(p1 −

1
2
) 1− p2

 , (1)

where pj, j = 1, 2, 3 are the probabilities of measuring the spin −1/2 projections along the x, y, z-axes,
respectively. The nonnegativity of the density matrix provides the condition

(p0 − 1/2)2 + (p1 − 1/2)2 + (p2 − 1/2)2 ≤ 1/4. (2)

This inequality impose the constraint on pj, that means that there exist quantum correlation between
the spin projections on the perpendicular directions x, y, z.

For N ≥ 3 the following representation of density matrices is suggested

ρ =
1
N

IN +
1
2

N2−1

∑
j=1

xjλj, (3)

where λj are the orthogonal generators of the special unitary group SU(N) and xj ∈ R are the entries
of the generalized Bloch vector. These matrices satisfy

λ?
j = λj, Trλj = 0, Tr(λiλj) = 2δij, i, j = 1, . . . , N2 − 1

and the commutation and the anti-commutation relations

[λiλj] =2i
N2−1

∑
k=1

fijkλk, {λiλj} =
4
N

δij IN + 2
N2−1

∑
k=1

gijkλk,

hold. Here fijk, gijk are the structure constants of the Lie algebra SU(N). The generators λj,
j = 1, . . . , N2 − 1 and the unit matrix In form an orthogonal basis. From the properties of the generator
matrices, every matrix ρ, given by (3), has the unit trace. The only thing is to find the matrices with the
non-negative eigenvalues.
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One of the possible explicit λj construction can be given in terms of the generalized Gell Mann
matrices. If N = 3 the Gell Mann matrices are

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 0 1
0 0 0
1 0 0

 , λ3 =

 0 0 0
0 0 1
0 1 0

 , (4)

λ4 =

 0 −i 0
i 0 0
0 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,λ6 =

 0 0 0
0 0 −i
0 i 0

 ,

λ7 =

 1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

They form three sets of operators which form SU(2) algebras, namely {λ1, λ2, λ3}, {λ4, λ5, (λ3 +√
3λ8)/2} and {λ6, λ7, (−λ3 +

√
3λ8)/2}. Using these sets of operators, one can define “artificial

qubit states” (see [58]). Firstly, the matrix ρ3 is extended to two 4× 4 density matrices as

ρ1
4 =

(
ρ3 0
0 0

)
, ρ2

4 =

(
0 0
0 ρ3

)
.

The resulting matrices can be interpreted as the density matrices for the qubit systems. Using the
partial trace operation, one can define four positive semidefinite matrices ρA, ρB, ρC and ρD, that are
not independent

ρA =

(
1− ρ33 ρ13

ρ31 ρ33

)
, ρB =

(
1− ρ22 ρ12

ρ21 ρ22

)
, ρC =

(
1− ρ11 ρ13

ρ31 ρ11

)
, ρD =

(
1− ρ22 ρ23

ρ32 ρ22

)
.

These qubit density matrices can be associated to four three level systems. In each system, the
population of the one of the levels with the transition probability to another level determines different
qubits. The off-diagonal components of these matrices are arranged in the sets given by the SU(2)
algebras, namely A : {x4, x5}, B : {x1, x2}, C : {x4, x5} and D : {x6, x7}. Hence, these four matrices
can be decomposed in terms of three probabilities, given in (1). We choose the independent qubits ρA,
ρB and ρD to retrieve the original 3× 3 density matrix in the form

ρ3 =

 pA
3 + pB

3 − 1 B A
B∗ 1− pB

3 D
A∗ D∗ 1− pA

3

 , (5)

where {A, B, D} = pA,B,D
1 − 1/2− i(pA,B,D

2 − 1/2). Here pA,B,D
1,2,3 are the probabilities, satisfying (2). Let

us rewrite the qutrit density matrix in our notations as

ρ3 =

 p1 + p2 − 1 p3 − 1/2− i(p4 − 1/2) p5 − 1/2− i(p6 − 1/2)
p3 − 1/2 + i(p4 − 1/2) 1− p2 p7 − 1/2− i(p8 − 1/2)
p5 − 1/2 + i(p6 − 1/2) p7 − 1/2 + i(p8 − 1/2) 1− p1

 , (6)

where pi ∈ [0, 1], The characteristic polynomial of this matrix is λ3 − λ2 + bλ + c = 0, where the
coefficients b, c can be easily compute. By Viete’s formula the latter equality has three real roots if
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Q3 − R2 > 0, where Q = (1− 3b)/9 and R = (−2 + 9b + 27c)/54. We are interested in nonnegative
roots, that brings us to the following conditions

λ1 = −2
√

Q cos(φ) +
1
3
> 0, λ2,3 = −2

√
Q cos

(
φ± 2

3
π

)
+

1
3
> 0 (7)

where φ = 1
3 arccos

(
R/
√

Q3
)

.
Let us introduce the qudit state, described by the 4× 4 density matrix

ρ =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

 , ρ† = ρ, Trρ = 1, ρ ≥ 0. (8)

This matrix can be associated with the two-qubit state with two spins j = 1/2 or with the single
ququad state with the spin j = 3/2. In the first case we have two subsystems with the density matrices,
defined by tracing with respect to subsystems degrees of freedom

ρ1 =

(
ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)
, ρ2 =

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (9)

If (8) corresponds to the single ququad state, these matrices correspond to the “artificial qubit
systems”. To parametrize (8) we need 15 probabilities. Hence, using (1), (9) one gets the following
elements

ρ11 = p3, ρ33 = p5, ρ22 = p4, ρ44 = 1− p3 − p4 − p5, (10)

ρ12 = ρ∗21 = p6 − 1/2− i(p7 − 1/2), ρ34 = ρ∗43 = p10 − 1/2− i(p11 − 1/2),

ρ13 = ρ∗31 = p1 − 1/2− i(p2 − 1/2), ρ24 = ρ∗42 = p8 − 1/2− i(p9 − 1/2).

However, two qubit matrices can not determine the anti diagonal elements of (8). Let

ρ14 = ρ∗41 = p12 − 1/2− i(p13 − 1/2), ρ23 = ρ∗32 = p14 − 1/2− i(p15 − 1/2),

hold. The positivity conditions of this matrix are rather complicated. For detailed graphical analizess
of the roots of a quartic characteristic equation, corresponding to 4× 4 matrix, see [59]. For the matrices
of the dimension N > 4 one need to use the numerical methods to find the eigenvalues of the high
order density matrices and check them on the positivity condition.

