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Abstract: This paper presents methods that quantify the structure of statistical interactions within a
given data set, and were applied in a previous article. It establishes new results on the k-multivariate
mutual-information (Ik) inspired by the topological formulation of Information introduced in a serie
of studies. In particular, we show that the vanishing of all Ik for 2 ≤ k ≤ n of n random variables
is equivalent to their statistical independence. Pursuing the work of Hu Kuo Ting and Te Sun Han,
we show that information functions provide co-ordinates for binary variables, and that they are
analytically independent from the probability simplex for any set of finite variables. The maximal
positive Ik identifies the variables that co-vary the most in the population, whereas the minimal
negative Ik identifies synergistic clusters and the variables that differentiate–segregate the most in the
population. Finite data size effects and estimation biases severely constrain the effective computation
of the information topology on data, and we provide simple statistical tests for the undersampling
bias and the k-dependences. We give an example of application of these methods to genetic expression
and unsupervised cell-type classification. The methods unravel biologically relevant subtypes, with
a sample size of 41 genes and with few errors. It establishes generic basic methods to quantify the
epigenetic information storage and a unified epigenetic unsupervised learning formalism. We propose
that higher-order statistical interactions and non-identically distributed variables are constitutive
characteristics of biological systems that should be estimated in order to unravel their significant
statistical structure and diversity. The topological information data analysis presented here allows for
precisely estimating this higher-order structure characteristic of biological systems.

Keywords: information theory; cohomology; information category; topological data analysis; genetic
expression; epigenetics; multivariate mutual-information; synergy; statistical independence

“When you use the word information, you should rather use the word form”

–René Thom
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1. Introduction

1.1. Information Decompositions and Multivariate Statistical Dependencies

This article establishes new results on higher order mutual-information quantities, derived from
the topological formulation of Information functions as introduced in [1–3], and applies them for a
statistical analysis of experimental data, with a developed example from gene expression in neurons
following [4]. Works of Clausius, Boltzmann, Gibbs and Helmholtz underlined the importance of
entropy and free energy in Statistical Physics. In particular, Gibbs gave the general definition of the
entropy for the distribution of microstates, cf. [5]. Later, Shannon recognized in this entropy the
basis of Information theory in his celebrated work on the mathematical theory of communication [6]
(Equation (11)), and then further developed their structure in the lattice of variables [7]. Defining the
communication channel, information transmission and its capacity, Shannon also introduced to degree
two (pairwise) mutual-information functions [6].

The expression and study of multivariate higher-degree mutual-information (Equation (12), Ik)
was achieved in two seemingly independent works: (1) McGill (1954) [8] (see also Fano (1961) [9])
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with a statistical approach, who called these functions “interaction information”, and (2) Hu
Kuo Ting (1962) [10] with an algebraic approach who also first proved the possible negativity of
mutual-information for degrees higher than 2. The study of these functions was then pursued by Te
Sun Han [11,12].

Higher-order mutual-information was rediscovered in several different contexts, notably by
Matsuda in 2001 in the context of spin glasses, who showed that negativity is the signature of frustrated
states [13] and by Bell in the context of Neuroscience, Dependent Component Analysis and Generalised
Belief Propagation on hypergraphs [14]. Brenner and colleagues have observed and quantified an
equivalent definition of negativity of the 3-variable mutual-information, noted I3, in the spiking activity
of neurons and called it synergy [15]. Anastassiou and colleagues unraveled I3 negativity within gene
expression, corresponding in that case to cooperativity in gene regulation [16,17].

Another important family of information functions, named “total correlation”, which corresponds
to the difference between the sum of the entropies and the entropy of the joint, was introduced by
Watanabe in 1960 [18]. These functions were also rediscovered several times, notably by Tononi
and Edelman who called them “integrated information” [19,20] in the context of consciousness
quantification, and by Studený and Vejnarova [21] who called them “multi-information” in the context
of graphs and conditional independences.

Bialek and his collaborators have explained the interest of a systematic study of joint entropies and
general multi-modal mutual-information quantities well as an efficient way for understanding neuronal
activities, networks of neurons, and gene expression [15,22,23]. They also developed approximate
computational methods for estimating the information quantities. Mutual-information analysis was
applied for linking adaptation to the preservation of the information flow [24,25]. Closely related to the
present study, Margolin, Wang, Califano and Nemenman have investigated multivariate dependences
of higher order [26] with MaxEnt methods, by using the total-correlation Gk (cf. Equation (28)) function
of the integer k ≥ 2. The apparent benefit is the positivity of the Gk.

Since their introduction, the possible negativity of the Ik functions for k ≥ 3 has posed serious
problems of interpretation, and it was the main argument for many theoretical studies to discard such a
family of functions for measuring information dependences and statistical interactions. Notably,
it motivated the proposition of non-negative decomposition by Williams and Beer [27] and of
“unique information” by Bertschinger and colleagues [28,29], or Griffith and Koch [30]. These partial
decompositions of information are the subject of several recent investigations notably with applications
to the development of neural network [31] and neuromodulation [32]. However, Rauh and colleagues
showed that no non-negative decomposition can be generalized to multivariate cases for degrees higher
than 3 [33] (th.2). Abdallah and Plumbley also proposed an interesting non-negative decomposition,
named the binding information (definition 23 [34]). To quantify and represent the transfer of
information from a multivariate source to a multivariate sink of information, Valverde-Albacete
and Peláez-Moreno defined a 2-simplex in the multivariate entropic space to represent the information
balance of the multivariate transformation [35,36].

In this paper, we justify theoretically and apply to the data the mutual-information decomposition
generalized to arbitrary numerous variables with a topological and statistical approach. We provide the
interpretation of negativity and positivity on a data set, and compare the results to total correlations.

1.2. The Approach by Information Topology

This article presents a method of statistical analysis of a set of collected characters in a population,
describing a kind of topology of the distribution of information in the data. New theoretical results
are developed to justify the method. The data that concern us are represented by certain (observed
or computed) parameters s1, ..., sn belonging to certain finite sets E1, ..., En of respective cardinalities
N1, ..., Nn, which depend on an element z of a certain set Z, representing the tested population,
of cardinality mZ. In other terms, we are looking at n “experimental” functions Xi : Z → Ei, i = 1, ..., n,



Entropy 2019, 21, 869 4 of 38

then we will refer to the data by the letters (Z, X), where X is the product function of the Xi, going from
Z to the product E of all the sets Ei, i = 1, ..., n, providing the usual sample space Ω.

For the simplest example of three binary-Bernoulli variables, investigated analytically in
Section 3.4, we have n = 3, N1 = N2 = N3 = 2 and a sample space of cardinality 8 that can be
written Ω = {000, 001, 010, 100, 011, 101, 110, 111}. For the 9-ary variable example investigated in
Section 4.2 and in [4], each Ei, i = 1, ..., n has cardinality 9 and is identified with the subset of integers
[9] = {1, ..., 9}, each xj = Xi(z), i = 1, ..., n, j = 1, ..., 9 measures the level of expression of a gene gi
in a neuron z belonging to a set Z of classified dopaminergic neurons (DA). To be precise, in this
example, n = 21 genes, m = 111 neurons, and |Ω| = 921. For the 9-ary variable example investigated
in Section 4.3.1, each Ei, i = 1, ..., n has cardinality 9 and is identified with the subset of integers
[9] = {1, ..., 9}, each xj = Xi(z), i = 1, ..., n, j = 1, ..., 9 measures the level of expression of a given
neuron zi. To be precise, in this example, n = 20 neurons pre-identified as either DA (10 dopaminergic
neurons) or NDA (10 Non dopaminergic neurons), m = 41 genes, and |Ω| = 920.

The approach followed here consists of describing the manner the variables Xi, i = 1, ..., n
distribute the Information on (Z, X). The experimented population Z has its own characteristics
that the data explore, and the frequency of every value sI of each one of the variables XI , I ⊂ [n]
is an information important by itself, without considering the hypothetical law on the whole set E.
The information quantities, derived from the Shannon entropy, offer a natural way for describing
all these frequencies. In fact they define the form of the distribution of information contained in the
raw data. For instance, the individual entropies H(Xi), i = 1, ..., n tell us the shape of the individual
variables: if H(Xi) is small (with respect to its capacity log2 Ni), then Xi corresponds to a well-defined
characteristic of Z; to the contrary if H(Xj) is close to the capacity, i.e., the value of the entropy of
the uniform distribution, the function Xj corresponds to a non-trivial partition of Z, and does not
correspond to a well-defined invariant. At the second degree, we can consider the entropies H(Xi, Xj)

for every pair (i, j), giving the same kind of structures as before, but for pairs of variables. To get a better
description of this second degree with respect to the first one, we can look at the mutual-information
as defined by Shannon, I(Xi; Xj) = H(Xi) + H(Xj)− H(Xi, Xj). If it is small, near zero, the variables
are not far from being independent. If it is maximal, i.e., not far from the minimum of H(Xi) and
H(Xj), this means that one of the variables is almost determined by the other. In fact, I(Xi; Xj) can
be taken as a measure of dependence, due to its universality and its invariance. Consider the graph
with vertices Xi, i = 1, ..., N and edges (Xi, Xj), i 6= j, i, j = 1, ..., N: by labeling each vertex with the
entropy and each edge with the mutual-information, we get a sort of one-dimensional skeleton of the
data (Z, X). The information of higher degrees define in an analogous manner the higher-dimensional
skeletons of the data (Z, X) (see Section 4.3.1 for example). The entropy appears as a function of a
(global) probability law PX on a set EX and of the less fine variable Y, viewed as the projection from
EX to EY. The skeleton can be then be more precisely defined by considering a sub-complex K of the
simplex Delta having for vertices the elements of a set I, and for each vertex i of Delta a finite set Ei is
given, then a face in K corresponds to a collection J of indices, and it can be considered as a node (for
instance materialized by its iso-barycenter), the associated set EJ being the Cartesian product of the Ei,
for i in J. A probability law on this product set induces marginal laws on every sub-face of J, and the
entropy becomes a function of the corresponding nodes. This picture gives equally important roles for
probability laws and for the sub-sets of variables which can be evaluated together, then it allows for
studying the forms of information distributions among the variables, given some constraints on the
observations.

In our approach, for any data (Z, S), the full picture can be represented by a collection of numerical
functions on the faces of a simplex ∆([n]) having vertices corresponding to the random variables
X1, ..., Xn. We decided to focus on two subfamilies of Information functions: the first is the collection
of entropies of the joint variables, denoted Hk, k = 1, ..., n, giving the numbers Hk(Xi1 ; ...; Xik ), and the
degree-k mutual-information of the joint variables, denoted Ik, k = 1, ..., n, and giving the numbers
Ik(Xi1 ; ...; Xik ) (see the following section for their definition and their elementary properties). In
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particular, the value on each face of a given dimension of these functions gives interesting curves
(histograms, see Section 3.2 on Statistics) for testing the departure from independence, and their means
over all dimensions for testing the departure from uniformity of the variables. These functions are
information co-chains of degree k (in the sense of ref. [1]) and have nice probabilistic interpretations.
By varying in all possible manners the ordering of the variables, i.e., by applying all the permutations
σ of [n] = {1, ..., n}, we obtain n! paths Hk(σ), Ik(σ), k = 1, ..., n. They constitute respectively the
Hk-landscape and the Ik-landscape of the data. For further discussion of the simplicial structure and of
the information paths, see [37].

When the data correspond to uniform and independent variables that is the uninteresting null
hypothesis, each path is monotonic, the Hk growing linearly and the Ik being equal to zero for k
between 2 and n. Any departure from this behavior (estimated for instance in Bayesian probability on
the allowed parameters) gives a hint of the form of information in the particular data.

Especially interesting are the maximal paths, where Ik(σ) decreases, being strictly positive,
or strictly negative after k = 3. Other kinds of paths could also be interesting, for instance the paths
with the maximal total variation as they can be oscillatory. In the examples provided here and in [4], we
proposed to stop the empirical exploration of the information paths to their first minima, a condition
of vanishing of conditional mutual-informational (conditional independence).

