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Abstract: The reliability of complex or safety critical systems is of increasing importance in several
application fields. In many cases, decisions evaluating situations or conditions are made. To ensure
the high accuracy of these decisions, the assignments from different classifiers can be fused to one
final decision to improve the decision performance in terms of given measures like accuracy or false
alarm rate. Recent research results show that fusion methods not always outperform individual
classifiers trained and optimized for a specific situation. Nevertheless fusion helps to ensure reliability
and redundancy by combining the advantages of individual classifiers, even if some classifiers are
not performing well for specific situations. Especially in unexpected (untrained) situations, fusion of
more than one classifier allows to get a suitable decision, because of different behavior of classifiers
in this case. Nevertheless, there are several examples, where fusion not always improves the overall
accuracy of a decision. In this contribution fusion options are discussed to overcome the problem to
overcome the aforementioned problem and to define influencing factors on overall fusion accuracy.
As a results requirements for good or guaranteed or possibly increased fusion performance and
also suggestions denoting those options not leading to any kind of improvement are given. For
illustrating the effects a practical example based on three characteristics of fusion methods (type of
classifier output, use of these outputs and necessity of training) and four data properties (number of
classes, number of samples, entropy of classes and entropy of attributes) are considered and analyzed
with 15 different benchmark data sets, which are classified with eight classification methods. The
classification results are fused using seven fusion methods. From the discussion of the results it can
be concluded, which fusion method performs best/worst for all data sets as well as which fusion
method characteristic or data property has more or less positive/negative influence on the fusion
performance in comparison to the best base classifier.Using this information, suitable fusion methods
can be selected or data sets can be adapted to improve the reliability of decisions made in complex or
safety critical systems.

Keywords: information fusion; data properties; fusion method characteristics; performance
influencing factors

1. Introduction

The implementation of decision support systems within complex and safety critical applications
strongly relies on the dependable accuracy of decisions. Considering the application of methods for
data classification, the assessment of situations or conditions should be improved.
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According to Reference [1], only two principal ways to achieve an increase in classification
performance exist. At a first sight, it seems to be possible to further increase the capabilities of an
already given classification algorithm, e.g., by tuning hyperparameter for specific applications. This
is usually not feasible due to the individual limitations of each classification method. Therefore, the
second way to improve the performance is the method of classifier fusion. Fusion solely relies on
the subsequent combination of decisions derived by different so called base classifiers. The main
advantage of this method is the exploitation of different classifier specific strengths in terms of their
specific suitability for different forms of classification problems [2]. A major drawback of decision
fusion is the possibility of impeding the overall system performance by combination of several single
classifiers.

Regarding the vision of Internet of Things (IoT), using small internet-connected devices for data
generation and analysis of information, fusion can lead to more reliable information. Data fusion first
reduces size and dimension of data, optimizes the amount of data traffic and extract useful information
from raw data [3], information fusion can lead to an enhancement of information completeness and
quality [4]. Applying unreliable data sources can lead to unreliable IoT applications. As stated in
Reference [4], IoT trust models are crucial for information fusion as well as for the success of IoT.
In Reference [3] the importance of data fusion in different application fields for IoT is already stated.
In this contribution, the requirements for reliable information fusion are discussed based on data and
fusion method characteristics.

Considering classifier fusion is part of a multiple classifier system, where the data measurement,
feature extraction, generation of classifier pool and the Ensemble selection are done prior to the fusion
itself (see Figure 1).

Generation of
classifier pool

Selection of
classifier ensemble

Fusion of
classification results

Multiple classifier system

Use of different
fusion methods
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data and extraction

of features

Which properties
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using fusion?
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Figure 1. Scheme of a multiple classifier system and related research questions answered in this
contribution.

The choice of suitable classifiers for combination is one of the major problems within the field of
classifier fusion. The achievable performance of fusion methods mainly relies on the selection of the
most diverse and accurate single base classifiers [2]. According to Reference [5], no best classifier for all
problems exist and the individual performance of classification methods itself also depends on several
characteristics inherent to the classified set of data. In this contribution the possible relationships
between different data and fusion method characteristics, with respect to the achievable performance
of fusion methods are evaluated. The related questions to the individual parts of the multiple classifier
system are shown in Figure 1.