3. Malevich’s Squares Probability Representation of the Qubit State

In [56] the qubit density matrix was presented in terms of the three probabilities 0 ≤ pk ≤ 1,
where p1, p2 and p3 are the probabilities to have in the state ρ the spin projections m = +1/2 on the
directions x, y and z, respectively. Using this probability representation, the new triangle geometrical
picture for identification of the spin −1/2 states, the Triada of Malevich’s squaresis is proposed.

3.1. Triangle Geometry of the Qubit State

To illustrate the proposed triangle geometry picture for the single qubit state let us start from the
statistical properties of three independent classical coins, which are associated with three probability
distributions (pdf). The pdf for the first coin is given by non-negative numbers p1 and p′1 = 1− p1.
The probability p1 corresponds to the result of the experiment, when the coin look “up”. Similarly, for
the second and the third coin, one has numbers p2, p′2 and p3, p′3, respectively. The pairs of probabilities
can be considered as the probability vector pk = (pk, p′k)

T , (k = 1, 2, 3). This vector is presented on
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Figure 2. Its end coincides with the point Ak on the line, determined by the equation pk + p′k = 1, that
defines the simplex with the length

√
2. These three simplex lines can be considered as the three sides

of an equilateral triangle on the plane of equal sides
√

2 (see Figure 3).

pk

p'k

Ak

1

1
Figure 2. The probability vector pk with the end at a point Ak on the simplex.

A1min

1

A3min

A2min
2 3

A3max

A1max

A2max
Figure 3. The equilateral triangle with vertices A1, A2 and A3, determining the qubit state.

One can connect points A1, A2 and A3, located on simplexes, by the dashed lines and get the
triangle A1 A2 A2. We assume that Ak are closer to the kth vertex of the equilateral triangle and have
the distance dk = pk

√
2 from the kth vertex.

3.2. The Uncertainty Relation for Probabilities

The qubit state, determined by the density matrix (1), is parametrized by the three probabilities.
For the latter matrix we investigate the property of the triangle A1 A2 A3. The lengths of the triangle
side yk is

yk = (2(1− pk)
2 + 2p2

k+1 − 2(1− pk)pk+1)
1/2.

Three squares can constructed, analogues of the Triada of Malevich’s squares, with sides yk, associated
with the triangle A1 A2 A3 (see Figure 4).
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A1min

1

A2min

A3min

Figure 4. The probability vector pk = {1/2, 1/2, 1/2} with the end at a point Akmin on the simplex,
S = 3/2.

The sum of the areas of these three squares is expressed in terms of the three probabilities pk
as follows

S=
3

∑
i=1

y2
i = 2

(
3

∑
k=1

(1− pk)
2 + p2

k − pk+1(1− pk)

)
. (11)

For the classical coins, the numbers p1, p2, and p3 take any values in the domain 0 ≤ pk ≤ 1 and
this sum satisfies the following inequality

3/2 ≤ S ≤ 6. (12)

The points in the cube (see Figure 1) correspond to the classical coin statistics. The points on the
cubes longest diagonals are extremal in the sense that the distance from the quantum states (the blue
point on the Bloch sphere) to the classical states (the points in the cube’s angles vertexes) is the largest
from all of the possible distances. For the quantum case the probabilities pj are connected by constraints,
imposed by the density matrix. The detailed analysis, provided in [45,46], gives that the maximum
of S is reached when the state is pure. The red points on the Bloch sphere (see Figure 1) correspond
to (p1, p2, p3) = {(0, 0, 1/2), (1/2, 0, 1/2), (1, 1/2, 1/2), (1/2, 1, 1/2), (1/2, 1/2, 0), (1/2, 1/2, 1)} and
S ≤ 2.5, holds. The blue points correspond to the case

pj = (3±
√

3)/6, j = 1, 2, 3, S ≤ 3, (13)

that is the maximum value of S in the quantum case. Thus, the maximal side of an equilateral triangle,
composed from the probabilities, that can be inscribed in a simplexes triangle, is equal to one, namely
A1 A2 = A2 A3 = A3 A1 = 1 (see Figure 5). The maximally mixed state provides the lower bound
3/2 ≤ S, pj = 1/2, j = 1, 2, 3. In view of this, the area of the three Malevich’s squares satisfies
the inequality

3/2 ≤ S ≤ 3,

that is different from the classical one. Summing up, the properties of the area S, associated with the
triada of the Malevich’s squares, are different for the classical system and for the quantum system
states, namely, for three classical coins and for the qubit states.
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A2max

A1max

A3max

Figure 5. The probability vector pk = {(3±
√

3/6, (3±
√

3)/6, (3±
√

3)/6} with the end at a point
Akmax on the simplex, S = 3.

4. Polygon Geometry of the Qudit States

Let us focus on the spin j system that is described by means of the Hermitian density operator
ρ̂. For the corresponding N × N matrix ρ of the latter operator, the conditions ρ† = ρ, Trρ = 1, ρ ≥ 0,
hold. In the |m〉 basis it has the following elements

ρmm′ = 〈m|ρ̂|m〉, m, m′ = −j,−j + 1, · · · , j− 1, j,

where N = 2j + 1, j = 0, 1/2, 1, 3/2, · · · . That means that the density matrix can be parametrized by
N2 − 1 parameters. According to the previous section we think about N2 − 1 independent classical
coins, which are associated with N2 − 1 pdfs. The N2 − 1 probability vectors pk = (pk, p′k)

T , (k =

1, . . . , N2 − 1) can be considered. Following the line of the qubit example, one needs to connect N2 − 1
simplexes to from an N2 − 1-angle polygon with the side

√
2 and apexes marked by k = 1, . . . , N2 − 1.

If to connect every apex of the polygon with the zero point of the coordinate axes, the N2 − 1-sectors
with angle β = 6 (1, 0, 2) = 2π/(N2 − 1) and the angle γ = 6 (1, 2, 3) = π − β, hold.