As a preliminary illustration of the potential interest of such functions for general Topological
Data Analysis, we quantify the information structures for the empirical measures of the expression of
several genes in two pre-identified populations of cells presented in [4], and we consider here both
cases where genes or cells are considered as variables for gene or cell unsupervised classification
tasks, respectively.

In practice, the cardinality m of Z is rather small with respect to the number of free parameters of
the possible probability laws on E that is N − 1 = N1...Nn − 1, then the quantities Hk, Ik for k larger
than a certain ku have in general no meaning, a phenomenon commonly called undersampling or curse
of dimensionality. In the example, n is 20, but ku is 11. Moreover, the permutations σ of the variables
values can be applied to test the estimation of the dependences quantified by the Ik against the null
hypothesis of randomly generated statistical dependences. In this approach describing the raw data
for themselves, undersampling is not a serious limitation. However, it is better to test the stability of
the shape of the landscapes by studying random subsets of Z. Moreover, the analytic properties of Hk
and Ik considered as functions of P in a given face of the simplex of probabilities ∆([n]) ensure that,
if PX tends to P in this face, the shape is preserved.

In the present article, we first remind readers about the definitions and basic properties of the
entropy and information chains and functions. We give equivalent formulations of the fundamental
Hu Kuo Ting theorem [10], and we deduce from them that every partial mutual conditioned higher
information of every collection of joint variables from elementary higher entropies Hk(XI) or by
elementary higher mutual-information functions Ik(XI), i.e., the functions that form the entropy
landscape and information landscape, respectively.

Second, we establish that these “pure” functions are analytically independent as functions of
the probability laws, in the interior of the large simplex ∆([n]). This follows from the fact we also
prove here that these functions constitute coordinates (up to a finite ambiguity) on ∆([n]) in the special
case of binary variables Xi, i = 1, ..., n. In addition, we demonstrate that, for every set of numbers
Ni, i = 1, ..., n, the cancellation of the functions Ik(XI), k ≥ 2, I ⊂ [n] = {1, ..., n} is a necessary and
sufficient condition of the set of variables X1, ..., Xn to be statistically independent. We were not able to
find these results in the literature. They generalize results of Te Sun Han [11,12].

Then, this article not only presents a method of analysis, but it gives proofs of basic results on
information quantities that, to our knowledge, were not available until now in the literature.

Third, we study the statistical properties of the entropy and information landscapes and paths,
and present the computational aspects. The mentioned examples of genetic expression are developed.
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Finally, in an appendix, we show how these functions appear in the theory of Free energies, in Statistical
Physics and in Bayesian Variational Analysis.

2. Theory: Homological Nature of Entropy and Information Functions

This section provides the definitions of information functions and a brief recall of their algebraic
properties; we refer the reader to [1–3] for details and precise results, and for understanding how they
appear in a natural cohomology theory. Given a probability law PX on a finite set E = EX, Shannon
defined the information content of this law by the Boltzmann–Gibbs entropy [6]:

H(PX) = − ∑
x∈E

PX(x) log2 PX(x). (1)

Shannon himself gave an axiomatic justification of this choice, which was developed further by
Khinchin, Kendall and other mathematicians, see [38].

The article [1] presented a different approach inspired by algebraic topology—see also [2,3]. For all
of these approaches, the fundamental ingredient is the decomposition of the entropy for the joint
variable of two variables. To better formulate this decomposition, we have proposed considering the
entropy as a function of three variables: first a finite set EX , second a probability law P on EX and third
a random variable on EX, i.e., a surjective map Y : EX → EY, considered only through the partition
of EX that it induces, indexed by the elements y of EY. In this case, we say that Y is less fine than X,
and write Y ≤ X, or X → Y. Then, we define the entropy of Y for P at X:

HX(Y; P) = H(Y∗(P)), (2)

where Y∗(P) is the image law, also named the marginal of P by Y:

Y∗(P)(y) = ∑
x|Y(x)=y

P(x). (3)

Remark 1. Frequently, when the context is clear, we simply write HX(Y; P) = H(Y; P) or even H(Y),
as everybody does, however the “homological nature” of H can only be understood with the index X because it is
here that the topos theory appears, see [1–3].

The second fundamental operation on probabilities (after marginalization) is the conditioning:
given y ∈ EY, such that Y∗(P)(y) 6= 0, the conditional probability P|(Y = y) on EX is defined by the
following rules:

∀x|Y(x) = y, P|(Y = y)(x) = P(x)/Y∗(P)(y),

∀x|Y(x) 6= y, P|(Y = y)(x) = 0.

This allows for defining the conditional entropy, as Shannon has done, for any Z and Y both less
fine than X,

Y.H(Z; P) = ∑
y∈EY

H(Z; P|(Y = y))Y∗(P)(y). (4)

Note that, if P|(Y = y) is not well defined, Y ∗ (P)(y) = 0, then we use the rule 0.∞ = 0, and forget
the corresponding term.

This operation is associative (see [1,2]), i.e., for any triple W, Y, Z of variables less fine than X,
and corresponds to a left action (as underlined by the notation),

(W, Y).H(Z; P) = W.(Y.H)(Z; P). (5)
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With these notations, the fundamental functional equation of Information Theory, or its first
axiom, according to Shannon, is

H((Y, Z); P) = H(Y; P) + Y.H(Z; P). (6)

Remark 2. In [1–3], it is shown that this equation can be understood as a co-cycle equation of degree one of a
module in a topos, in the sense of Grothendieck and Verdier [39], and why the entropy is generically the only
universal generator of the first co-homology functor.

More generally, we consider a collection of sets EX, X ∈ C, such that each time Y, Z is less fine
than X and belong to C, then (Y, Z) also belongs to C; in this case, we name C an information category.
An example is given by the joint variables X = (Xi1 , ..., Xim) of n basic variables X1, ..., Xn with values
in finite sets E1, ..., En, the set EX being the product Ei1 × ...× Eim .

Then, for every natural integer k ≥ 1, we can consider families indexed by X of (measurable)
functions of the probability PX that are indexed by several variables Y1, ..., Yk less fine than X

PX 7→ FX(Y1; ...; Yk; PX) (7)

satisfying the compatibility equations;

∀X′, X ≤ X′, ∀PX′ , FX(Y1; ...; Yk; X∗(PX′)) = FX′(Y1; ...; Yk; PX′). (8)

We call these functions the co-chains of degree k of C for the probability laws. An equivalent axiom
is that FX(Y1; ...; Yk; PX) only depends on the image of PX by the joint variable (Y1, ..., Yk). We call this
property locality of the family F = (FX , X ∈ C).

The action by conditioning extends verbally to the co-chains of any degree:
if Y is less fine than X,

Y.FX(Y1; ...; Yk; P) = ∑
y∈EY

FX(Y1; ...; Yk; P|(Y = y))Y∗(P)(y). (9)

It satisfies again the associativity condition.
Higher mutual-information quantities were defined by Hu Kuo Ting [10] and McGill [8],

generalizing the Shannon mutual-information [1,4]:
in our terms, for k random variables X1, ..., Xk less fine than X and one probability law P on the

set EX ,
Hk(X1; ...; Xk; P) = H((X1, ..., Xk); P). (10)

In addition, more generally, for j ≤ k, we define

Hj(X1; ...; Xk; P) = ∑
I⊂[k];card(I)=j

H(XI ; P), (11)

where XI denotes the joint variable of the Xi such that i ∈ I.
These functions of P are commonly named the joint entropies.
Then, the higher information functions are defined by

In(X1; X2; ...; Xn;P) =
k=n

∑
k=1

(−1)j−1 ∑
I⊂[n];card(I)=k

Hk(Xi1 , Xi2 , ..., Xik ;P). (12)

In particular, we have I1 = H, the usual entropy.
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Reciprocally, the functions Ik decompose the entropy of the finest joint partition:

Hn(X1; X2; ...; Xn;P) =
k=n

∑
k=1

(−1)j−1 ∑
I⊂[n];card(I)=k

Ik(Xi1 ; Xi2 ; ...; Xik ;P). (13)

The following result is immediate from the definitions, and the fact that HX , X ∈ C is local:

Proposition 1. The joint entropies Hk and the higher information quantities Ik are information co-chains, i.e.,
they are local functions of P.

Remark 3. From the computational point of view, locality is important because it means that only the less fine
marginal probability has to be taken into account.

3. Results

3.1. Entropy and Mutual-Information Decompositions

The definition of Hj, j ≤ k and Ik makes evident that they are symmetric functions, i.e., they are
invariant by every permutation of the letters X1, ..., Xk. The particular case I2(S; T) = H(S) + H(T)−
H(S, T) is the usual mutual-information defined by Shannon. Using the concavity of the logarithm,
it is easy to show that I1 and I2 have only positive values, but this ceases to be true for Ik as soon as
k ≥ 3 [10,13].

Hu kuo Ting defined in [10] other information quantities, by the following formulas:

Ik,l(Y1; ...; Yk; PX |Z1, ..., Zl) = (Z1, ..., Zl).Ik(Y1; ...; Yk; PX). (14)

For instance, considering a family of basic variables Xi, i = 1, ..., n,

Ik,l(XI1 ; ...; XIk ; (P|XY)) = XY.Ik(XI1 ; ...; XIk ;P), (15)

for the joint variables XI1 , ..., XIk , XJ , where I1, ..., Ik, J ⊂ [n].
The following remarkable result is due to Hu Kuo Ting [10]:

Theorem 1. Let X1, ..., Xn be any set of random variables and P a given probability on the product EX of the
respective images E1, ..., En, then there exist finite sets Σ1, ..., Σn and a numerical function ϕ from the union Σ of
these sets to R, such that for any collection of subsets Im; m = 1, ..., k of {1, ..., n}, and any subset J of {1, ..., n}
of cardinality l, the following identity holds true

Ik,l(XI1 ; ...; XIk ; (P|XJ)) = ϕ(ΣI1 ∩ ...∩ ΣIk\ΣJ), (16)

where we have denoted XIm = (Xi1,m , ..., Xil,m and ΣI = Σi1 ∪ ... ∪ Σil for I = {i1, ..., il}, and where Ω\ΣJ
denotes the set of points in Ω that do not belong to ΣJ , i.e., the set Ω ∩ (Σ\ΣJ), named subtraction of Y = ΣJ
from Ω.

The Hu Kuo Ting theorem says that, for a given joint probability law P, and, from the point of
view of the information quantities Ik,l , the joint operation of variables corresponds to the union of sets,
the graduation k corresponds to the intersection, and the conditioning by a variable corresponds to the
difference of sets. This can be precisely formulated as follows:

Corollary 1. Let X1, ..., Xn be any set of random variables on the product EX of the respective goals E1, ..., En,
then for any probability P on EX, every universal identity between disjoint sums of subsets of a finite set that
are obtained, starting with n subsets Σ1, ..., Σn, by (1) forming collections of unions, (2) taking successive
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intersections of these unions, and (3) subtracting by one of them gives an identity between sums of information
quantities, by replacing the union by the joint variables (., .), the intersections by the juxtaposition (.; .; .) and
the subtraction by the conditioning.

Remark 4. Conversely, the corollary implies the theorem.

This corollary is the source of many identities between the information quantities.
For instance, the fundamental Equation (6) corresponds to the fact that the union of two sets A, B

is the disjoint union of one of them, say A and of the difference of the other with this one, say B\A.
The following formula follows from Label Equation (6):

Hk+1(X0; X1; ...; Xk;P) = Hk((X0, X1); X2; ...; Xk;P)
= Hk(X1; ...; Xk;P) + X0.Hk(X1; ...; Xk;P).