Regardless whether suitable ensembles of classifiers have been chosen by application of static or
dynamic selection methods, the parallel implementation of individual ensemble members requires
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further processing of results [6]. For this purpose, various methods fusing individually obtained
decisions have been proposed in numerous works, for example, the Dempster-Shafer Combination [7],
the Behavior Knowledge Space [8] or the Highest Rank [2], which tend to improve classification
performance while forming a conclusive classification result.

Considering fusion methods, different characteristics can be selected for analysis. First the type of
outputs generated by the individual classifiers forming an ensemble is an important property to be
considered [9]. A further attribute distinguishing the fusion algorithms is the use of classifier outputs
class-conscious or class-inherent [10]. The necessity of prior training of fusion parameters devides the
fusion methods into trainable and not trainable methods [11].

In accordance with Reference [12], two of the defined different main categories of data
inherent characteristics, referred to as simple and information theoretic measures, are considered
in this contribution.

The following section, contains a brief overview of different fusion method characteristics as well
as data properties within each of the aforementioned categories. The section concludes with a detailed
theoretical description of the applied measures. In Section 3 the selected fusion algorithms, classifiers
and data sets as well as the experimental procedure are explained. In Section 4 the results of the
numerical calculations based on benchmark data with respect to the different considered characteristics
are shown and discussed. Summary and conclusion are given in Section 5.

2. Considered Properties

2.1. Attributes and Requirements of Fusion Methods

Prior to elaborating different algorithms for decision combination, the attributes and requirements
with respect to different methods of classifier fusion should be discussed. This section therefore is
further subdivided into the description of different output levels, the different use of these outputs
and the necessity of training of the inherent parameters of fusion methods [11].

2.1.1. Type of Classifier Output Levels

Considering the utilized type of classifier output levels as an attribute of the considered fusion
method, different definitions exist. According to Reference [13] the output levels can be divided
into possibilistic, probabilistic and crisp labels. Using this notation, the possibilistic labels can be
interpreted as possibility of class membership [14], the probabilistic labels as posterior probabilities [15]
and the crisp labels denote an assignment of classifier for a single class. However, as the final output
obtained by a specific classifier is not limited to a single class label a more practical categorization
is proposed in Reference [16], which divides the different levels of classifier outputs into abstract,
rank and measurement level. The abstract level is equivalent to the crisp labels but both possibilistic
and probabilistic labels belong to measurement level. The rank level represents an ordered subset
including the most plausible classes. Considering the amount of information inherent to each of
the depicted categories, the least amount of information is provided on the abstract level, given the
fact that only a single class label is generated without declaration of certainty or the information of
alternative class labels [11]. In contrast, information based on the measurement level provide the
highest amount of useful data, due to direct propagation of possibilistic or probabilistic labels as
final classifier output [1]. However, caused by different mathematical backgrounds of classifiers, the
application of information on measurement level often requires further normalization of results to
ensure reasonable combination [2]. Transformation of an output with high level information, such
as the measurement level, into an output of lower information density is always possible [1]. This
can be justified by the fact that for the generation of an ordered set of possible class labels (i.e., rank
level) as well as for the assignment of a single class label (i.e., abstract level) the amount of higher
level information is merely reduced [16]. The transformation of output levels in direction of a higher
information density is only possible, if additional data resulting from training of the individual
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classifier are available [1]. The similarity of all definitions for output labels is the clear distinction
between abstract level (related to crisp labels) and soft level (related to rank and measurement level as
well as possibilistic and probabilistic labels). In this contribution (in accordance with Reference [10]) the
classifier output levels are distinguished into single class label outputs (abstract) and soft outputs (soft).

2.1.2. Use of Classifier Outputs

The base classifiers assign either a support value for each class (rank, possibilistic or probabilistic)
or a single class (support value equal to 1 for the supported class, all other values are zero) as output.
Depending on how the fusion method is using the information of classifier outputs for final decision,
the fusion methods are either denoted as class-conscious or class-indifferent [10]. The class-conscious
fusion methods only use the support values of the considered class, neglecting the support values of
the other classes. The class-indifferent methods include all support values into the decision process.
According to Reference [10] class-conscious methods consider the class context but neglect some
information given by the classifiers, whereas the class-indifferent methods use all information but
ignore the context.