The polygon formed by the points Ak has the sides defined as follows

Ak Ak+1=
√

2(1− pk)2 + 2p2
k+1− 4(1− pk)pk+1cos γ. (14)

N2 − 1 squares are constructed, counterparts of the Malevich’s Suprematist Composition, with sides
Ak Ak+1, associated with the polygon A1 A2 . . . AN2−1. For example, the eight angle polygon and the
Malevich’s Suprematist Composition for the single qutrit are shown in Figures 6 and 7. The sum of
there areas is the following

S =2

(
N2−1

∑
k=1

(1− pk)
2 + p2

k − 2pk+1(1− pk) cos γ

)
, (15)

where pN2 = p1.
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Figure 6. The eight angle polygon with vertices Ak, k = 1, . . . , 8, determining the qutrit state.
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Figure 7. The Suprematist Composition, determining the qutrit state.

However, in the quantum case, an additional condition on the eigenvalues of the density matrix
is imposed. Since it must be non-negative, the probabilities that parametrize the density matrix, are
connected by additional constraints and the value of the maximum area changes, e.g.,

S < Sqmax ≤ Smax.

Further, we find these maxima for the single qutrit and ququad systems.

Parametrization of Unitary Matrices

To find the maximum value of (15) one has to check all the possible probability combinations,
satisfying the density matrix positivity condition. Finding the eigenvalues of the matrix and checking
there positivity is technically hard and is not scalable well. To solve this problem, we use the fact
that the unitary transformation does not change the physics of the system, namely it transforms
one description of the system to another physically equivalent description. Hence, if we use the
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transformation ρ[1] = Uρ[0]U†, where U is the unitary matrix, for the density matrix ρ(0), we get
another density matrix with the same spectra. Changing the parameters of the unitary rotation matrix
and the starting density matrix ρ(0) we can estimate the maximum of S. Using the initial density
matrix, formed by the starting set of the probabilities and using the unitary rotation, it is possible to
find all the possible density matrices of the desired dimension and extract the new probability vectors
to find the maximum of S. Further we will discuss the algorithm in details.

The aim of this section is to present a parametization discribed in [60,61] of the unitary matrices
that is used in the algorithm of the maximum searching, presented in the next section. The advantage
of this parametrization method is that it is recursive. This fact allows to parametrize the N × N matrix
through the parametrization of the lower dimension unitary matrices.

The unitary matrix of the dimension 2× 2 has the following form

U2 =

(
heiφ22

√
1− h2eiφ23√

1− h2eiφ32 −hei(φ23+φ32−φ22)

)
, (16)

where h ∈ (0, 1), φ23, φ32, φ22 ∈ [0, 2π). Let ρ2[k] be in the form (1), depending from the probability
vector p[k] = (p0[k], p1[k], p2[k]), where k is the probability configuration number. After the unitary
transformation, given by U2, the density matrix has the following form

U2ρ2[k]U−1
2 =

(
v00(p[k]) v01(p[k])
v∗10(p[k]) v11(p[k])

)
≡ ρ2[k + 1]. (17)

Hence the transformed vector is

p0[k + 1] = 2Re[v01(p[k])], p1[k + 1] = −2Im[v01(p[k])], p2[k + 1] = 2v00(p[k])− 1.

In case of a 3× 3 matrix, we use the unitary rotation matrix in the form

U3 =

 be−iφ12
√

1− b2 0
c
√

1− b2e−iφ13 −bce−i(φ12−φ13) −
√

1− c2e−iφ13√
(1− b2)(1− b2)e−iφ31 −b

√
1− c2ei(φ12−φ14) ce−iφ14

 , (18)

where b, c ∈ (0, 1), φ12, φ13, φ13 ∈ [0, 2π). Let ρ3[k] be in the form (6), depending from the probability
vector p[k] = (p0[k], p1[k], . . . , p7[k]), where k is the number of the probabilities configuration,
corresponding to the unitary rotation step, k = 0, 1, 2, 3, . . . . After the unitary transformation (18), the
matrix ρ3[k + 1] has the following form

U3ρ3[k]U−1
3 =

 r00(p[k]) r01(p[k]) r02(p[k])
r∗10(p[k]) r11(p[k]) r12(p[k])
r∗20(p[k]) r∗21(p[k]) r22(p[k])

 . (19)

The transformed vector is

p0[k + 1] = 1− 2r22(p[k]), p1[k + 1] = 1− r11(p[k]), p2[k + 1] = Re[r01(p[k])] + 1/2,

p3[k + 1] = −Im[r01(p[k])] + 1/2, p4[k + 1] = Re[r02(p[k])] + 1/2,

p5[k + 1] = −Im[r02(p[k])] + 1/2, p6[k + 1] = Re[r12(p[k]) + 1/2, p7[k + 1] = −Im[r12(p[k])] + 1/2.

To parametrize N × N we use the procedure introduced in [61]. The matrix S is partitioned
in blocks

U4 =

(
A B
C D

)
.
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The element A is chosen as A = aeiφ11 , a ∈ (0, 1), φ11 ∈ [0, 2π). Then the latter matrix can be
rewritten in the following form

U4 =

(
aeiφ11

√
1− a2U√

1− a2V −ae−iφ11UV + XMY?

)
, (20)

where U, V ∈ CN−1 are row and column vectors, respectively, lying on the complex unit sphere, i.e.,

N−1

∑
i=1
|ui|2 =

N−1

∑
i=1
|vi|2 = 1

and X, Y are the unitary matrices such that

X?DV?X = P, Y?DUY = P,

where DV? =
√

IN−1 −VV?, DU =
√

IN−1 −U?U and

P =

(
0 0
0 IN−2

)
, M =

(
0 0
0 SN−2

)
,

where SN−2 is the unitary N − 2× N − 2 matrix.
This procedure was applied in case of the unitary U(4) group in [61], but the final matrix is

introduced in [60] with some misprints. The corrected matrix elements of

U4 =


u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 ,

are the following

u11 = aeiφ11 , u21 = d
√

1− a2eiφ21 , u12 =
√

1− a2beiφ12 , u31 =
√
(1− a2)(1− d2) f eiφ31 ,

u41 =
√
(1− a2)(1− d2)(1− f 2)eiφ41 , u13 =

√
(1− a2)(1− b2)ceiφ13 ,

u14 =
√
(1− a2)(1− b2)(1− c2)eiφ14 , u22 = −abdei(φ11+φ12+φ21) +

√
(1− b2)(1− d2)eiyx,

u23 = −acd
√

1− b2ei(−φ11+φ13+φ21) − bc
√

1− d2e−i(φ12−φ13)+iyx−
√
(1− c2)(1− d2)(1− x2)eiφ13+iz,

u24 = −ad
√
(1− b2)(1− c2)ei(−φ11+φ14+φ21) − bx

√
(1− c2)(1− d2)e−i(φ12−φ14+y)