(17)

The two following identities are also easy consequences of the Corollary 1; they are important for
the method of data analysis presented in this article:

Proposition 2. Let k be any integer

Ik((X0, X1); X2; ...; Xk;P) = Ik(X0; X2; ...; Xk;P) + X0.Ik(X1; X2; ...; Xk;P). (18)

Proposition 3. Let k be any integer

Ik+1(X0; X1; ...; Xk;P) = Ik(X1; X2; ...; Xk;P)− X0.Ik(X1; X2; ...; Xk;P). (19)

Remark 5. Be careful that some universal formulas between sets do not give identities between information
functions; for instance, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), but, in general, we have

I2(X; (Y, Z)) 6= I2(X; Y) + I2(X; Z). (20)

What is true is the following identity:

I2(X; (Y, Z)) + I2(Y; Z) = I2((X, Y); Z) + I2(X; Y). (21)

This corresponds to the following universal formula between sets

(A ∩ (B ∪ C)) ∪ (B ∩ C) = (A ∩ B) ∪ ((A ∪ B) ∩ C). (22)

Formula (21) follows directly from the definition of I2, by developing the four terms of the equation.
It expresses the fact that I2 is a simplicial co-cycle, being the simplicial co-boundary of H itself.

However, although this formula (22) between sets is true, it is not of the form authorized by Corollary 1.
Consequently, some identities of sets that are not contained in the Theorem 1 correspond to information

identities, but, as we saw just before with the false formula (20), not all identities of sets correspond to
information identities.

As we already said, the set of joint variables XI , for all the subsets I of [n] = {1, ..., n}, is an
information category, the set C being the n− 1-simplex ∆([n]) of vertices X1, ..., Xn. In what follows,
we do not consider more general information categories.

We can paraphrase the Theorem 1, by a combinatorial Theorem on the simplex ∆([n]):
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Definition 1. Let X1, ..., Xn be a set of random variables with respective codomains E1, ..., En, and let XI =

{Xi1 , ..., Xik} be a face of ∆([n]), we define, for a probability P on the product E of all the Ei, i = 1, ..., n,

ηI(P) = η(Xi1 ; ...; Xik ; P) = X[n]\I .Ik(Xi1 ; ...; Xik ; P). (23)

Remark 6. With the exception J = [n], the function ηJ is not an information co-chain of degree k. However,
it is useful in the demonstrations of some of the following results.

Embed ∆([n]) in the hyperplane x1 + ... + xn = 1 as the standard simplex in Rn (the intersection
of the above hyperplane with the positive cone, where ∀i = 1, ..., n, xi ≥ 0), and consider the balls
Σ1, ..., Σn of radius R strictly larger than

√
(n− 1)/n that are centered on the vertices Xj; j = 1, ..., n;

they have all possible non-empty intersections convex. The subsets Σ′I = ΣI \ Σ[n]\I are the connected
components of complementary set of the unions of the boundary spheres ∂Σ1, ..., ∂Σn in the total union
Σ of the balls Σ1, ..., Σn.

Proposition 4. For every k + 1 subsets I1, .., Ik, K of [n], if l denotes the cardinality of K, the information
function Ik,l(XI1 ; ...; XIk ; P|XK) is equal to the sum of the functions ηJ(P), where J describes all the faces such
that Σ′J is one of the connected components of the set (ΣI1 ∩ ...∩ ΣIk )\ΣK.

Proof. Every subset that is obtained from the ΣJ ; J ⊂ [n] by union, intersection and difference, repeated
indefinitely (i.e., every element of the Boolean algebra generated by the Σi; i = 1, ..., n), is a disjoint
union of some of the sets Σ′J . This is true in particular for the sets obtained by the succession of
operations 1, 2, 3 in the order prescribed by the Corollary 1 above. Then, the proposition follows from
Corollary 1.

We define the elementary (or pure) joint entropies Hk(XI) and the elementary (or pure) higher
information functions Ik(XI) as Hk(Xi1 ; ...; Xik ; P) and Ik(Xi1 ; ...; Xik ; P) respectively, where I =

{i1, ..., ik} ⊂ [n] describes the subsets of [n]. In the following text, we will consider only these pure
quantities. We will frequently denote them simply by Hk (resp. Ik). The other information quantities
use joint variables and conditioning, but the preceding result tells that they can be computed from the
pure quantities.

For the pure functions, the decompositions in the basis ηI are simple:

Proposition 5. If I = {i1, ..., ik}, we have

Hk(Xi1 ; ...; Xik ; P) = ∑
J⊂[n]|∃m,im∈J

ηJ(P), (24)

and
Ik(Xi1 ; ...; Xik ; P) = ∑

J⊃I
ηJ(P). (25)

In other terms, the function Hk evaluated on a face XI of dimension k is given by the sum of the
functions ηJ over all the faces XJ connected to XI . In addition, the function Ik evaluated on XI is the
sum of the functions ηJ over all the faces XJ that contain XI .

Proposition 6. For any face J of ∆([n]), of dimension l, and any probability P on EX , we have

ηJ(P) = ∑
k≥l

∑
I⊇J|dimI=k

(−1)k−l Hk(XI ; P). (26)

Proof. This follows from the Moebius inversion formula [40].
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Corollary 2. (Han): Any Shannon information quantity is a linear combination of the pure functions Ik, k ≥ 1
(resp. Hkk ≥ 1), with coefficients in Z, the ring of relative integers.

Proof. This follows from the Proposition 4.

Hu [10] also proved a remarkable property of the information functions associated with a
Markov process:

Proposition 7. The variables X1, ..., Xn can be arranged in a Markov process (Xi1 , ..., Xin) if and only if,
for every subset J = {j1, ..., jk−2} of {i2, ..., in−1} of cardinality k− 2, we have

Ik(Xi1 ; Xj1 , ...; Xjk−2
; Xin) = I2(Xi1 ; Xin). (27)

This implies that, for a Markov process between (Xi1 , ..., Xin), all the functions Ik(XI) involving i1
and in, are positive.

3.2. The Independence Criterion

The total correlations were defined by Watanabe as the difference of the sum of entropies and the
joint entropy, noted Gk [18] (see also [19–21,26]):

Gk(X1; ...; Xk; P) =
k

∑
i=1

H(Xi)− H(X1; ...; Xk). (28)

Total correlations are Kullback–Leibler divergences, cf. Appendix A on free energy; and I2 = G2.
It is well known (cf. the above references or [41]) that, for n ≥ 2, the variables X1, ..., Xn are statistically
independent for the probability P, if and only if Gn(X1; ...; Xn) = 0, i.e.,

H(X1, ..., Xn; P) = H(X1; P) + ... + H(Xn; P). (29)

Remark 7. The result is proved by induction using repetitively the case n = 2, which comes from the strict
concavity of the function H(P) on the simplex ∆([n]).

Theorem 2. For every n and every set E1, ..., En of respective cardinalities N1, ..., Nn, the probability P renders
the n variables Xi, i = 1, ..., n statistically independent if and only if the 2n − n− 1 quantities Ik for k ≥ 2 are
equal to zero.

Proof. For n = 2, this results immediately from the above criterion and the definition of I2. Then,
we proceed by recurrence on n, and, assuming that the result is true for n− 1, we deduce it for n.
The definition of In is

In(X1; ...; Xn; P) = H(X1; P) + ... + H(Xn; P)

− H(X1, X2; P)− ... + (−1)n+1H(X1, ..., Xn; P). (30)

By recurrence, the quantities Ik for 2 ≤ k ≤ n− 1 are all equal to zero if and only if, for every subset
I = {i1, ..., ik} ⊂ [n] of cardinality k between 2 and n− 1, the variables Xi1 , ..., Xik are independent.
Suppose this is the case. In the above formula (30), we can replace all the intermediary higher
entropies H(XI ; P) for I between 2 and n− 1 by the corresponding sum of the individual entropies
H(Xi1) + ... + H(Xik ). By symmetry, each term H(Xi) appears the same number of times, with the
same sign each time. The total sum of signs is obtained by replacing each H(Xi) by 1; it is

Σ = n− 2C2
n + 3C3

n − ... + (−1)n(n− 1)Cn−1
n . (31)
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However, as a polynomial in x, we have

(1− x)n = 1− nx + C2
nx2 − ... + (−1)nxn, (32)

thus
d

dx
(1− x)n = −n + 2C2

nx− ... + (−1)nnxn−1, (33)

therefore
n− 2C2

n + ... + (−1)n(n− 1)Cn−1
n = (−1)nn− d

dx
(1− x)n|x=1 = (−1)nn (34)

because n ≥ 2.

Then, we obtain

In(X1; ...; Xn; P) = (−1)n−1H(X1, ..., Xn; P) + (−1)n(H(X1; P) + ... + H(Xn; P)). (35)

Therefore, if the variables Xi; i = 1, ..., n are all independent, the quantity In is equal to 0.
In addition, conversely, if In = 0, the variables Xi; i = 1, ..., n are all independent.

Te Sun Han established that, for any subset I0 of [n] of cardinality k0 ≥ 2, there exist probability
laws such that all the Ik(XI), k ≥ 2 are zero with the exception of Ik0(XI0) [11,12]. Consequently, in the
equations of the Theorem 2, no one can be forgotten.

The unique Equation (29) also characterizes the statistical independence, but its gradient with
respect to P is strongly degenerate along the variety of independent laws. As shown by Te Sun
Han [11,12], this is not the case for the Ik.

3.3. Information Coordinates

The number of different functions ηI , resp. pure Ik, resp. pure Hk, is 2n − 1 in the three cases.
It is natural to ask if each of these families of functions of PX are analytically independent; we will
prove here that this is true. The basis of the proof is the fact that each family gives finitely ambiguous
coordinates in the case of binary variables, i.e., when all the numbers Ni, i = 1, ..., n are equal to 2.
Then, we begin by considering n binary variables with values 0 or 1.

Let us look first at the cases n = 1 and n = 2. In addition, consider only the family Hk, the other
families being easily deduced by linear isomorphisms.

In the first case, the only function to consider is the entropy

H((p0, p1)) = −p0 log2(p0)− p1 log2(p1)

= − 1
ln 2

(x ln x− (1− x) ln(1− x)) = h(x),
(36)

where we denoted by (p0, p1) the probability P(0) = p0 , P(1) = p1, where p0, p1 are real positive
numbers of sum 1, and x = p0; then, x belongs to [0, 1]. As a function of x, h is strictly concave, attaining
all values between 0 and 1, but it is not injective, due to the symmetry x 7→ 1− x, which corresponds
to the exchange of the values 0 and 1.

For n = 2, we have two variables X1, X2 and three functions H(X1; P), H(X2; P), H(X1, X2; P).
These functions are all concave and real analytic in the interior of the simplex of dimension 3.

Let us describe the probability law by four positive numbers p00, p01, p10, p11 of sum 1.
The marginal laws for X1 and X2 are described respectively by the following coordinates:

p0 = p00 + p01, p1 = p10 + p11, (37)

q0 = p00 + p10, q1 = p01 + p11. (38)
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For the values of H(X1; P) and H(X2; P), we can take independently two arbitrary real numbers
between 0 and 1. Moreover, from the case n = 1, if two laws P and P′ give the same values H1 and H2

of H(X1; P) and H(X2; P) respectively, we can reorder 0 and 1 independently on each variable in such
a manner that the images of P and P′ by X1 and X2 coincide, i.e., we can suppose that p0 = p′0 and
q0 = q′0, which implies p1 = p′1 and q1 = q′1, due to the condition of sum 1. It is easy to show that the
third function H(X1, X2; P) can take any value between the maximum of H1, H2 and the sum H1 + H2.

Lemma 1. There exist at most two probability laws that have the same marginal laws under X1 and X2 and
the same value H of H(X1, X2); moreover, depending on the given values H1, H2, H in the allowed range, both
cases can happen in open sets of the simplex of dimension seven.

Proof. When we fix the values of the marginals, all the coordinates pij can be expressed linearly in one
of them, for instance x = p00:

p01 = p0 − x, p10 = q0 − x, p11 = p1 − q0 + x. (39)

Note that x belongs to the interval I defined by the positivity of all the pij:

x ≥ 0, x ≤ p0, x ≤ q0, x ≥ q0 − p1 = q0 + p0 − 1. (40)

The fundamental formula gives the two following equations that allow us to define the functions
f1(x) and f2(x):

H(X1, X2; P)− H(X1) = X1.H(X2; P) = p0h(
x
p0

) + p1h(
q0 − x

p1
) = f1(x), (41)

H(X1, X2; P)− H(X2) = X2.H(X1; P) = q0h(
x
q0
) + q1h(

p0 − x
q1

) = f2(x). (42)

As a function of x, each one is strictly concave, being a sum of strictly concave functions, thus it
cannot take the same value for more than two values of x.