2.1.3. Training of Fusion Method Parameters

According to Reference [17] fusion methods can be divided into trainable and fixed methods. The
difference is the necessity of an additional training prior to the fusion process to set method-specific
parameters. These different parameters could be weights associated with specific base classifiers, as
done during application of Logistic Regression [2]. Another example is the training of conditional
class probabilities computed in case of applying Bayes Belief Integration [16]. Approaches without
any training of parameters are for example the Majority Voting or the Borda Count method to be used
directly after classification. Considering fusion methods using training of parameters, an additional
amount of data samples is required. As stated in References [17,18], the number of training data
samples as well as the use of the same data for the training of base classifiers and fusion methods is
significant in relation to the fusion results.

2.2. Data Characteristics

In this contribution the analysis of relationships between different data properties with respect to
the usability of fusion methods is discussed. Given the fact that the achievable performance of the
different base classifiers [12,19], and consequently the performance of the applied fusion methods,
strongly depend on the characteristics inherent to the employed sets of data, the relevant characteristics
of data sets should be discussed [12]. Two different main categories of data inherent characteristics are
considered, referred to as simple and information theoretic measures.

2.2.1. Simple Measures

The group of simple measures describes the basic characteristics of a single set of data. Simple
measures can be combined in terms of proportions or products, and so forth, to generate additional
information required for specific investigations [12]. As one of the simple measures describing the
dimension of the underlying classification problem, the number of classes nC defines the number of
different groups of instances within the considered set of data. A higher number of classes results in
increasing complexity of knowledge representation. The number of classes characterizes the classifier
and fusion performance. The number of samples or instances nS comprised by a single set of data
increases on the one hand for a high number of samples the computational time during training of
base classifiers but also enables a more detailed generation of knowledge. Thus larger data sets should
theoretically tend to improve the overall performance of classification and fusion algorithms compared
to the application of smaller sets of data.
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2.2.2. Information Theoretic Measures

The information theoretic measures are commonly related to the calculation of entropy denoting
the mean information content. The entropy of two different relevant properties, the entropy of classes
and entropy of attributes, are considered. The entropy of classes indicates the grade of evenness of the
underlying class distribution. According to Reference [12], the entropy is calculated using

H(C) = −∑
i

pi log2 pi, (1)

where log2 defines the logarithm to basis two and pi represents the probability mass function for the
class i (number of samples according to class i over total number of samples). For a random variable
with equal probability for each of the possible values, the entropy reaches a maximum. A higher
entropy of classes denotes that the number of samples according to each class is more even distributed.
As the entropy represents the amount of attribute inherent information, for the entropy based on log2
the assigned unit is Bit. Considering the entropy of attributes, the formula is the same as for entropy of
classes, only considering the class distribution according to one attribute X. For every attribute the
entropy can be calculated. If one attribute only contains samples with the same class, the entropy is
0. The more even the classes are distributed within one attribute, the entropy increases. An attribute
with zero entropy however, contains no information for class discrimination, due to the non existing
variation between different instances of data [12]. To obtain one value for the data set, the mean value
of the entropies calculated for each attribute is used.

3. Application Using Benchmark Data

To evaluate the influences of the above mentioned characteristics on the fusion performance,
various experiments are conducted. Experiments instead of analytical calculations are used, because
the final fusion result can not be calculated without specific assignments from the classifiers. These
classifier assignments also depend on considered data sets [5], so that several assumptions and
dependencies have to be considered. The experimental evaluation offers the advantage that these
assumptions and dependencies are fixed for the given benchmark data sets. For example-related
generalization training and test data sets are divided by nested cross-validation. By means of the
experiments, conclusions and suggestions to the suitable fusion methods can be given.

The specification of considered fusion methods and base classifiers, as well as the definition of the
within this study applied data sets and their fundamental properties is introduced first. The conducted
experimental procedure as well as the intended purpose of several experimental design decisions will
be detailed.