+ c
√

1− d2ei(φ14+z)
√

1− x2,

u32 = −ab f
√

1− d2ei(−φ11+φ12+φ31) +
√

1− b2(−d f xei(−φ21+φ31+y) − ei(φ31+w)
√
(1− f 2)(1− x2)),

u33 = −a f c
√
(1− b2)(1− d2)ei(−φ11+φ13+φ31) −

√
1− c2eiφ13 (ei(φ31+w−y+z)x

√
1− f 2

− d f ei(−φ21+φ31+z)
√

1− x2)− bce−i(φ12−φ13)(−d f xei(−φ21+φ31+y) − ei(φ31+w)
√
(1− f 2)(1− x2)),

u34 = −a f
√
(1− b2)(1− c2)(1− d2)ei(−φ11+φ14+φ31) + ceiφ14 (ei(φ31+w−y+z)x

√
1− f 2

− d f ei(−φ21+φ31)+iz
√

1− x2)− b
√

1− c2e−i(φ12−φ14)(−d f xei(−φ21+φ31+y) − ei(φ31+w)
√
(1− f 2)(1− x2)),

u42 = −abei(−φ11+φ12+φ41)
√
(1− d2)(1− f 2) +

√
1− b2(−dx

√
1− f 2ei(−φ21+φ41+y) + f

√
1− x2ei(φ41+w)),

u43 = −ac
√

1− b2ei(φ11+φ13+φ41)
√
(1− d2)(1− f 2)− bce−i(φ12−φ13)(−dx

√
1− f 2ei(−φ21+φ41+y)

+ f
√

1− x2ei(φ41+w)) +
√

1− c2eiφ13 ( f xei(φ41+w−y+z) + dei(−φ21+φ41+z)
√
(1− f 2)(1− x2)),

u44 = −a
√
(1− b2)(1− c2)ei(−φ11+φ14+φ41)

√
(1− d2)(1− f 2)− b

√
1− c2e−i(φ12−φ14)
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· (−dx
√

1− f 2ei(−φ21+φ41+y) + eiφ41+iw f
√

1− x2 + ceiφ14(− f xei(φ41+w−y+z)

− dei(−φ21+φ41+z)
√
(1− f 2)(1− x2)),

where

α = ( f 2 + d2 − f 2d2)−1/2, β = (b2 + c2 − b2c2)−1/2,

a, b, c, d, f , g, x ∈ (0, 1), φ, y, w, z ∈ [0, 2π).

Let ρ4[k] be in the form (11), depending from the probability vector p[k] = (p0[k], p1[k], . . . , p14[k]),
where k is the probability configuration number. After the unitary transformation, the density matrix
has the following form

U4ρ4[k]U−1
4 =


w00(p[k]) w01(p[k]) w02(p[k]) w03(p[k])
w∗10(p[k]) w11(p[k]) w12(p[k]) w13(p[k])
w∗20(p[k]) w∗21(p[k]) w22(p[k]) w23(p[k])
w∗30(p[k]) w∗31(p[k]) w32(p[k]) w33(p[k])

 .

Hence the transformed vector is

p0[k + 1] = −Im(w03(p[k])) + 1/2, p1[k + 1] = Re(w02(p[k])) + 1/2,

p2[k + 1] = −Im(w02(p[k])) + 1/2, p14[k + 1] = Re(w03(p[k])) + 1/2

p4[k + 1] = w11(p[k]), p5[k + 1] = w22(p[k]), p3[k + 1] = w00(p[k]),

p6[k + 1] = Re(w01(p[k])) + 1/2, p7[k + 1] = −Im(w01(p[k])) + 1/2,

p8[k + 1] = Re(w13(p[k])) + 1/2, p9[k + 1] = −Im(w13(p[k])) + 1/2,

p10[k + 1] = Re(w23(p[k])) + 1/2, p11[k + 1] = −Im(w23(p[k])) + 1/2,

p12[k + 1] = Re(w12(p[k])) + 1/2, p13[k + 1] = −Im(w12(p[k])) + 1/2.

In the next section we will use this vector to find the maximum of (15) for the different qudit states.

5. Materials and Methods

Metropolis Monte Carlo Maximum Search

Monte-Carlo (MC) method is a general name for a variety of stochastic techniques. It is based on
the use of the random numbers and the probability statistics to investigate problems in many areas
like economics, nuclear physics or flow of traffic. In this paper we use the Metropolis MC (MMC)
that is generally used in statistical physics to solve the Ising problem, where one searches the spin
configuration that provides the minimum energy of the system. The MMC was developed in present
form by Metropolis, Ulam and Neumann during their work on Manhattan project (study of neutron
diffusion) (cf. [62]).

The approach that is used in MMC algorithm uses random walk in the phase space with transition
probability to go from the state m to the state n. It is equal to 1 if the move decrease the energy
(∆Enm < 0). If the move increase the energy (∆Enm > 0) then it is accepted with a probability, defined
by the ratio of the probabilities of initial and final states P(n)/P(m).

We start from setting up a random walk through the configurational space. The “time” t is the
number of iterations of the procedure (not real time). P(m, t) is the probability of being in configuration
m at time t, P(n, t) the probability of being in configuration n at time t, W(m→ n, t) is the probability
of going from the state m to the state n per unit time (transition probability). Then we have a sufficient
(but not necessary) detailed balance condition W(n→ m)P(n, t) = W(m→ n)P(m, t).
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In this paper we want to find the probability vector that maximizes S, given by (15). To this end
the following steps must be done.

• Initialize the starting density matrix in the diagonal form

ρ
diag
N =



p̃1 0 0 0 . . . 0
0 p̃2 0 0 . . . 0
0 0 p̃3 0 . . . 0
...