This proves the first sentence of the lemma; to prove the second one, it is sufficient to give
examples for both situations.

Remark that the functions f1, f2 have the same derivative:

f ′1(x) = f ′2(x) = log2(
p01 p10

p00 p11
). (43)

This results from the formula h′(u) = − log2(u/1− u) of the derivative of the entropy.
Then, the maximum of f1 or f2 on [0, 1] is attained for p01 p10 = p00 p11, which is when

x(x + 1− p0 − q0) = (x− p0)(x− q0) ⇔ x = p0q0, (44)

which we could have written without computation because it corresponds to the independence of the
variables X1, X2.

Then, the possibility of two different laws P, P′ in the lemma is equivalent to the condition that
p0q0 belongs to the interior of I. This happens for instance for 1 > p0 > q0 > q1 > p1 > 0, where
I = [q0 − p1, q0] because, in this case, p0q0 < q0 and p1 > p1q0 i.e., p0q0 = q0 − p1q0 > q0 − p1. In fact,
to get P 6= P′ with the same H, it is sufficient to take x different from p0q0 but sufficiently close to it,
and H = f2(x) + H2.
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However, even in the above case, the values of f1 (or f2) at the extremities of I do not coincide in
general. Let us prove this fact. We have

f2(q0) = q1h(
p0 − q0

q1
) = q1h(1− p1

q1
) = F(p1),

f2(q0 − p1) = q0h(1− p1

q0
) = G(p1).

(45)

When p1 = 0, the interval I is reduced to the point q0, and F(0) = G(0) = 0. Now, fix q0, q1, and
consider the derivatives of F, G with respect to p1 at every value p1 > 0:

F′(p1) = log2
p0 − q0

p1
, G′(p1) = log2

q0 − p1

p1
. (46)

Therefore, F′(p1) < G′(p1) if and only if p0 − q0 < q0 − p1, i.e., q0 > 1/2. Then, when q0 > 1/2,
for p1 > 0 near 0, we have F(p1) < G(p1).

Consequently, any value f2(x) that is a little larger than F(p1) determines a unique value of x.
It is in the vicinity of q0.

From this lemma, we see that there exist open sets where eight or four different laws give the
same values of the three functions H(X1), H(X2), H(X1, X2). In degenerate cases, we can have 4, 2 or
1 laws giving the same three values.

Theorem 3. For n binary variables X1, ..., Xn, the functions ηI , resp. pure Ik, resp. pure Hk, characterize the
probability law on EX up to a finite ambiguity.

Proof. From the preceding section, it is sufficient to establish the theorem for the functions Hk(XI),
where k goes from 1 to n, and I describes all the subsets of cardinality k in [n].

The proof is made by recurrence on n. We just have established the cases n = 1 and n = 2.
For n > 2, we use the fundamental formula

H(X1, ..., Xn) = H(X1, ..., Xn−1) + (X1, ..., Xn−1).H(Xn). (47)

By the Marginal Theorem of H.G. Kellerer [42] (see also F. Matus [43]), knowing the 2n − 2
non-trivial marginal laws of P, there is only one resting dimension, thus one of the coordinates pi
only is free that we denote x. Supposing that all the values of the Hk are known, the hypothesis of
recurrence tells that all the non-trivial marginal laws are known from the values of the entropy, up to
a finite ambiguity. We fix a choice for these marginals. The above fundamental formula expresses
H(X1, ..., Xn) as a function f (x) of x, which is a linear combination with positive coefficients of the
entropy function h applied to various affine expressions of x; therefore, f is a strictly concave function
of one variable, then only two values at most are possible for x when the value f (x) is given.

The group {±1}n of order 2n that exchanges in all possible manners the values of the binary
variables Xi, i = 1, ..., Xn gives a part of the finite ambiguity. However, even for n = 2, the ambiguity is
not associated with the action of a finite group, contrarily to what was asserted in [1] Section 1.4. What
replaces the elements of a group are partially defined operations of permutations that deserve to be
better understood.

Theorem 4. The functions ηI , resp. the pure Ik(XI), resp. the pure Hk(XI), have linearly independent
gradients in an open dense set of the simplex ∆([n]) of probabilities on EX .

Proof. Again, it is sufficient to treat the case of the higher pure entropies.
We write N = N1...Nn. The elements of the simplex ∆(N) are described by vectors (p1, ..., pN) of

real numbers that are positive or zero, with a sum equal to 1. The expressions Hk(XJ) are real analytic
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functions in the interior of this simplex. The number of these functions is 2n − 1. The dimension N − 1
of the simplex is larger (and equal only for the fully binary case); then, to establish the result, we have
to find a minor of size 2n − 1 of the Jacobian matrix of the partial derivatives of the entropy functions
with respect to the variables pi, i = 1, ..., N − 1 that is non identically zero. For any index j between 1
and n, choose two different values of the set Ej. Then, apply the Theorem 2.

Remark 8. This proves the fact mentioned in 1.4 of [3].

Te Sun Han established that the quantities Ik(XI) for k ≥ 2 are functionally independent [11,12].

Remark 9. The formulas of Hk(XI), then of Ik(Xi) and ηI , extend analytically to the open cone Γ([n]) of
vectors with positive coordinates. On this cone, we pose

H0(P) = I0(P) = η0(P) =
n

∑
i=1

pi. (48)

This is the natural function to consider to account for the empty subset of [n].
Be careful that the functions Kk for k > 0 are no more positive in the cone Γ([n]) because the function

−x ln x becomes negative for x > 0. In fact, we have, for λ ∈]0, ∞[, and P = (p1, ..., pn) ∈ Γ([n]),

Hk(λP) = λHk(P)− λ log2 λH0(P). (49)

The above theorems extend to the prolonged functions to the cone, by taking into account H0.

Notice further properties of information quantities:
For Ik, due to the constraints on I2 and I3, see Matsuda [13], we have for any pair of variables

0 ≤ I2(X1, X2) ≤ min{H(X1), H(X2)}, (50)

and any triple X1, X2, X3:

−min{H(X1), H(X2), H(X3)} ≤ I3(X1, X2, X3) ≤ min{H(X1), H(X2), H(X3)}. (51)

It could be that interesting inequalities also exist for k ≥ 4, but it seems that they are unknown.
Contrarily to Hk, the behavior of the function Ik is not the same for k even and k odd. In particular,

as functions of the probability PX , the odd functions I2m+1, for instance I1 = H1 = H, or I3 (ordinary
synergy), have properties of the type of pseudo-concave functions (in the sense of [1]), and the even
functions I2m, like I2 (usual mutual-information) have properties of the type of convex functions
(see [1] for a more precise statement). Note that this accords well with the fact that the total entropy
H(X), which is concave, is the alternate sum of the Ik(XI) over the subsets I of [n], with the sign
(−1)k−1 (cf. Appendix A).

Another difference is that each odd function I2m+1 is an information co-cycle, in fact a co-boundary
if m ≥ 1 (in the information co-homology defined in [1]), but each odd function I2m+1 is a simplicial
co-boundary in the ordinary sense, and not an information co-cycle.

Remark 10. From the quantitative point of view, we have also considered and quantified on data the
pseudo-concave function (−1)k−1 Ik (in the sense of [1]) as a measure of available information in the total
system and considered total variation along paths. Although such functions are sounding and appealing,
we have chosen to illustrate here only the results using the function Ik as they respect and generalize the usual
multivariate statistical correlation structures of the data and provide meaningful data interpretation of positivity
and negativity, as will become obvious in the following application to data. However, what really matters is the
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full landscape of information sequences, showing that information is not well described by a unique number,
but rather by a collection of numbers indexed by collections of joint variables.

3.4. Mutual-Information Negativity and Links

Information quantities can be negative (cf. [10]). This can pose problems of interpretation as
recalled in the Introduction; then, before discussing the empirical case of gene expression, we now
illustrate what the negative and positive information values quantify in the simplest theoretical
example of three binary variables. Let us consider three ordinary biased coins X1, X2, X3; we will
denote by 0 and 1 their individual states and by a, b, c, ... the probabilities of their possible configurations
three by three; more precisely:

a = p000, b = p001, c = p010, d = p011, (52)

e = p100, f = p101, g = p110, h = p111. (53)

We have
a + b + c + d + e + f + g + h = 1. (54)

The following identity is easily deduced from the definition of I3 (cf. (18)):

I(X1; X2; X3) = I(X1; X2)− I(X1; X2|X3). (55)

Of course, the identities obtained by changing the indices are also true. This identity interprets
the information shared by three variables as a measure of the lack of information in conditioning.
We notice a kind of intrication of I2: conditioning can increase the information, which interprets the
negativity of I3 correctly. Another useful interpretation of I3 is given by

I(X1; X2; X3) = I(X1; X3) + I(X2; X3)− I((X1, X2); X3). (56)

In this case, negativity is interpreted as a synergy, i.e., the fact that two variables can give more
information on a third variable than the sum of the two separate information.

Several inequalities are easy consequences of the above formulas and of the positivity of
mutual-information of two variables (conditional or not), as shown in [13]:

I(X1; X2; X3) ≤ I(X1; X2), (57)

I(X1; X2; X3) ≥ −I(X1; X2|X3), (58)

and the analogs that are obtained by permuting the indices.
Let us remark that this immediately implies the following assertions:

(1) when two variables are independent from the information of the three is negative or zero;
(2) when two variables are conditionally independent with respect to the third, the information of

the three is positive or zero.

By using the positivity of the entropy (conditional or not), we also have:

I(X1; X2) ≤ min(H(X1), H(X2)), (59)

I(X1; X2|X3) ≥ −min(H(X1|X3), H(X2|X3)) ≥ −min(H(X1), H(X2)). (60)

We deduce from here

I(X1; X2; S3) ≤ min(H(X1), H(X2), H(X3)), (61)

I(X1; X2; X3) ≥ −min(H(X1), H(X2), H(X3)). (62)
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In the particular case of three binary variables, this gives

1 ≥ I(X1; X2; X3) ≥ −1. (63)

Proposition 8. The absolute maximum of I3, equal to 1, is attained only in the four cases of three identical
or opposite unbiased variables. That is, H(X1) = H(X2) = H(X3) = 1, and X1 = X2 or X1 = 1− X2,
and X1 = X3 or X1 = 1− X3 that is a = h = 1/2 or b = g = 1/2 or c = f = 1/2 or d = e = 1/2 and, in
each case, all of the other variables are equal to 0 (cf. Figure 1a–c).

Figure 1. Example of the four maxima (left panel) and of the two minima of I3 for three binary variables
(a) informal representation of the 7-simplex of probability associated with three binary variables. The
values of the atomic probabilities that achieve the extremal configurations are noted in each vertex.
(b) representation of the associated probabilities in the data space of the 3-variables for these extremal
configurations. (c) information Ik landscapes of these configurations (top). Representation of these
extremal configurations on the probability cube. The colors represents the non-null atomic probability
of each extremal configuration (bottom).

Proof. First, it is evident that the example gives I3 = 1. Second, consider three variables such that
I(X1; X2; X3) = 1. We must have H(X1) = H(X2) = H(X3) = 1, and also I(Xi; Xj) = 1 for any pair
(i, j), thus H(Xi, Xj) = 1, H(Xi|Xj) = 0, and the variable Xi is a deterministic function of the variable
Xj, which gives Xi = Xj or Xi = 1− Xj.