3.1. Fusion Algorithms

For a consistent distribution of fusion methods to all attributes, seven different fusion methods
are selected. In Table 1, the methods Majority Voting (MV), Highest Rank (HR), Borda Count (BC),
Bayes Belief Integration (BBI), Behavior Knowledge Space, Logistic Regression (LR) and Fuzzy Integral
(FI) are shown with their specific characteristics according to the utilized type of classifier output,
the necessity of training parameters and whether they are class-conscious (bold) or class-indifferent
(not bold).

Majority Voting is based on the simple majority rule, where a selection or decision is made based
on the number of votes for each alternative solution.

The Highest Rank method uses the best ranking of considered class as final ranking for fused
results. Given the case that different class labels would receive an identical position in the final ranking,
the conflicts are broken by random.
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Table 1. Different fusion methods ordered by characteristics (class-conscious methods are printed in
bold) (referring to Reference [10]).

Trainable Method
Output Level No Yes

Abstract Majority Voting Bayes Belief Integration
Behavior Knowledge Space

Soft Highest Rank
Borda Count

Logistic Regression
Fuzzy Integral

The fusion method Borda Count is an extension of MV, using rankings instead of specific class
labels. Therefor, the so-called borda count is calculated for each class using the total number of classes
ranked below the considered class and add this number for all classifiers. Using the resulting values
in descending order, the final ranking can be set up according to the rank of the border count of the
individual classes. Potential ties arising during the development of the final ranking are arbitrarily
broken [20].

The Bayes Belief Integration also known as Bayesian Combination Rule or Bayesian Belief Method
is a well known and commonly used fusion technique based on conditional probability. Based on
the probability matrix of each classifier, a combined belief value for each class is determined for
each sample.

The Behavior Knowledge Space method [8], uses the specific combination of classifier labels
from a training data set to denote a most probable class for an unknown sample generating a new
combination of classifier labels.

During Logistic Regression, the probability of a true class for a specific score vector is used
to calculate the so-called empirical logits. Using the logistic response function and the formula for
logits, model parameters can be estimated using methods related to linear regression. According to
Reference [2], methods based on maximum likelihood or weighted least-squares can be used.

The application of Fuzzy Integrals within the field of classifier fusion, is often interpreted as
searching for the maximum agreement between the individual classifiers decisions and a specific
generated fuzzy measure for each class [21]. Finding these measures is the key problem which is solved
with training data. Using the Sugeno Fuzzy Integral method (solely considered within this work),
fuzzy densities can be calculated and the maximum degree of support denotes the fuzzy integral and
thereby the final class.

3.2. Classification Methods

To generate classification results for fusion, the open source software package WEKA [22] is used to
apply the classification methods. The different hyperparameters of each classifier are not considered,
so the default-parametrization is used. The optimization of classifier inherent parameters is a highly
problem specific task [23]. Different data characteristics usually require different parameter adjustments,
so the application of optimized models on differing data sets would lead to highly biased results,
when not specifically optimized for each of the given problems itself [24]. An optimization process
requires additional amount of data, which is often unfeasible due to the already limited number of
samples available. Therefore, to bypass the problem of limited data and as done in several other
contributions ([5,25]), the applied classifiers are implemented with the default parameter setting applying
the WEKA machine learning toolbox version 3.8.2 [22]. The classification methods to be discussed are
C4.5 Decision Tree, Multilayer Perceptron, Radial Basis Function Network, Naive Bayes, K-Nearest
Neighbors, Support Vector Machine, Expectation Maximization and Simple K-Means. To enable the
application of unsupervised clustering methods with respect to the problem of classification, the WEKA
ClassificationViaClustering procedure [22] is implemented, which generates a mapping between the
clusters derived from training data and their corresponding class labels in a supervised manner [26].
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3.3. Data Sets

A large amount of potentially useful measures are known to describe data characteristics. To cover
a preferably wide range of characteristics, the conducted experiments are based upon 15 different
problems taken from the UEA & UCR Time Series Classification Repository [24]. Selected data sets and
corresponding characteristics are listed in Table 2. All selected data sets are characterized by nominal
class labels and continuous valued numerical attributes without any missing values present. Each
of the data sets has been reviewed prior to application in terms of standardization, since incorrect or
nonexistent standardization can affect the results during classification [24]. Each of the selected data
sets originally contains standardized samples of zero mean and unit standard deviation.