...
...

. . .
...

...

0 0 0 0 0 1−
N
∑

i=1
p̃i


, 0 ≤ p̃i ≤ 1.

and the unitary rotation matrix from the SU(N) group, for example, parametrized according to
the recursive method, described above.

• Perform this relaxation step until freezing of the maximum S occurs:

1. Randomly select one of the unitary matrix parameters or one of the diagonal parameters

p̃i of ρ
diag
N . Slightly change it using the random generator. It is necessary to check that the

changed matrix parameters are not beyond their limits, and the elements of the diagonal
density matrix satisfy 0 ≤ p̃i ≤ 1 and does not change the sign of the density matrix.

2. Using the changed unitary matrix or the diagonal density matrix, perform the rotation, i.e.,

ρ[1] = Uρ
diag
N [0]U†.

3. Using the general view of the density matrix, express the new trial probabilities through the
elements of the rotated matrix ρ[1]. Check that trial probabilities are 0 ≤ ptr ≤ 1, hold.

4. Perform the Metropolis step:

– Generate a uniformly distributed random number ξ.

– If S(ptr) > S(p) or ξ ≤ (S(ptr)/S(p))β

Do pi = (ptr)i, i = 1, N.
Else reject the step

– Change β = 1/T according to the selected scheduler.

As it is mentioned in [63] this search can get stuck in a local but not a global optimum. That is
why the process is carried out several times, starting from different randomly generated matrices and
saving the best result. Of course, we cannot guarantee that the optimum found is global. However,
with a sufficiently slow descent and with a large number of simulations, one can hope to get good
results. In case of large quantum systems, where the amount of parameters groves significantly, there
are simply no other solutions. In this paper we used this algorithm, implemented on C ++ language,
to find the probability vectors that provide the maximum of S for the single qutrit ans the single
ququad states. To this end the unitary matrix parametrization, described in the previous section,
is used. The simulation was done as follows. 100 unitary rotation matrices were generated. For each
matrix 10,000 MC steps were done, during which, the maximum value of S and the corresponding
probability vector are found. The best probability vector that provides the “biggest maxima” among
all the realisations was selected. Next, using the simulation results we guessed the exact maxima.

6. Results

6.1. Polygon Geometry of the Qutrit State

Let us introduce the single qutrit state, described by the 3× 3 density matrix. The geometric
portrait of this system is an equilateral eight angle polygon of equal sides

√
2 on the plane, formed by

the set of simplexes (see Figure 6). Every side of the polygon is given by (14) and eight squares are
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constructed, with sides yk = Ak Ak+1, associated with the polygon A1 A2 . . . A8 (see Figure 7). Using
the MMC simulation one can estimate the maximum value of the sum (15) and the corresponding
configuration of the probabilities. The computational results give that the maximal configuration is
Ŝmax = 16 + 8

√
2 = 27.3126, p0 = p2 = p4 = p6 = 0, p1 = p3 = p5 = p7 = 1, (see Figure 11).

However, when the conditions on the eigenvalues of the density matrix (7) hold, the probabilities pi
are connected by the positivity condition. The MMC algorithm must be changed. The unitary
transformation, given by (18), is used to iterate through all the possible density matrices. The
probabilities are recalculated at each MC step. We performed 100 simulations of 10000 Monte-Carlo
steps. For each realization the maximum and the corresponding configuration of the spins are obtained.
The configuration that provides the “biggest” maximum corresponds to the pure states. However, as we
concluded for the single qubit system, different pure states provide different maxima of S. For example,
using one of the results of the MMC realization, one can obtain Sq = 15.4748, where p0 = 0.59503,
p1 = 0.995853, p2 = 0.467081, p3 = 0.468792, p4 = 0.0871691, p5 = 0.0871691, p6 = 0.519888,
p7 = 0.465404. From the geometrical symmetry, we deduced the strict value Ŝq = 10 + 9/

√
2 = 16.364,

where the probability configuration is p0 = 0, p1 = 1, pi = 0.5, i ∈ 2, . . . , 7. The density
matrix, corresponding to this configuration of probabilities, has three eigenvalues, λ = {1, 0, 0}.
Hence, these parameters provide the pure state. However, from 100 simulation, one can find a global
maximum pure state, where Sqmax = 16.6228 and p0 = 1, p1 = (3 −

√
3)/12, p2 = (3 +

√
3)/6,

p3 = (3 +
√

3)/12, p4 = p5 = p6 = p7 = 0.5. For the maximally mixed state Smmix = 13.8005, where
p0 = p1 = 2/3, pi = 1/2, i ∈ 2, . . . , 7, hold. Similarly, the minima is Smin = 9 + 4

√
2 = 13.6569,

pi = 0.5, i ∈ {0, 7}. Note, that the minima coincides both for the classical and for the quantum case.
Finally, the inequality for (15) is the following

Smin ≤ S ≤ Sqmax < Smax, (21)

13.6569 ≤ S ≤ 16.6228 < 27.3126.

The Malevich’s squares, corresponding to the “minima” state, the maximally mixed state, the
“maximum” pure state and the classical state, are shown in Figures 8–11.
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Figure 8. Malevich’s squares for the “minima” state, Smin = 13.6569.
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Figure 9. Malevich’s squares for the maximally mixed state, Smmix = 13.8005.
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Figure 10. Malevich’s squares corresponding to “maximum” pure state, Sqmax = 16.6228.
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Figure 11. Malevich’s squares corresponding to classical case, Ŝmax = 27.3126.
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6.2. Polygon Geometry of the Ququad State

Similarly to the previous section to describe the single ququad state one can define N = 15
simplexes and form from them the 15 angle equilateral polygon with the side lengths equal to

√
2.

It can be divided by 15 sectors with an angle β = 2π/15. One can connect points Ak, k = 0, . . . , 14,
located on simplexes by lines and get the 15 angle polygon, presented in Figure 12.
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Figure 12. The 15 angle polygon with vertices Ak, k = 0, . . . , 14, determining the ququad state.