Proposition 9. The absolute minimum of I3, equal to −1, is attained only in the two cases of three two by two
independent unbiased variables satisfying a = 1/4, b = 0, c = 1/4, d = 0, e = 1/4, f = 0, g = 1/4, h = 0,
or a = 0, b = 1/4, c = 0, d = 1/4, e = 0, f = 1/4, g = 0, h = 1/4. These cases correspond to the two
borromean links, the right one and the left one (cf. Figure 1).
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Proof. First, it is easy to verify that the examples give I3 = −1. Second, consider three variables such
that I(X1; X2; X3) = −1. The inequality Equation (62) implies H(X1) = H(X2) = H(X3) = 1, and the
inequality Equation (60) shows that H(Xi|Xj) = 1 for every pair of different indices, so H(X1, X2) =

H(X2, X3) = H(X3, X1) = 2, and the three variables are two by two independent. Consequently, the
total entropy H3 of (X1, X2, X3), given by I3 minus the sum of individual entropies plus the sum of
two by two entropies is equal to 2. Thus,

8 = −4a lg a− 4b lg b− 4c lg c− 4d lg d− 4e lg e− 4 f lg f − 4g lg g− 4h lg h. (64)

However, we also have

8 = 8a + 8b + 8c + 8d + 8e + 8 f + 8g + 8h, (65)

that is,
8 = 4a lg 4 + 4b lg 4 + 4c lg 4 + 4d lg 4 + 4e lg 4 + 4 f lg 4 + 4g lg 4 + 4h lg 4. (66)

Now, we subtract Equation (66) from Equation (64), we obtain

8 = −4a lg 4a− 4b lg 4b− 4c lg 4c− 4d lg 4d− 4e lg 4e− 4 f lg 4 f − 4g lg 4g− 4h lg 4h. (67)

However, each of the four quantities −4a lg 4a− 4b lg 4b,−4c lg 4c− 4d lg 4d,
− 4e lg 4e− 4 f lg 4 f ,−4g lg 4g− 4h lg 4h is ≥ 0 because each of the four sums 4a + 4b, 4c + 4d, 4e +
4 f , 4g + 4h is equal to 1, so each of these quantities is equal to zero, which happens only if ab = cd =

e f = gh = 0. However, we can repeat the argument with any permutation of the three variables
X1, X2, X3. We obtain nothing new from the transposition of X1 and X3. From the transposition of X1

and X3, we obtain ae = b f = cg = dh = 0. From the transposition of X2 and X3, we obtain ac = bd =

eg = f h = 0. Thus, from the cyclic permutation (1, 2, 3) (resp. (1, 3, 2), we get ae = b f = cg = dh = 0
(resp. ac = bd = eg = f h = 0).) If a = 0, this gives necessarily b, e, c nonzero, thus d = f = g = 0, and
h 6= 0, and, if a 6= 0, this gives b = e = c = 0, thus d, f , g nonzero and h = 0.

Figure 1 illustrates the probability configurations giving rise to the maxima and minima of I3 for
three binary variables.

4. Experimental Validation: Unsupervised Classification of Cell Types and Gene Modules

4.1. Gene Expression Dataset

The developments and tests of the estimation of simplicial information topology on data are made
on a genetic expression dataset of two cell types obtained as described in the section Materials and
Methods Section 6.1. The result of this quantification of gene expression is represented in “Heat maps”
and allows two kinds of analysis:

• The analysis with genes as variables: in this case, the “Heat maps” correspond to (m, n) matrices
D (presented in the Section 6.2) together with the labels (population A or population B) of the
cells. The data analysis consists of the unsupervised classification of gene modules (presented in
Section 4.2).

• The analysis with cells (neurons) as variables: in this case, the “Heat maps” correspond to the
transposed matrices DT (presented in Section 4.3.1) together with the labels (population A or
population B) of the cells. The data analysis consists of the unsupervised classification of cell types.

4.2. Ik Positivity and General Correlations, Negativity and Clusters

Section 3.4 investigated theoretically positivity and negativity of Ik for the binary variable case.
In the much more complex case of gene expressions, the statistical analysis shown in [4] also exhibited
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a combination of positivity and negativity of the information quantities Ik; k ≥ 3. In this analysis,
the minimal negative information configurations provide a clear example of purely emergent and
collective interactions analog to Borromean links in topology, since it cannot be detected from any
pairwise investigation or two-dimensional observations. In these Borromean links, the variables
are pairwise independent but dependent at 3. In general, Ik negativity detects such effects of their
projection on lower dimensions; this illustrates the main difficulty when going from dimension 2 to 3
in information theory. The example given in Figure 1 provides a simple example of this dimensional
effect in the data space: the alternated clustering of the data corresponding to I3 negativity cannot
be detected by the projections onto whichever subspace of pair of variables, since the variables are
pairwise independent. For N-ary variables, the negativity becomes much more complicated, with
more degeneracy of the minima and maxima of Ik.

In order to illustrate the theoretical examples of Figure 1 on real data, considering the data set
of gene expression (matrix D), we plotted some quadruplets of genes sharing some of the highest
(positive) and lowest (negative) I4 values in the data space of the variables (Figure 2). Figure 2 shows
that, in the data space, Ik negativity identifies the clustering of the data points, or, in other words, the
modules (k-tuples) for which the data points are segregated into condensate clusters. As expected
theoretically, Ik positivity identifies co-variations of the variables, even in cases of nonlinear relations,
as shown by Reshef and colleagues [44] in the pairwise case. It can be easily shown in the pairwise
case that Ik positivity generalizes the usual correlation coefficient to nonlinear relations. As a result,
the interpretation of the negativity of Ik is that it provides a signature and quantification of the variables
that segregate or differentiate the measured population.

Figure 2. Examples of some of 4-modules (quaduplets) with the highest (positive) and lowest (negative)
I4 of gene expression represented in the data space. (a) two 4-modules of genes sharing among the
highest positive I4 of the gene expression data set (cf. Section 6.1). The data are represented in the
data space of the measured expression of the 4-variable genes. The fourth dimension-variable is color
coded. (b) two 4-modules of genes sharing among the lowest negative I4. All the modules were
found to be significant according to the dependence test introduced in Section 6.5, except the module
{17, 19, 21, 13}. The identified extremal modules (different) give similar patterns of dependences [4,45].
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4.3. Cell Type Classification

4.3.1. Example of Cell Type Classification with a Low Sample Size m = 41, Dimension n = 20, and
Graining N = 9.

As introduced in previous Section 4.2, the k-tuples presenting the highest and lowest information
(Ik) values are the most biologically relevant modules and identify the variables that are the most
dependent or synergistic (respectively “entangled”). We call information landscape the representation
of the estimation of all Ik values for the whole simplicial lattice of k-subfaces of the n-simplex of
variables ranked by their Ik values in ordinate. In general, the null hypothesis against whom are tested
the data are the maximal uniformity and independence of the variables Xi, i = 1, ..., n. Below the
undersampling dimension ku presented in methods Section 6.4.2, this predicts the following standard
sequence for any permutation of the variables Xi1 , ..., Xin :

H1 = log2 r, ..., Hk = k log2 r, ..., (68)

which is linearity (with N1 = ... = Nn = r).
What we observed in the case where independence is confirmed, for instance with the chosen

genes of the population B (NDA neurons) in [4], is linearity up to the maximal significant k,
then stationarity. However, where independency is violated, for example with the chosen genes
of the population A (DA neurons) in [4], some permutations of X1, ..., Xn give sequences showing
strong departures from the linear prediction.

This departure and the rest of the structure can also be observed on the sequence Ik as shown
in Figures 3 and 4, which present the case where cells are considered as variables. In the trivial case,
i.e., uniformity and independence, for any permutation, we have

I1 = log2 r, I2 = I3 = ... = In = 0. (69)

As detailed in Materials and Methods Section 6.3, we further compute the longest information
paths (starting at 0 and that go from vertex to vertex following the edges of the simplicial lattice)
with maximal or minimal slope (with minimal or maximal conditional mutual-information) that
end at the first minimum, a conditional-independence criterion (a change of sign of conditional
mutual-information). Such paths select the biologically relevant variables that progressively add more
and more dependences. The paths Ik(σ) that stay strictly positive for a long time are especially
interesting, being interpreted as the succession of variables Xσ1 , ..., Xσk that share the strongest
dependence. However, the paths Ik(σ) that become negative for k ≥ 3 through I2 ≈ 0 are also
interesting because they exhibit a kind of frustration in the sense of Matsuda [13] or synergy in the
sense of Brenner [15].

The information landscape and path analysis corresponding to the analysis with cells as variables
are illustrated in Figure 3. It comes to consider the cells as a realization of gene expression rather than
the converse, cf. [46]. In this case, the data analysis task is to recover blindly the pre-established labels
of cell types (population A and population B) from the topological data analysis, an unsupervised
learning task. The heat-map transpose matrix of n = 20 cells with m = 41 genes is represented in
Figure 3a. We took n = 20 neurons among the 148 within which 10 were pre-identified as population
A neurons (in green) and 10 were pre-identified as population B neurons (in dark red), and ran the
analysis on the 41 gene expression with a graining of N = 9 values (cf. Section 6.1). The dimension
above which the estimation of information becomes too biased due to the finite sample size is given
by the undersampling dimension ku = 11 (p value 0.05, cf. Section 6.4.2). The landscapes turn
out to be very different from the extremal (totally disordered and totally ordered) homogeneous
(identically distributed) theoretical cases. The Ik landscape shown in Figure 3c exhibits two clearly
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separated components. The scaffold below represents the tuple corresponding to the maximum of I10:
it corresponds exactly to the 10 neurons pre-identified as being population A neurons.

Figure 3. Example of a Ik landscape and path analysis. (a) heatmap (transpose of matrix D) of n = 20
neurons with m = 41 genes. (b) the corresponding Hk landscape. (c) the corresponding Ik landscape
(d) maximum (in red) and minimum (in blue) Ik information paths. (e) histograms of the distributions
of Ik for k = 1, .., 12. See text for details.
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Figure 4. Ik, Hk and Gk (Total Free Energy, TFE) landscapes. (a) entropy Hk and (b) mutual-information
Ik (free energy components) landscapes (same representation as Figure 3, ku = 11, p value 0.05); (c) Gk
landscape (total correlation or multi-information or Integrated Information or total free energy); (d) the
landscape of the Gk per body (Gk/k).

The maximum (in red) and minimum (in blue) Ik information paths identified by the algorithm
are represented in Figure 3d. The scaffold below represents the two tuples corresponding to the two
longest maximum paths in each component: the longest (noted Max IP11 in green) IP11 contains
the 10 neurons pre-identified as population A and 1 “error” neuron pre-identified as population B.
We restricted the longest maximum path to the undersampling dimension ku = 11, but this path
reached k = 14 with erroneous classifications. The second longest maximum path (noted Max IP11

in red) IP11 contains the 10 neurons pre-identified as population B and one neuron pre-identified
as population A that is hence erroneously classified by the algorithm. Altogether, the information
landscape shows that population A neurons constitute a quite homogenous population, whereas
the population B neurons correspond to a more heterogeneous population of cells, a fact that was
already known and reported in the biological studies of these populations. The histograms of the
distributions of Ik for k = 1, .., 12, shown in Figure 3e, are clearly bimodal and the insets provide a
magnification on the population A component. As detailed in the section Materials and Methods
Section 6.5, we developed a test based on the random shuffles of the data points that leave the marginal
distributions unchanged, as proposed by [47]. It estimates that, if a given Ik significantly differs from a
randomly generated Ik, and it hence provides a test of the specificity of the k-dependence. The shuffled
distributions and the significance value for p = 0.1 are depicted by the black lines and the dotted
lines, as in Section 6.5. As illustrated in the histograms of Figure 3e and in [45], these results show that
higher dependences can be important, but they do not mean that pairwise or marginal Information are
not: the consideration of higher dependences can only improve the efficiency of the detection obtained
from pairwise or marginal considerations.

4.3.2. Total Correlations (Multi-Information) vs. Mutual-Information

As illustrated in Figure 4 and expected from relative entropy positivity, the total correlation Gk
(see Appendix A on Bayes free-energy) is monotonically increasing with the order k, and quite linearly
in appearance (Gk ≈ 2k asymptotically). d quantifies this departure from linearity. However, the Gk
landscape fails to distinguish, as clearly as the Ik landscape does, the population A.
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5. Discussion

5.1. Topological and Statistical Information Decompositions

In this article, we have studied particular subsets of higher information functions, the entropies
Hk, k = 1, ..., n and the mutual information quantities Ik, k = 1, ..., n of observable quantities X1, ..., Xn.
First, we have established new mathematical results on them, in particular a characterization of
statistical independence, a proof of their algebraic independence, and their completeness for binary
variables. Then, we have used their estimations for describing structures in experimental data.