Table 2. Benchmark data selected from the UEA & UCR Time Series Classification Repository [24].

Name of Dataset Samples Classes Data Origin

Beef 60 5 Spectrograph

ChlorineConcentration 4307 3 Simulated

Earthquakes 461 2 Vibrations

ECG5000 5000 5 ECG measurement

FaceFour 112 4 Images

FordA 4921 2 Engine noise

LargeKitchenAppliances 750 3 Energy consumption

Meat 120 3 Spectrograph

OliveOil 60 4 Spectrograph

OSULeaf 442 6 Images

Symbols 1020 6 Images

SyntheticControl 600 6 Simulated

Trace 200 4 Simulated

TwoLeadECG 1162 2 ECG measurement

Worms 258 5 Motion

3.4. Experimental Procedure

In this contribution dependencies between different data and fusion method characteristics with
respect to the usability of fusion methods should be detected. Although several measures for assessing
the performance of classification algorithms exist [23], the focus of the conducted experiments is given
to the analysis with respect to the overall classification accuracy obtained by classifier fusion. This
section details the applied procedure based on the aforementioned methods and data sets.

3.4.1. Nested Cross Validation

According to k-fold cross validation, data sets are divided into k folds. Random partitioning
of data into k disjoint folds is done [25]. The partitioning conducted within each of the outer loops
of cross validation is the same for every classifier and fusion method (due to implementing seeded
random partitioning in WEKA) [26]. This way, by generating the exact same folds of data for every
classifier and fusion method, all of of the conducted experiments are completely reproducible when
based upon the attached basic partitions of data. To prevent additional bias caused by a dissimilar
deployment of classes between training and test data, each of the derived partitions possesses the
same class distribution as the corresponding original set of samples by implementing stratification of
partitions [26,27]. The suggested number of folds using cross validation according to investigations
in References [28,29], strongly depends on the stability of applied induction algorithms. For larger
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values of k (10–20), in Reference [28] a reduced variance by simultaneous increasing bias of estimates
is noted, while for smaller values (k = 2) the variance increases significantly. In a similar way, the
recommendations proposed in Reference [29] ranges between two to ten folds. Here the applied
number of folds is consequently defined as k = 5 for both inner and outer loop of cross validation,
providing a trade-off between bias and variance while restricting computational effort. The considered
data set is divided into 5 folds, four of these folds are used to train, one fold is used to test the classifiers.
Using the test fold, also the fusion methods are applied to compare the fusion performance with the
individual classifier performance. This training/test procedure is repeated five times. According to
Reference [30], the resulting mean value (here of gain of accuracy) is used to compare the performances.

As explained, some of the selected fusion methods need also an additional training prior to the
fusion process. Following the contributions of References [30–32] generating unbiased performance
estimates, every aspect of parameter tuning or selection should be included within the procedure
of cross validation itself, so a nested approach of cross validation is considered. From all calculated
values, the mean value is set as the final parameter used in the fusion process.

3.4.2. Performance Measure

To compute a measure for improvement obtained by fusion of all classifiers, for each set of data
as well as fusion method, the accuracy of the best individual classifier is compared to the accuracy
of the fused ensemble itself. The partitioning of every data set is exactly the same for all of the
considered classifiers and fusion methods, the comparison of accuracy is conducted in accordance
with the matched sample approach suggested by Reference [32].

Therefore, denoting n as the number of samples of a single data set Z, the applied partitioning
of Z into k disjoint folds Fj with j ∈ {1, . . . , k} leads to a reduced number of samples m within each
fold with n = k ·m [32]. Based on the number of correctly predicted samples in the current test fold
denoted by rbest,j and rens,j for the best classifier and the considered fusion algorithm respectively, the
gain of accuracy ∆ACCj for each fold Fj can be computed by

∆Accj =
rens,j − rbest,j

m
. (2)

Based upon the k different results obtained for each of the derived partitions Fj, the estimated
enhancement of accuracy for a specific fusion algorithm with respect to dataset Z [32] is further
evaluated by

∆Acc =
k

∑
j=1

∆Accj

k
. (3)

Finally the classification performance enhancement is consecutively plotted against the different
characteristics to investigate the impact of the mentioned method-related properties of classifier fusion
and data characteristics.