Fifteen squares are constructed, counterparts of the Malevich’s Suprematist Composition, with
sides yk = Ak Ak+1, associated with the polygon A0 A1 . . . A14 (see Figure 13). The sum of the areas
is given by (15). Using the MMC simulation, one can find the maximum value of this sum and
the corresponding configuration of probabilities. The computational results provide Smax = 30 +

28 cos (2π/15) = 55.5793 for p2i = 0, p2i+1 = 1, i ∈ [0, 7]. However, for the quantum case the
conditions on the eigenvalues of the density matrix ρ4, hold. Using the modified MMC algorithm,
one can obtain Ŝqmax = 30.8522, p0 = 0.515446, p1 = 0.476783, p2 = 0.517941, p3 = 0.0554499, p4 =

0.532907, p5 = 0.299625, p6 = 0.531661, p7 = 0.519571, p8 = 0.373514, p9 = 0.69049, p10 = 0.667841,
p11 = 0.547556, p12 = 0.369825, p13 = 0.847302, p14 = 0.476661. From the geometrical symmetry, the
strict maximum is Sqmax = 18 + 17 cos (2π/15) = 33.5303, where p4 = 1, p3 = p5 = 0, pi = 1/2, i =
{0 . . . 14 \ 3, 4, 5}. The density matrix, corresponding to the this configuration of probabilities, has four
eigenvalues λ = {1, 0, 0, 0}. Hence, these parameters provide the pure state. The maximally mixed
state provides Smmix = 28.9964, where p3 = p4 = p5 = 1/4, pi = 1/2, i ∈ {0, . . . , 14 \ 3, 4, 5}. The
minima is Smin = 28.7032, pj = 0.5, j = 0, . . . , 14. Finally, the inequality is the following

Smin ≤ S ≤ Sqmax < Smax,

28.7032 ≤ S ≤ 33.5303 < 55.5793



Entropy 2019, 21, 870 19 of 27

0

4

12

A14

A11

7

4
A3

0

Figure 13. The polygon A0 . . . A14, determining the ququad state.

6.3. Werner State in Probability Representation

One of the most important degraded Bell states is the Werner state [64]. As an example let us take
the single qudit state with the spin j = 3/2 and the Werner density matrix

ρW =
1− F

3
I4 +

4F− 1
3
|ψ−〉〈ψ−|,

where I4 denotes the identity matrix, |ψ−〉 is the singlet state of the Bell states. The Werner state
is characterized by a single real parameter F, that measures the overlap of Werner state with the
Bell state. If F ≤ 1/2, the state is separable. The Werner state with F > (2 + 3

√
2)/8 violates the

Clauser-Horne-Shimony-Holt inequality. In terms of (5) the Werner density matrix elements can be
written as

p3 = (1− F)/3, p4,5 = (1 + 2F)/6, p12 = 2(1− F)/3, pi = 1/2, i = {0 . . . 14 \ 3, 4, 5, 12}.

Note that, unlike the general parametrization (5), some probabilities in the last formula are always
equal. Thus, for the Werner state it will never reach the maximum or minimum of S. For F = 0
the sum of the Malevich’s areas is S = 29.2053 and the probability configuration is the following
p3 = 1/3, p4 = 1/6, p5 = 1/6, p12 = 2/3, pi = 1/2, i = {0 . . . 14 \ 3, 4, 5, 12}. For F = 1/2 the sum
of the Malevich’s areas is S = 29.1764 and p3 = 1/6, p4 = 1/3, p5 = 1/3, p12 = 1/3, pi = 1/2,
i = {0 . . . 14 \ 3, 4, 5, 12}. For F = (2 + 3

√
2)/8 the sum is S = 29.8408 and p3 = 1/3(1 − (2 +

3
√

2)/8), p4,5 = (2 +
√

2)/8, p12 = (2 −
√

2)/48, pi = 1/2, i = {0 . . . 14 \ 3, 4, 5, 12}. The
maximally mixed state is when F = 1/4, holds. The sum is Smmix = 28.9964 and p3 = 1/4, p4 =

1/4, p5 = 1/4, pi = 1/2, i = {0 . . . 14 \ 3, 4, 5}. For F = 1 the sum of the Malevich’s areas is
Sqmax = 30.7032 and p3,12 = 0, pi = 1/2, i = {0 . . . 14 \ 3, 12}. Finally, the inequality is

Smmix ≤ S ≤ Sqmax,

28.9964 ≤ S ≤ 30.7032.

These bounds can be seen in Figure 14. The maximally mixed state provides the minimum by F.
The pure state, corresponding to F = 1, provides the aper bound Sqmax.
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Figure 14. The sum of the Malevich’s square areas S for the Werner state.

7. Malevich’s Inequality Versus Uncertainty Relations

Uncertainty relation is one of the fundamental distinguishing features of quantum theory that lies
in the heart of quantum mechanics and quantum information [4,65–67]. Kennard, Weyl, Robertson
and Schrodinger derived several uncertainty relations, among which the most known one is the
Heisenberg-Robertson relation

(∆A)2(∆B)2 ≥
∣∣∣1
2
〈Ψ|[A, B]|Ψ〉

∣∣∣2, (22)

where [A, B] = AB − BA, and the variances of observable X is defined by ∆X =√
〈Ψ|X2|Ψ〉 − 〈Ψ|X|Ψ〉2. The latter uncertainty relation states that the product of two variances

of the measurement results of the incompatible observables is bounded by the expectation value of
their commutator. A simple lower bound for the sum of the variances can be obtained from (22), using
the fact that (∆A− ∆B)2 ≥ 0. Thus, one can write

(∆A)2 + (∆B)2 ≥ 2∆A∆B ≥
∣∣∣〈Ψ|[A, B]|Ψ〉

∣∣∣. (23)

Further we will use the notation 〈Ψ|[A, B]|Ψ〉 ≡ 〈[A, B]〉. In case of the three observables one can
generalize (22) similarly to (23), namely

∆3 ≥
1
2
(〈[A, B]〉+ 〈[B, C]〉+ 〈[C, A]〉), (24)

where ∆3 = (∆A)2 + (∆B)2 + (∆C)2. In [51] two uncertainty relations for triple observables were
proposed. They read as

∆3 ≥
1
3

∆(A + B + C)2 +
1√
3
|〈[A, B, C]〉|, (25)