The consideration of these functions, either theoretically or applied to data, are not new (cf.
introduction). The originality of our method is the systematic consideration of the entropy paths and
the information paths that can be associated with all possible permutations of the basic variables, and
the extraction of exceptional paths from them, in order to define the overall form of the distribution of
information among the set of observables. We named these tools the landscapes of the data. Information
and entropy landscapes and paths allow for quantifying most of the standard functions arising from
information theory in a given dataset, including conditional mutual-information (and hence the
information transfer or Granger causality originally developed in the context of time series [48,49]),
and could be used to identify Markov chains (cf. Proposition 7. Moreover, the method was successfully
applied to a concrete problem of gene expressions in [4].

This new perspective has its origin in the local (topos) homological theory introduced in [1] and
further developed and extended in several ways by Vigneaux [2,3].

The key role of independence in probability theory was nicely expressed by Kolmogorov [50] in
his “Foundations of the theory of probability”: “... one of the most important problems in the philosophy of
the natural sciences is—in addition to the well-known one regarding the essence of the concept of probability
itself to make precise the premises which would make it possible to regard any given real events as independent.”
The interpretation of the Shannon equation as a co-cycle equation is part of an answer to this question
because it displaces the problem to the broader problem of defining invariants of the mathematical
formulations of fundamental notions in natural sciences, thus giving them precise forms. It is a fact
that many of these invariants belong to the world of homolological algebra, as it was elaborated
by several generations of mathematicians in the last two centuries, in particular by Mac Lane and
Grothendieck. In these theories, the departure from independence is not an arbitrary axiom; this
results from universality principles in Algebra.

However, we believe that much more has to be done in this direction—in particular, a nonlinear
extension of homology, named homotopical algebra, was defined in particular by Quillen (cf. [51]),
and higher information quantities constructed from the entropy have evident flavors of these nonlinear
extensions. This was underlined by the Borromean configurations studied in Section 3.4.

5.2. Mutual-Information Positivity and Negativity

As stated in the Introduction (cf. refs. [27–29]), the possible negativity of Ik functions has often
been seen as a problem and a lack of interpretability on data, justifying the search for non-negative
information decompositions [27]. Theoretically, we showed in an elementary example (k = 3)
that the negative multiple minima of mutual-information arises from a purely higher-dimensional
effect, unmasking the ambiguity of lower dimensional projections, and proposed a topological link
interpretation of this phenomenon. In other terms, these minima happen at the boundary of the
probability simplex, illustrating the sub or supra harmonic properties of Ik functions. On the side of
the application to data, the present paper and [4] show that, on the contrary, the possible negativity
is an advantage. The interest of this negativity was already illustrated in [13,15,17,22], but we have
further developed this topic in the high-dimensional multivariate case with the study of complete
Ik-landscapes, providing some new insights with respect to their meaning in terms of data point
clusters, or of the set of k variables that best separate-differentiate the data points.
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The positivity of mutual-information also generalizes well to a higher dimension as we showed
that they detect statistical correlations within the set of variables. We propose that they generalize
to the multivariate case the results of Reshef et al. that showed that the maximum of pairwise
mutual-information over the graining generalizes the pairwise correlation coefficient to arbitrary
nonlinear statistical relationships [44].

5.3. Total Correlations (Multi-Information)

As mentioned in the Introduction, total correlations Gk have been repeatedly re-found and studied
under the name of multi-information or integrated information [18–21], and most of the multivariate
information studies on data with k > 3 focused on them [26,52]. From the theoretical point of view,
they present the advantage of being non-negative and are hence well suited candidate to quantify
a total energy in arbitrary datasets (cf. Appendix A). Moreover, just like mutual-information, total
correlation and their dual provide a refined concept of statistical independence, as shown by Han
(Th.6.2, corollary 6.1 in [12]). However, from the topological point of view, they do not satisfy the
cocycle condition in a topos as mutual-information does. In addition, while multivariate mutual
Information applied to data analysis obviously allows for distinguishing and classifying the variables,
the total correlations fail to uncover the data structure (cf. Figure 4). In a sense, the cumulative
alternated summation over dimensions achieved by the total correlation occults the fine correlations
structures appearing in each dimension and quantified by mutual information. Hence, to uncover the
statistical structure present in a given dataset, mutual information appears much more sensitive than
total correlations, and are therefore recommended.

5.4. Beyond Pairwise Statistical Dependences: Combinatorial Information Storage

During the last few decades, there have been important efforts in trying to evaluate the pairwise
and higher-order interactions in neuronal and biological measurements, notably to extract the
underlying collective dynamics. Applying the Maximum of Entropy principle on Ising spin models to
neural data [52,53], a first series of studies concluded that pairwise interactions are mostly sufficient to
capture the global collective dynamics, leading to the “pairwise sufficiency” paradigm (see Merchan
and Nemenman for presentation [54]). However, as shown by the Ising model itself, near a second
order phase transition, elementary pairwise interactions are compatible with non-trivial higher-order
dependences, and very large correlations at long distances. From the mathematical and physical point
of view, this fact is nicely encoded in the normalization factor of the Boltzmann probability, namely the
Partition Function Z(β). As shown by the Ising model, the probability law can be factorized (up to the
normalization number Z) on the edges and vertices of a graph, but the statistical clusters can have
unbounded volumes. Moreover, subsequent studies notably by Tkac̆ik et al. [52] (see also [55]) have
shown that, for sufficiently large populations of recorded neurons, the pairwise models are insufficient
to explain the data as proposed in [56,57] for example. Thus, the dimension of the interactions to be
taken into account for the models must be larger than two.

Note that most interactions in biology are described in terms of networks (protein networks,
genetic networks, neural networks) these days. However, from the physical as well as the biological
point of view, none of these systems are really one-dimensional graphs, and it is now clear that
higher-order structures are needed for describing collective dynamics, cf. for instance [58,59].

The contribution of higher order statistical interactions has been debated in some works (principle
of pairwise sufficiency, [53,54]), and new functions generalizing the linear correlations could be
helpful—for instance, in the case of phase transition [58,59]. The precise contribution of higher-order is
indeed directly quantified by the Ik values in the landscapes and paths. Figure 5 further illustrates the
gain and the importance of considering higher statistical interactions, using the previous example of
cells pre-identified as 10 population A and 10 population B cells (n = 20, m = 47, N = 9). The plots are
the finite and discrete analogs of Gibbs’s original representation of entropy vs. energy [60]. Whereas
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pairwise interactions (k = 2) very hardly distinguish the population A and population B cell types,
the maximum of I10 unambiguously identifies the population A.

Figure 5. Hk − Ik landscape: Gibbs–Maxwell’s entropy vs. energy representation. Hk and Ik are
plotted in abscissa and ordinate respectively for dimension k = 1, ..., 12 for the same data and setting
as in Figure 3 (n = 20 cells, m = 47 genes, N = 9, ku = 11). Compare the difficulty in identifying the
two-cell types from the pairwise k = 2 landscape to the k = 10 landscape.

As illustrated in Figure 3, the present analysis shows that, in the expression of 41 genes of interest
of population A neurons, the higher-order statistical interactions are non-negligible and have a simple
functional meaning of a collective module, a cell type. We believe such conclusion to be generic
in biology. More precisely, we believe that, even if related to physics, biological structures have
higher-order statistical interactions defined by higher-order information and that these interactions
provide the signature of their memory engramming. In fact, “information is physical” as stated
by Bennett following Landauer [61], in the sense of memory capacity and necessity of forgetting.
The quantification of the information storage applied here to genes can be considered as a generic
epigenetic memory characterization, resulting in a developmental-learning process. The consideration
of higher-dimensional statistical dependences increases combinatorially the number of possible
information modules engrammed by the system. It hence provides an appreciable capacity reservoir
for information storage and for differentiation, for diversity. For example, while a pairwise statistical
model would only allow for storing n(n − 1)/2 information patterns, the full simplex allows for
storing 2n of them, and even staying in the simplest simplicial case, the number of possible complexes
is impressive.

The critical points of the Ising model in dimensions 2 and 3 show the difficulty to relate
factorization (up to Z(β)) with the structure of dependences, or, in other words, the manner information
distributes itself, i.e., the form of information. Only few theoretical results relate the two notions.
However, on the basis of several recent studies that we mentioned, particularly the studies of adaptive
functions, and comforted by the analysis presented in this article, we can suggest that, for biological
systems, during development or evolution, the distribution of the information flow, as described in
particular by higher-order information quantities, participates in the generators of the dynamics, on the
side of energy quantities coming from Physics.

6. Materials and Methods

6.1. The Dataset: Quantified Genetic Expression in Two Cell Types

The quantification of genetic expression was performed using a microfluidic qPCR technique
on single dopaminergic (DA) and non-dopaminergic (NDA) neurons isolated from two midbrain
structures, the Substantia Nigra pars compacta (SNc) and the neighboring Ventral Tegmental
Area (VTA), extracted from adult Tyrosine Hydroxylase Green Fluorescent Protein (TH-GFP)
mice (transgenic mice expressing the Green Fluorescent Protein under the control of the Tyrosine
Hydroxylase promoter). The precise protocols of extraction, quantification, and identification are
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detailed in [4,45]. This technique allowed us to quantify in a single cell the levels of expression of 41
genes chosen for their implication in neuronal activity and identity of dopaminergic (DA) neurons.
The SNc DA neurons were identified based on GFP fluorescence (TH expression). This identification
was further confirmed based on the expression levels of Th and Slc6a3 genes, which are established
markers of DA metabolism. The quantification of the expression of the 41 genes (n = 41) was achieved
in 111 neurons (m = 111) identified as DA and in 37 neurons (m = 37) identified as nDA. In this article,
for readability purposes, we replaced the names of the genes by gene numbers and the cell type DA
by population A, and the cell type nDA by population B. The dataset is available in Supplementary
Material [4,45].

6.2. Probability Estimation

The presentation of the probability estimation procedure is achieved on matrices D (genes as
variables), and it is the same in the case of the analysis of the matrices DT (cells as variables). It is
illustrated in Figure 6 for the simple case of two random variables taken from the dataset of gene
expression presented in Section 6.1, namely the expression of two genes Gene5 and Gene21 in m = 111
population A cells. Our probability estimation corresponds to a step of the integral estimation
procedure of Riemann.

Figure 6. Principles of probability estimation for two random variables. (a) illustration of the basic
procedure used in practice to estimate the probability density for the two genes (n = 2) Gene5 and
Gene21 in 111 population A neurons (m = 111) using a graining of 9 (N1 = N2 = 9). The data points
corresponding to the 111 observations are represented as red dots, and the graining is depicted by the
81-box grid (N1.N2). The borders of the graining interval are obtained by considering the maximum
and minimum measured values for each variable, and data are then sampled regularly within this
interval with Ni values. Projections of the data points on lower dimensional variable subspaces (X1

and X2 axes here) are obtained by marginalization, giving the marginal probability laws for the two
variables X1 and X2 (PXi ,Ni ,m), represented as histograms above the X1-axis for Gene21 and on the
right of the X2-axis for Gene21; (b) heatmaps representing the levels of expression of the 21 genes
of interest on a log2 Ex scale (top, raw heatmap) and after resampling with a graining of 9 (bottom,
N1 = N2 = ... = N21 = 9).
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We write the heatmap as a (m, n) matrix D and its real coefficients xij ∈ R, i ∈ {1..m}, j ∈ {1...n}:
the columns of D span the m repetitions-trials (here, the m neurons) and the rows of D spans the n
variables (here, the n genes). We also note, for each variable Xj, the minimum and maximum values
measured as min xj = min1≤i≤m xij and max xj = max1≤i≤m xij.