4. Experimental Results

To evaluate the performance improvement and the influences of different characteristics, the
results are discussed in the following. First the overall performance will be shown. The results related
to the characteristics of fusion methods and data sets are discussed subsequently.

4.1. Mean Performance of Fusion Methods

To analyze the overall fusion performance, the accuracy gain calculated for each fusion method
and data set is shown in Table 3. For all 105 combinations of data set and fusion method, only 13 times
no deterioration compared to the best individual classifier occur. Considering the number of best and
worst results, LR is the fusion method with the best performance (12 times best result out of 15 data
sets). This is also confirmed calculating the mean percentage (−0.95%) over all considered data sets
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(Table 3 last row). The second best results are produced using FI (mean percentage = −3.14%). The
mean percentage for the methods BBI, BC and MV are in a similar range (−5.37% to −6.94%). The
fusion method HR shows the worst results for the considered data sets, for 10 out of the 15 data sets as
well as for the mean percentage, HR produces the least accuracy gain. The BKS shows worst results for
the remaining 5 data sets. In Figure 2 the mean percentage as well as minimum and maximum value
of accuracy gain are plotted for different fusion methods.

Table 3. Mean accuracy gain in percent for each fusion method and data set. The best as well as the
worst result for each considered data set is printed in bold or is underlined respectively, not negative
values are highlighted in green.

Data Set/Fusion Method MV HR BC BBI BKS LR FI

Beef −18.33 −38.33 −23.33 −25.00 −48.33 −5.00 −11.67
ChlorineConcentration −16.39 −52.52 −15.46 −0.02 −5.27 0.00 −0.14
Earthquakes −2.59 −24.07 −1.73 0.00 −1.95 −0.43 −4.76
ECG5000 −0.66 −25.30 −0.76 −1.68 −2.78 0.08 −0.52
FaceFour −1.78 −32.02 −2.69 −10.63 −26.68 −1.78 −2.69
FordA −14.83 −24.36 −15.14 −2.48 −3.35 −0.06 −6.38
LargeKitchenAppliances −8.13 −22.27 −5.73 −4.80 −14.13 0.93 −2.40
Meat 0.00 −22.50 0.00 −7.50 −10.00 0.00 −5.83
OliveOil −5.00 −10.00 −5.00 −11.67 −16.67 −3.33 −5.00
OSULeaf −15.63 −28.95 −12.89 −4.08 −35.28 0.00 −3.42
Symbols −1.27 −12.06 −2.25 −3.24 −19.31 0.39 −0.78
SyntheticControl 0.17 −30.67 −1.33 0.00 −17.17 1.67 1.00
Trace −9.00 −32.00 −13.00 −3.50 −19.00 −5.00 −2.50
TwoLeadECG −1.38 −31.24 −1.63 −0.17 −0.52 −0.26 −0.09
Worms −9.28 −20.94 −2.71 −5.81 −25.13 −1.52 −1.95
Mean percentage −6.94 −27.15 −6.91 −5.37 −16.37 −0.95 −3.14

Figure 2. Mean, minimum and maximum accuracy gain over all data sets for each fusion
algorithm applied.

The results show that also the range between minimum and maximum value is lower for
those fusion methods with better mean value (LR and FI) and higher for those with worse results
(BKS and HR). Although there are strong tendencies for specific fusion methods, the variety of
results is very high, not only for the different fusion methods, also for different data sets. The
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dependency of the results to the different characteristics of fusion methods and data sets is analyzed in
the following.

Lessons Learned

In most cases fusion led to a deterioration in accuracy compared to the best individual classifier.
The LR fusion method leads to the best, the HR to the worst results regarding the considered data sets
and fusion methods.