∆3 ≥
1√
3
(|〈[A, B]〉|+ |〈[B, C]〉|+ |〈[A, C]〉|), (26)

where 〈[A, B, C]〉 = 〈[A, B]〉+ 〈[B, C]〉+ 〈[A, C]〉. The last relation is definitely stronger than (24). The
Equation (25) is verified using single spin measurement in diamond (see [55]).
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For the case of N incompatible observables A1, A2, . . . , AN , the following variance-based
uncertainty relation

N

∑
i=1

(∆Ai)
2 ≥ 1

2(N − 1) ∑
1≤i<j≤N

(
∆(Ai + Aj)

)2 , (27)

N

∑
i=1

(∆Ai)
2 ≥ 1

2(N − 1) ∑
1≤i<j≤N

(
∆(Ai − Aj)

)2 , (28)

hold. The second inequality was improved in [53], namely

N

∑
i=1

(∆Ai)
2 ≥ 1

N − 2 ∑
1≤i<j≤N

(
∆(Ai + Aj)

)2 − 1
(N − 1)2(N − 2)

(
∑

1≤i<j≤N
∆(Ai + Aj)

)2

. (29)

This inequality has a tighter lower bound then (27). In [52] a stronger uncertainty relation for N
incompatible observables is deduced, i.e.,

N

∑
i=1

(∆Ai)
2 ≥ 1

N

(
∆

N

∑
i=1

Ai

)2

+
1

N2(N − 1)

(
∑

1≤i<j≤N
∆(Ai − Aj)

)2

(30)

7.1. Measurements in Qubit System

Let us choose three Pauli operators as an example of incompatible observables

A = σx, B = σy, C = σz. (31)

The following variance

∆σ2
i = 〈σ2

i 〉 − 〈σi〉2 = 1− 〈σi〉2, i = x, y, z,

holds. Using the notations provided in [54], namely

V = ∑
i∈{x,y,z}

〈σi〉2, D = 〈σx〉〈σy〉+ 〈σy〉〈σz〉+ 〈σz〉〈σx〉, (32)

H = |〈σx〉|+ |〈σy〉|+ |〈σz〉|, E = |〈σx〉+ 〈σy〉+ 〈σz〉|

one can rewrite the uncertainty relations (24)–(30) as

3−V ≥ H, (33)

3−V ≥
√

3E− D, (34)

3−V ≥ 2√
3

H, (35)

3−V ≥ 1
2
(3−V − D), (36)
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3−V ≥ 1
2
(3−V + D), (37)

3−V ≥ 2(3−V − D)− 1
4
(L+ + M+ + N+)

2, (38)

3−V ≥ 1
3
(3−V − 2D) +

1
9
(L− + M− + N−)2, (39)

where

L± =
√

2− (〈σx〉 ± 〈σy〉)2, (40)

M± =
√

2− (〈σy〉 ± 〈σz〉)2,

N± =
√

2− (〈σz〉 ± 〈σx〉)2.

The latter relations were experimentally verified in [54] using the single-photon measurement
experiments. The inequalities (35), (34) and (39) have more stringent bounds than others in
qubit systems.

7.2. Relation of Classical Coin Probability Distribution and the Quantum Qubit States

It is known that the matrix elements of an arbitrary matrix can be related to some probability
distribution. In [68] this fact is used to introduce an interesting quantization procedure of classical
statistics. Following this line, we start from the classical coin tossing game. The aim of the game is that
there is a classic coin, tossing which, the players get one of the two sides with a certain probability. For
the loss of each side of the coin some reward is assigned. Using the classical probability distributions
that describe the coin states, one can introduce the density matrices and the state vectors in the Hilbert
space. The probability distributions are mapped onto the density operators, acting on the Hilbert
space, and the classical random variables, used in a game as rewards, are mapped onto Hermitian
matrices, namely the Hermitian operators, acting on the Hilbert space. Using this bijective mapping,
one can rewrite the relations, known from quantum mechanics in the classical-like random variables
and probability distributions.

As an example, let us start from the spin −1/2 state (qubit) described in Section 2. Since this
matrix can be parametrized by three random variables, our classical coin tossing game consists from
three non ideal coins. Their states are identified with three probability distributions (p1, 1 − p1),
(p2, 1− p2), (p3, 1− p3), where 0 ≤ p1,2,3 ≤ 1 are the probabilities to have have the coin in “up”
position. Hence, three random variables X(j), Y(j) and Z(j), j = 1, 2, can be introduced, such that
X(1) = x, X(2) = −x, Y(1) = y, Y(2) = −y and Z(1) = z1, Z(2) = z2, where x, y, z1, z2 are real
numbers. The mean values and the moments of these random variables are the following

〈X〉 = xp1 − x(1− p1), 〈Y〉 = yp2 − y(1− p2), 〈Z〉 = z1 p3 + z2(1− p3). (41)

The numbers pi, i = 1, 2, 3 are organised the matrix form (1). Let the operator Ĥ2 have the
Hermitian matrix, parametrized by three random variables, as

H2 =

[
z1 x− iy

x + iy z2

]
. (42)

The mean value is defined as

〈H2〉 = Tr(ρ2H2) = 〈X〉+ 〈Y〉+ 〈Z〉. (43)
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The Pauli matrices (31) correspond to (42) with the following parameters

σx, z1 = z2 = 0, x = 1, y = 0;

σy, z1 = z2 = 0, x = 0, y = 1;

σz, z1 = 1, z2 = −1, x = 0, y = 0.

One can conclude that the mean values of these observables are

〈σx〉 = 2p1 − 1, 〈σy〉 = 2p2 − 1, 〈σz〉 = 2p3 − 1. (44)

In these notations the uncertainty relation (1) can be written as follows

3−V ≥ 2. (45)

This uncertainty relation provides a quantitative description that only one spin component of
a two-level system can have a well defined value. One can see, that this relation is the strongest
among (33)–(39). As it is shown in [54] the inequalities (35), (34) and (39) most often reach the specified
boundary.