We consider the space in the intervals [min xj, max xj] for each variable Xj and divide it into
N1.N2...Nn boxes, on which it is possible to estimate the atomic probabilities by elementary counting.
We note each n-dimensional box by an n-tuple of integers {a1, ..., an} where ∀i ∈ {1, ..., n}, ai ∈
{1, ..., Ni}, and writing the min and the max of a box on each variable Xj (the jth co-ordinate of the

vertex of the box) as bminj = min xj +
(aj−1)(max xj−min xj)

Nj
and bmaxj = min xj +

(aj)(max xj−min xj)
Nj

,
then the atomic probabilities can be defined using Dirac function δ as:

P (bmin1 ≤ X1 ≤ bmax1, bmin2 ≤ X2 ≤ bmax2, ..., bminn ≤ Xn ≤ bmaxn)

=
m

∑
i=1

δi
m

, δi =

{
0, if bmin1 > xi1 or xi1 > bmax1 ...or bminn > xin or xin > bmaxn,

1, if bmin1 ≤ xi1 ≤ bmax1 and...and bminn ≤ xin ≤ bmaxn .
(70)

For two variables, using the definition of conditioning PX(Y) =
P(X.Y)
P(X)

and in the general case

using the theorem of total probability [50] (P(X) = ∑N
i=0 P(Ai.X) = ∑N

i=0 P(Ai).PAi (X)), we can
marginalize, or geometrically project on lower dimensions, to obtain all the probabilities corresponding
to subsets of variables, as illustrated in Figure 6. For example, with short notation, the probability
associated with the marginal variable Xi being in the interval [bmini, bmaxi] is obtained by direct
summation:

P (bmini ≤ Xi ≤ bmaxi) =

N1...N̂i ...Nn

∑
i=1

P (bmin1 ≤ X1 ≤ bmax1, bmin2 ≤ X2 ≤ bmax2, ..., bminn ≤ Xn ≤ bmaxn) . (71)

In the example of Figure 6, the probability of the level of Th being in the 4th box is:

P (8 ≤ Th ≤ 9.8) =
8

∑
i=0

P (8 ≤ Th ≤ 9.8, bmin2 ≤ Calb1 ≤ bmax2) = 2/111 + 2/111. (72)

In geometrical terms, the set of total probability laws is an N = N1.N2...Nn − 1 dimensional
simplex ∆N1.N2...Nn−1 (the −1 accounts for the normalization equation ∑ Pi = 1, which embeds the
simplex in an affine space). In the example of Figure 6, we have an 80-dimensional probability
simplex ∆80, the set of sub-simplicies over the k-faces of the simplex ∆n, for every k between 0 and n,
represents the boolean algebra of the joint-probabilities, which is equivalent in the finite case to their
sigma-algebra. In our analysis, we have chosen N1 = N2 = ... = Nn = 9 and this choice is justified in
Section 6.6 using Reshef and colleagues criterion [44] and undersampling constraints.

In summary, our probability estimation and data analysis depend on n (the number of random
variables), on m (the number of observations), and on N1, ..., Ni (the graining). The merit of this
method is its simplicity (few assumptions, no priors on the distributions) and low computational cost.
There exist different methods that can significantly improve this basic probability estimation, but we
leave this for future investigation. The graining given by the numbers N = N1, N2...Nn and the sample
size m are important parameters of the analysis explored in this section.
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6.3. Computation of k-Entropy, k-Information Landscapes and Paths

The computational exploration of the simplicial sublattice has a complexity in O(2n) (2n =

∑n
k=1 (

n
k)). In this simplicial setting, we can exhaustively estimate information functions on the

simplicial information structure that is joint-entropy Hk and mutual-information Ik at all dimensions
k ≤ n and, for every k-tuple, with a standard commercial personal computer (a laptop with processor
Intel Core i7-4910MQ CPU at 2.90 GHz × 8, even though the program currently uses only one
CPU) up to k = n = 21 in a reasonable time (≈3 h). Using the expression of joint-entropy
(Equation (11)) and the probability obtained using Equation (70) and marginalization, it is possible
to compute the joint-entropy and marginal entropy of all the variables. The alternated expression of
n-mutual-information given by Equation (12) then allows a direct evaluation of all these quantities.
The definitions, formulas and theorems are sufficient to obtain the algorithm. We moreover provide
the Information Topology program INFOTOPO-V1.2 under opensource licence on github depository
at https://github.com/pierrebaudot/INFOTOPO. Information Topology is a program written in
Python (compatible with Python 3.4.x), with a graphic interface built using TKinter [62], plots drawn
using Matplotlib [63], calculations made using NumPy [64], and scaffold representations drawn using
NetworkX [65]. It computes all the results on information presented in the current study, including
the information paths, statistical tests of Ik values described in the next sections and the finite entropy
rate Hk

k . The input is an Excel table containing the data values, e.g., the matrix D with the first row
and column containing the labels. Here, we limited our analysis to n = 21 genes of specific biological
interest.

6.4. Estimation of the Undersampling Dimension

6.4.1. Statistical Result

The information data analysis presented here depends on the two parameters N and m. The finite
size of the sample m is known to impose an important bias in the estimation of information
quantities: in high-dimensional data analysis, it is quoted as the Hugues phenomenon [66] and,
in entropy estimation, it has been called the sampling problem since the seminal work of Strong and
colleagues [54,67,68]. For the method we suggested, it is important to notice that the size m of the
population Z is in general much smaller than the dimension of the probabilty simplex N = N1...Nn − 1.
For instance, in the mentioned study of genes as variables [4], we had m = 111 for DA neurons (resp.
m′ = 37 for NDA neurons) as respective number of neurons, but N = 921 − 1 because we could only
achieve the computation for the 21 most relevant genes. In the example considering cells as variables
presented here in Figure 3, the situation is even worse, with a sample size of m = 41 genes and a
dimension of N = 920 − 1 as only 20 cells were considered. Thus, the pure entropies Hk, k = 1, ..., n
must satisfy the following inequality:

∀J ⊂ [n], k = |J| = cardJ, Hk(XJ ; P) ≤ log2 m, (73)

where equality is an extreme signature of undersampling. However, suppose that all the numbers
Ni, i = 1, ..., n are equal to r ≥ 2, the maximum value of Hk is equal to k log2 r, for instance 2k. log2(3)
in the example.

Lemma 2. Take the uniform probability on the simplex ∆([n]) with affine coordinates, and take ε such that
0 < ε ≤ 1/e ≈ 0, 367; then, the probability that Hk(XJ) is greater than εk log2 r is larger than 1− ε.

Proof. Concerning Hk, the simplex ∆([n]) is replaced by ∆([k]); then, consider the set ∆ε of
probabilities such that pj ≥ εr−k for any coordinate j between 1 and rk, this set is the complement
of the union of the sets Xj(ε), i = 1, ..., rk where pj < εr−k. From the properties of volumes in affine

https://github.com/pierrebaudot/INFOTOPO
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geometry, the measure of each set Xj(ε) is less than εr−k, thus the probability of ∆ε is larger than 1− ε.
In addition, for any index j, the monotony of −x ln x between 0 and 1/e implies

− pj log2 pj > εr−kk log2 r; (74)

then, by summation over all the indices, we obtain the result.

By example, for r = 9, and ε = 1/e, this gives that Hk ≥ 2k log2(3)/e is two times more probable
than the opposite.

Consequently, in the above experiment, the quantities Hk, then Ik, are not significant, except if
they appear to be significantly smaller than log2 m.

In the counterpart, as soon as the measured Hk is inferior to the predicted one for m values, this is
significant. Note that Lemma 2, with n replaced by m, gives estimations for the entropies of raw data.
In the next section, we propose a computational method to estimate the dimension ku above which
information estimation ceases to be significant.

6.4.2. Computational Result

Following the original presentation of the sampling problem by Strong and colleagues [67],
the extreme cases of sampling are given by:

• When N1 = N2 = ... = Nn = 1, there is a single box Ω and P(Ω) = m/m = 1 and we have
Hk = Ik = 0, ∀k ∈ 0, ..., n. The case where m = 1 is identical. This fixes the lower bound of our
analysis in order not to be trivial; we need m ≥ 2 and N1 = N2 = ... = Nn ≥ 2.

• When N1.N2...Nn are such that only one data point falls into a box, m of the values of atomic
probabilities are 1/m and N1.N2...Nn −m are null as a consequence of Equation (71), and hence
we have Hn = log2 m.

Whenever this happens for a given k-tuple, all the HPk paths passing by this k-tuple will stay
on the same information values since conditional entropy is non-negative: we have Hk = Hk+1
or equivalently (X1, ..., Xk)H(Xk+1) = 0, and all k + l-tuples are deterministic (a function of) with
respect to the k-tuple. This is typically the case illustrated in Figure 3: adding a new variable to an
undersampled k-tuple is equivalent to adding the deterministic variable “0” since the probability
remains unchanged (1/m).

Considering the analysis of cells as variables (matrix DT), the signature of this undersampling is
the saturation at Hk = log2 41 observed in the Hk landscape in Figure 3b, starting at k = 5 for some
5-tuples of neurons. Considering the analysis of genes as variables (matrix D [4]), the mean entropy
computed also shows this saturation at Hk = log2 111 for population A neurons and Hk = log2 37 for
population B neurons. We propose to define a dimension ku as the dimension for which the probability
pu of having the Hk at the biased value of Hk = log2 m is above 5 percent (pu = 0.05). As shown for
the analysis of cells as variables in Figure 7, this basic estimation gives here ku = 6 for population A
neurons and ku = 4 for population B neurons. The information structures identified by our methods
beyond these values can be considered as unlikely to have a biological or physical meaning and shall
not be interpreted. Since undersampling mainly affects the distribution of Ik values close to 0 value,
the maxima and minima of Ik and the maximal and minimal information paths below ku are the least
affected by the sampling problem and the low sample size. This will be illustrated in the next sections.
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Figure 7. Determination of undersampling dimension ku. (a) distributions of Hk for m = 111 population
A neurons (green) and m = 37 population B neurons (dark red) for k = 1, .., 6. The horizontal red line
represents the threshold we have fixed to 5 percent of the total number of k-tuples. (b) plot of the
percent of maximum entropy Hk = ln m biased values as a function of the dimension k. The horizontal
red line represents the threshold fixed to 5 percent, giving ku = 6 for population A and ku = 4 for
population B neurons. (c) the mean 〈HP〉(k) paths for these two populations of neurons, the maximum
entropy Hk = ln m is represented by plain horizontal lines.

6.5. k-Dependence Test

Pethel and Hahs [47] have constructed an exact test of 2-dependence for any pair of variables,
not necessarily binary or iid. Indeed, the iid condition usually assumed for the χ2 test does not seem
relevant for biological observations and the examples given here and in [4,45] with genetic expression
support such a general statement. It allows for testing the significance of the estimated I2 values given
a finite sample size m, the null hypothesis being that I2 = 0 (2-independence according to Pethel
and Hahs). We follow here their presentation of the problem, and provide an extension of their test
to arbitrary k (higher dimensions), with the null hypothesis being the k-independence Ik = 0. Even
in the lowest dimensions, and below the undersampling bound, the values of Ik estimated from a
finite sample size m are considered as biased [47]. If one considers an infinite sample (m → ∞) of n
independent variables, we then have for all k ≥ 2 Ik = 0. However, if we randomly shuffle the values
such that the marginal distributions for each variable Xi are preserved, the estimated Ik can be very
different from 0, with distributions of Ik values not centered on 0. Figure 8 illustrates an example of
such bias with m = 111 for the analysis with genes as variables.

Reproducing the method of Pethel and Hahs [47], we designed a shuffling procedure of the n
variables, which consists of randomly permuting the measured values (co-ordinates) of each variable
one by one in the matrix D or DT (geometrically, a “random” permutation of the co-ordinates of each
data point, point by point). Such a shuffle leaves marginal probabilities invariant. Figure 8 gives an
example of the joint and marginal distributions before and after shuffle for two genes. Extending
the 2-test of [47] to k ≥ 2, the Ik values obtained after shuffling provide the distribution of the null
hypothesis, k-independence (Ik = 0) according to [47]. The task is hence to compute many shuffles,
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10,000 in [47], in order to obtain these “null” distributions. The exact procedure of Pethel and Hahs
[47] would require obtaining such “null” distribution for all the 2n tuples, which would require a
number of shuffled trials impossible to obtain computationally. We hence propose a global test that
consists of computing 17 different shuffles of the 21 genes, giving “null” distribution of shuffled
Ik values composed of 21× (n

k). For example, the test of 2-dependence and 3-dependence will be
against a null distribution with 21 ∗ 210 = 3750 I2 values and 21 ∗ 1330 = 22610 I3 values, respectively.
We fix a p-value above which we reject the null hypothesis (a significance level, fixed at p = 0.05
in [47]), allowing for determining the statistical significance thresholds as information values for
which the integral of the null distribution reaches the significance level p = 0.05. This holds for
k = 2, as described in [47], but since, for k ≥ 2, Ik can be negative, the test becomes symmetric on the
distribution, and hence, for k ≥ 2, we choose a significance level of p = 0.1 in order to stay consistent
with the 2-dependence test. The “null” distributions and the threshold given by the significance
p-value of rejection are illustrated in Figure 8d. If the observed values of Ik are above or below these
threshold values, we reject the null hypothesis.