4.2. Performance Related to Fusion Method Characteristics

The distinction between trainable and non trainable, class-conscious and class-indifferent, as well
as abstract and soft level-supported methods, is illustrated in Figure 3.

Considering the type of classifier output, which is used in fusion methods, it cannot be stated
that one type outperforms the other (see Figure 3 top left). Fusion methods with the best and worst
results (LR and HR) both use soft classifier outputs. Further, the mean value of the individual mean
values (from Table 3) is similar in both categories (abstract: −9.56%, soft: −9.53%). For the considered
data sets and fusion methods, the type of classifier output has no significant influence although the
information content is higher using the soft level.

Figure 3. Mean, maximum and minimum accuracy gain over different characteristics of fusion methods.

Beside the mentioned type of classifier outputs, also the influence of different use of these outputs
is considered. In Figure 3 top right the results are distinguished in class-conscious and class-indifferent
fusion methods. The results show that the two best performances produced by LR and FI, as well as the
two worst results produced by BKS and HR are in different categories, whereas the best performance
is produced by a class-indifferent method, the worst by a class-conscious one. The mean of the
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individual mean values also show a difference (class-conscious: −12.41%, class-indifferent: −7.40%)
and a tendency to class-indifferent methods.

Taking the necessity of an additional training into account, the best three performance values can
be reached using trainable fusion methods. The mean of individual mean values show a smaller
absolute value for trainable methods (not trainable: −13.67%, trainable: −6.47%). This result
shows that additional training, providing additional information used in the fusion process, leads to
better results.

Lessons Learned

The level of classifier output does not have significant influence on the fusion performance.
Class-indifferent and trainable methods perform slightly better than class-conscious and non
trainable methods.

4.3. Performance Related to Data Characteristics

The following paragraphs focus the impact of data inherent characteristics. Therefore the mean,
minimum and maximum values of accuracy gain are plotted for each fusion method and data set
separately over the considered data properties.

4.3.1. Number of Classes

The first data characteristic analyzed is the number of classes. In Figure 4 each plot contains the
accuracy gain for the 15 data sets depending on their number of classes of one fusion method. The
results show that the number of classes has not an influence on every fusion method. The methods
MV, HR, BC and FI do not show a significant change in mean value, only the range between maximum
and minimum value increases and reaches its maximum at 5 classes considering the methods HR and
BC. Utilizing the fusion methods BBI, BKS and LR, a decrease of accuracy gain as well as an increase of
the range can be observed. For the LR method, the occurrence of this tendency is not as significant as
for the BBI and BKS fusion methods. Both methods (Bayes Belief Integration and Behavior Knowledge
Space) rely on the previous training of method inherent parameters. In the case of BBI, the probability
matrix which has to be computed prior to classification, grows quadratic with the number of classes.
Thus an increasing number of classes requires a higher number of training samples. In a similar way
the application of Behavior Knowledge Space relies on the previous computation of probabilities
for each of the possible combinations of labels generated by the different base classifiers. Hence the
knowledge space also grows exponentially with the number of possible classes, which in the case of
restricted data for training also impedes derivation of proper results.
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Figure 4. Mean, minimum and maximum gain in accuracy over number of classes, with respect to each
dataset and fusion method considered.
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Lessons Learned

An increasing number of classes (up to 5 classes) leads to decreasing performance of most of the
considered fusion methods. For a small number of classes, BBI, BKS, LR and FI are suitable but for a
higher number of classes, only LR and FI are recommended.

4.3.2. Number of Samples

In Figure 5 the accuracy gain is plotted over the number of samples provided by the individual data
set. Here the number of samples of the applied data sets ranges from 60 samples (Beef and OliveOil) to
5000 samples (ECG5000). The x-axis is scaled logarithmic because of a slight majority of lower numbers.
The mean values of accuracy gain reached with the fusion methods MV, HR, LR and FI show no clear
tendency for increasing number of samples except of the data set ChlorineConc. (4307 samples) using
HR method. Considering the methods BC, BBI and BKS the loss of accuracy decreases for increasing
number of samples. Regarding the range between minimum and maximum accuracy gain, the range
decreases for all methods except of LR for increasing number of samples. Some exceptions for some
data set/fusion method combinations should be stated: The data sets FaceFour (112 samples) and Meat
(120 samples) show a small range and also a higher mean value using the fusion methods MV and BC,
also showing a small number of samples. All exceptions only appear for fusion methods, where no
additional training of fusion parameters is necessary. The most drastic impact can be noticed for the
methods of BBI as well as BKS, with an improvement of over 20% and 40% respectively.