Let us rewrite the sum of the areas of the three Malevich’s squares (11) in similar to (45)
form, namely

S =
3
2
+ ∑

i∈{x,y,z
〈σi〉2 +

1
2
(〈σx〉〈σy〉+ 〈σx〉〈σz〉+ 〈σz〉〈σy〉)

or

S =
3
2
+ V +

D
2

. (46)

Since (12), holds, one can rewrite (46) as

3
2
+

D
2
≤ 3−V ≤ 3 +

D
2

. (47)

Using the Monte-Carlo algorithm, we considered 104 different probability configurations pi,
i = 1, 2, 3 and compared the lower and upper bounds of Malevich’s inequality (46) with the best
inequalities (35), (34) and (39), that are verified experimentally in [54]. Malevich’s inequality reach the
lower limit (45) for the probability configurations (13).

For the spin −1 system we select Weyl basis. The density matrix of spin −1 system can be
parametrized by eight random variables and our classical coin tossing game consists from seven non
ideal coins. Their states are identified with eight probability distributions (pi, 1− pi), i = 1, . . . , 8,
where 0 ≤ pi ≤ 1 are the probabilities to have have the coin in “up” position. Hence, three random
variables X1,2,3(j), Y1,2,3(j), j = 1, 2 and Z(i), j = 1, 2, 3 can be introduced, such that X1,2,3(1) = x1,2,3,
X1,2,3(2) = −x1,2,3, Y1,2,3(1) = y1,2,3, Y1,2,3(2) = −y1,2,3 and Z(1) = z1, Z(2) = z2, Z(3) = z3 where
x1,2,3, y1,2,3, z1,2,3 are real numbers. The mean values and the moments of these random variables are
the following

〈X1〉 = x1 p3 − x1(1− p3), 〈Y1〉 = y1 p4 − y1(1− p4),

〈X2〉 = x2 p7 − x2(1− p7), 〈Y2〉 = y2 p8 − y2(1− p8),

〈X3〉 = x3 p5 − x3(1− p5), 〈Y3〉 = y3 p6 − y3(1− p6),

〈Z〉 = z1(p1 + p2 − 1) + z2(1− p2) + z3(1− p1). (48)
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Let the operator Ĥ3 have the Hermitian matrix, parametrized by three random variables as

H3 =

 z1 x1 − iy1 x3 − iy3

x1 + iy1 z2 x2 − iy2

x3 + iy3 x2 + iy2 z3

 . (49)

The mean value is defined as

〈H3〉 = Tr(ρ3H3) = ∑〈Xj〉+ 〈Yj〉+ 〈Z〉.

Acting similar to the previous example, one can obtain

〈σ0〉 = 2p3 − 1, 〈σ3〉 = 2p5 − 1, 〈σ6〉 = 2p7 − 1, 〈σ1〉 = 2p4 − 1, 〈σ4〉 = 2p6 − 1,

〈σ7〉 = 2p8 − 1, 〈σ2〉 = p1 + 2p2 − 2, 〈σ5〉 = p2 + 2p1 − 2.

Hence, using this replacement, one can rewrite the Malevich’s inequality (22) for the single qutrit
state in terms of the measurable quantities.

9 + 4
√

2 ≤ 1
3
(−2 + 3(〈σ0〉+ 〈σ1〉+ 〈σ3〉+ 〈σ4〉+ 〈σ6〉+ 〈σ7〉)

− 2(〈σ2〉+ 〈σ5〉) +
1
2

(
1 +

1√
2

)
((1 + 〈σ0〉)2 + (1 + 〈σ1〉)2

+ (1 + 〈σ3〉)2 + (1 + 〈σ4〉)2 + (1 + 〈σ6〉)2 + (1 + 〈σ7〉)2)

+
4
9

(
(−2− 2〈σ2〉+ 〈σ5〉)2 + (〈σ2〉 − 2(1 + 〈σ5〉))2

)
+

1
3
√

2
(45 + 4(〈σ2〉2 + 〈σ5〉2) + 3(〈σ3〉2 + 〈σ4〉2 + 〈σ6〉2

+ 〈σ7〉2) + 12(〈σ3〉+ 〈σ4〉) + 3(〈σ1〉〈σ3〉+ 〈σ3〉〈σ4〉
+ 〈σ4〉〈σ6〉+ 〈σ6〉〈σ7〉 − 〈σ0〉〈σ1〉) + 〈σ0〉(1 + 4〈σ2〉
− 2〈σ5〉) + 10〈σ5〉+ 12〈σ6〉+ 13〈σ7〉+ 4〈σ5〉〈σ7〉

− 2〈σ2〉(−5 + 2〈σ5〉+ 〈σ7〉)) ≤
1
4
(40 + 17

√
2 +
√

6).

The resulting inequality can be experimentally verified and compared, for example with (30).

8. Discussion and Conclusions

In this paper we introduced the universal geometrical picture of the single qudit quantum system,
based on the new quantum suprematism approach, introduced in [44–46]. The single qubit is identified
with the set of three probability distributions of the spin projections on the three perpendicular
directions in space. Three probabilities, parametrizing the density matrix of the qubit, form the
three simplexes on the plane. Connecting them, the triangle is formed, the sides of which serve
as bases for the three squares, analogues of the Malevich’s squares. The sum of the areas of these
squares characterize the quantum properties of the single qudit. In this paper, we proposed to go
further and introduce polygons, built on simplexes, formed by the probabilities, that parametrize the
density matrix, to describe the higher dimension quantum systems. The sides of the polygon serve as
bases for the set of squares that form an analogue of the Malevich’s Suprematist Composition. The
universal inequality, based on the sum of the areas of the squares, is constructed. The upper bounds of
the inequality is different for the classical set of probabilities and for the quantum system with the
density matrix, parametrized by the probability set. The inequality illustrates the single qudit states
quantumness. In quantum case, the upper bound of the inequality corresponds to the pure states as the
surface of the Bloch sphere for the single qubit states. The upper bound of the inequality can be found
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for the qudit states of high dimensions, for example, using the Metropolis Monte-Carlo algorithm.
In contrast to the known multidimensional geometrical representations, the Malevich’s Suprematist
Composition provides a simple and beautiful picture on the plane. The results are illustrated by the
example of the single qutrit and ququad states. Particular attention is paid to the case of the Werner
ququad state. Finally it is shown that the Malevich’s inequalities can serve as uncertainty relations for
the systems of high dimensions and successfully compete with already known uncertainty relations
for many arbitrary incompatible observables. It is expected that the multi-observable Malevich’s
inequalities can be verified experimentally using the techniques similar to ones that are presented
in [54,55].
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