Figure 8. Probability and Information landscape of shuffled data. The figure corresponds to the case of
analysis with genes as variables. (a) joint and marginal distributions of two genes (genes 4 and 12) for
m = 111 population A neurons. (b) joint and marginal distributions after a shuffling of the values of
expression of each gene. (c) the estimated Ik landscape for the expression of 21 genes after shuffling.
(d) histograms representing the distribution of Ik values for all the degrees until k = 5 for population B.
The total number of combinations C(n,k) for each degree (number of pairs for I2; number of triplets
for I3, etc.) is given in gray. The averaged shuffled values of information obtained with 17 shuffles
are represented on each histogram as a black line, and the statistical significance threshold values for
p = 0.1 are represented as vertical dotted lines.

In practice, a random generator is used to generate the random permutations (here, the NumPy
generator [64]), and the present method is not exempt from the possibility that it generates statistical
dependences in the higher degrees.

Interpretation of the dependence test. The original interpretation of the test by Pethel and
Hahs was that the null hypothesis corresponded to independent distributions, motivated by the
statement that “permutation destroys any dependence that may have existed between the datasets but
preserves symbol frequencies”. However, considering simple analytical examples could not allow us
to confirm their statement. We propose that, for a given finite m, random permutations express all
the possible statistical dependences that preserve symbol frequencies (cf. the discussion of E.Borel in
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[69]). This statement basically corresponds to what we observe in Figure 8. Hence, we propose that,
in a finite context, the null-hypothesis corresponds to a random k-dependence. The meaning of the
presented test is hence a selectivity or specificity test: a test of an Ik of given k-tuple against a null
hypothesis of “randomly” selected k-statistical dependences that preserve the marginals and m.

6.6. Sampling Size and Graining Landscapes—Stability of Minimum Energy Complex Estimation

Figure 9 gives a first simple study of how robust the paths of maximum length are with respect to
the variations of m and N, in the case of the analysis of genes as variables. The limit N → ∞ recovers
Riemann integration theory and gives the differential entropy with the correcting additive factor N
(theorem 8.3.1 [41]).

Figure 9. Effect of changing sample size and graining on the identification of gene modules. The figure
corresponds to the case of analysis with genes as variables for the population A neurons. The positive
Ik paths of maximum length were computed for a variable number of cells (m, left column) and a
variable graining (N, right column). For clarity, only the two positive paths of maximum length are
represented (first in red, second in black) for each parameter setting and the direction of each path is
indicated by arrowheads. The two positive paths of maximum length for the original setting (N = 9,
m = 111) are represented on the scaffold at the top of the figure for comparison. Smaller samples of
cells (one random pick of 34, 56 and 89 cells) and larger (N = 11) or smaller (N = 5, N = 7) graining
than the original (N = 9) were tested. Although slight differences in paths can be seen (especially for
N = 11), most of the parameter combinations identify gene modules that strongly overlap with the
module identified using the original setting.

The information paths of maximal length identified by our algorithm are relatively stable in the
range of N = 5, 7, 9, 11 and m = 34, 56, 89, 111 where the m cells were taken among the 111 neurons
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of population A. If we consider that the paths that only differ by the ordering of the variables are
equivalent, then the stability of the two first paths is further and largely improved. The undersampling
dimension obtained in these conditions is ku(m = 34) = 5, ku(m = 56) = 6, ku(m = 89) = 6, ku(m =

111) = 6 and ku(N = 5) = 8, ku(N = 7) = 7, ku(N = 9) = 6, ku(N = 11) = 5. In general,
information landscapes can be investigated with the additional dimensions of N and m together with
n. It allows for defining our landscapes as iso-graining landscapes and studying the appearance of
critical points in a way similar to what is done in thermodynamics. In practice, to study more precisely
the variations of information depending on N and m and to obtain a two-dimensional representation,
we plot the mean information as a function of N and m together with n, as presented in Figure 10a.
We call the obtained landscapes the iso-graining Ik landscapes. The choice of a specific graining N can
be done using this representation: a “pertinent” graining should be at a critical point of the landscape
(a first minimum of an information path), consistent with the proposition of the work of Reshef and
colleagues [44], who used maximal information coefficient (MI2C) depending on the graining (with
a more elaborated graining procedure) to detect pairwise associations. We have chosen to illustrate
the landscapes with N = 9 according to this criterion and the undersampling criterion because the
I2 values are close to their maximal values and the sampling size is not too limiting, with a ku = 6
(see Figure 10a). Moreover, this choice of graining size N = 9 is sufficiently far from the critical point
to ensure that we are in the condensed phase where interactions are expected. It is well below the
analog of the critical temperature (the critical graining size), which, according to Figure 10a, happens
at Nc = 3 (the N for which the critical points cease to be trivial). In general, there is no reason why
there should be only one “pertinent” graining.

Figure 10. Iso-sample-size (m) and iso-graining mean 〈IP〉(k) landscapes. The figure corresponds
to the case of analysis with genes as variables for the population A neurons. (a) the mean 〈IP〉(k)
paths are presented for N = 2, ..., 18 and n = 21 genes for the m = 111 population A neurons.
The “undersampling” region beyond the ku is shaded in white and delimited by a black dotted line (the
ku was undetermined for N = 2, 3). For N = 2, the mean 〈IP〉(k) path has no non-trivial minimum
(monotonically decreasing). This N = 2 iso-graining is analog to the non condensed disordered phase
of non interacting bodies, ∀k > 1, 〈IP〉(k) ≈ 0. All the other mean 〈IP〉(k) paths have non-trivial
critical dimensions. The condition N = 9, m = 111 used for the analysis is surrounded by dotted red
lines. It was chosen to be in the condensed phase above the critical graining; here, Nc = 3, close to the
criterion of maximal mutual-information coefficient MI2C proposed by Reshef and colleagues (bin
surrounded by green dotted line) and with a not too low undersampling dimension. (b) the mean
〈IP〉(k) paths are presented for m = 111, 100, ..., 12 population A neurons and n = 21 genes with a
number of bins N = 9.

The graining algorithm could be improved by applying direct methods of probability density
estimation [70], or more promisingly persistent homology [71]. Finer methods of estimation (graining)
have been developed by Reshef and colleagues [44] in order to estimate pairwise mutual-information,
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with interesting results. Their algorithm presents a lower computational complexity than the estimation
on the lattice of partitions, but a higher complexity than the simple one applied here.

What we call the iso-sampling size Ik landscapes is presented in Figure 10b for mean Ik.
Such investigation is also important since it monitors what is usually considered as the convergence (or
divergence) in probability of the information. For the estimations below, the ku represented here, the
information estimations are quite constant as a function of m, indicating the stability of the estimation
with respect to the sample size.
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Abbreviations

The following abbreviations are used in this manuscript:

iid independent identically distributed
DA Dopaminergic neuron
nDA non Dopaminergic neuron
Hk Multivariate k-joint Entropy
Ik Multivariate k-Mutual-Information
Gk Multivariate k-Total-Correlation or k-Multi-Information
MI2C Maximal 2-Mutual-Information Coefficient

Appendix A. Appendix: Bayes Free Energy and Information Quantities

Appendix A.1. Parametric Modelling

As we mentioned in the Introduction, the statistical analysis of data X confronts a serious risk of
circularity because the confidence in the model is dependent on the probability law it assumes and
reconstructs in part. Several approaches were followed to escape from this circularity; all of them
rely on the choice of a set Θ of probability laws where PX is researched. For instance, maintaining
the frequentist point of view, the Fisher information metric on Θ (cf. [73]) determines bounds on the
confidence. Another popular approach is to choose an a priori probability PΘ on Θ, and to revise
this choice after all the experiments X(z), z ∈ Z, by computing the probability on E×Θ, which better
explains the results (the new probability on Θ is its marginal, and for each θ in Θ, the probability Pθ on
E is its conditional probability). Here, a more precise principle is necessary, which expresses a trade-off
between the maximization of the marginal probability of the results under the constraint to be not
too far from the prior. A popular example is the minimization of the Bayes Free energy FV(P), which
appears as the maximum of entropy of the new a posteriori probability under the constraint to predict
in the mean the data and to remove the less possible from the a priori probability on the probabilities.
This function is given by a Kullback–Leibler distance DKL. In the finite setting, with a uniform a
priori, this consists of maximizing the entropy among the laws that predict the observed distribution.
Note that the two methods, Bayes and Fisher, are related because, in most cases, the chosen a priori
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probability laws (and the data estimation) used in the function FV are given by frequencies and because
the distance DKL(P, Q) is approximated by the Fisher metric at P when Q approaches P.

Appendix A.2. Bethe Approximation

Let us remind readers that, for two probability laws P, Q on the same finite set Ω, the
Kullback–Leibler divergence from P to Q is defined by

DKL(P, Q) = ∑
x∈Ω

Px ln
Px

Qx
= EP(− ln Q)− H(P). (A1)

Contrarily to its name, it is not a true distance because it is not symmetric; however, it is always
positive and it is equal to zero if and only if P = Q. Another drawback is that it can be +∞: this is so
when x exists such that Qx = 0, but Px > 0, i.e., when P is not absolutely continuous with respect to Q.

The Kullback–Leibler divergence permits to define the Bayes free energy functional as follows:
The unknown is the probability law Pb on E×Θ:

FV(Pb) = DKL(Pb, PL ⊗ Pa) = ∑
xL ,θ

(ln
Pb(xL, θ)

PL(xL)Pa(θ)
)Pb(xL, θ), (A2)

where Pa(θ) is the a priori on the probability laws and where PL(s) represents the new partial data,
collected by a collection of variables XL, and expressed by a probability law:

FV(Pb) = EPb(− ln Pa + DKL((XL) ∗ Pθ , PL))− H(Pb). (A3)

This function looks like a free energy in Statistical Physics that is the sum of the negentropy and
the mean of an energy function.

Here, we assume that Ω = ES for a family of variables Si, i = 1, ..., N, and the states are the
possible values of the joint variable S.

Due to the strict convexity of the negentropy, FV has a unique minimum that defines the
equilibrium state.

Practically, the full entropy is difficult to estimate, thus approximations were introduced, following
Bethe and Kikuchi (cf. Mori [74]), generalizing the Mean Field Theory. These approximations are no
more convex in the unknown Pb, and they are obtained by replacing the full entropy H by a convenient
linear combination of entropies of more accessible variables (observable quantities). It is here that the
information functions Hk and Ik appear in the Bayesian variational calculus (cf. Mori [74]):

Consider a simplicial complex K in the simplex ∆([N]), i.e., a collection of faces that contains
every face inside each face it contains, and assume K a combinatorial (PL) manifold of dimension d,
with possibly a boundary that is a combinatorial (PL) manifold ∂K; then, the Bethe function associated
with K is given by the two equivalent following formulas:

FB(Q) = EQ(− ln f )− ∑
I∈K∗

(−1)d−|I|H(SI), (A4)

where the sum is taken over the set K∗ of faces not contained in ∂K, and |I| denotes the dimension of
the face I:

FB(Q) = EQ(− ln f )− ∑
J∈K

(−1)|J|+1 I|J|(SI ; Q), (A5)

where the sum is taken over all the faces of K, including the boundary, and I|J|(SJ ; Q) is the higher
mutual-information considered everywhere above in the text.
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