Lessons Learned

All trainable methods show increasing performance for increasing number of samples. If a large
amount of data is available, trainable methods should be preferred, if only a small number of samples
can be used, LR or FI should be applied.

4.3.3. Entropy of Classes

To evaluate the dependency of fusion results on the evenness of class distribution, the accuracy
gain is plotted against the entropy of classes for each data set and fusion method in Figure 6. The
within this work classified sets of data comprise a range of entropy between 0.7245 to 2.5850 Bit for the
Earthquakes and SyntheticControl dataset respectively. Regarding the methods BBI, BKS and LR the
results show a more or less significant influence on the mean value of accuracy gain. With increasing
entropy, the mean value decreases exept of data sets with entropy of more than 2.5 Bit (OSULeaf,
Symbols and SyntheticControl). The most clearly observable tendency can be recognized for the
method of BKS. The methods MV, HR, BC and FI do not show a tendency of mean value for changing
entropy of classes. The range between minimum and maximum value increases with increasing
entropy. This can be observed for all methods, the most drastic impact on maximum-minimum range
can be noticed for the methods of BKS, BBI, BC and HR. The entropy of classes, as a measure of class
distribution, reaches the highest value with respect to a specific number of possible classes, if all of
the possible labels are represented by the same amount of samples within the considered set of data.
A higher value of entropy corresponds to a higher probability for the samples of a specific class, to
take part in the set applied for inducing the models for classification. The fact that skewed sets of data
in many cases tend to cause overly optimistic results in terms of the resulting accuracy, may explain
the observed behavior for certain fusion methods.

Lessons Learned

An increasing entropy of classes leads to a decreased performance for most fusion methods,
although the information content is higher and the classes are more even distributed for high entropy
of classes. For a high entropy of classes, only LR and FI show good performance, while only HR is not
recommended to be implemented for data with small entropy of classes.
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Figure 5. Mean, minimum and maximum gain in accuracy over number of samples, with respect to
each dataset and fusion method considered.
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Figure 6. Mean, minimum and maximum gain in accuracy over entropy of classes, with respect to each
dataset and fusion method considered.
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4.3.4. Entropy of Attributes

Not only the entropy of classes, also the entropy of attributes is considered in this contribution.
As mentioned, for each attribute of one data set, one entropy value is calculated. To get one value
specific for one data set, the mean value of the entropy of all attributes is calculated. The within this
work selected sets of benchmark data, comprise a range of entropy from 1.1211 Bit to 8.0988 Bit for
the Beef and FordA dataset respectively. The mean, maximum and minimum of accuracy gain in
dependency of the entropy of attributes is shown in Figure 7 for each data set and fusion method.
Considering the mean value of accuracy gain, a small increase in mean for increasing entropy of
attributed can be observed using the methods MV, BC and BBI, whereas using the BKS fusion method,
the influence is significant. The other methods (HR, LR and FI) show evenly distributed mean values
for all entropies. The data sets ChlorineConc and FordA show the highest entropy of attributes but
the mean of accuracy gain deceases significantly for one or both of these data sets when using the
fusion methods MV, HR or BC (again only the not trainable methods). For all fusion methods the
range between minimum and maximum decreases significantly for increasing entropy of attributes.
The mean entropy of attributes is defined as the arithmetic mean over all single attributes entropy.
Given the fact that an attribute with an corresponding low value of entropy comprises less change in
magnitudes, these attributes tend to provide only a slight amount of additional information usable
for the task of classification [12]. The in Figure 7 illustrated results support these quotations, since for
lower values of mean entropy and therefore less attribute inherent information, the performance of the
applied methods of decision fusion is clearly impaired.

Lessons Learned

An increasing performance can be observed for increasing entropy of attributes, because more
information can be extracted using data sets with a high entropy of attributes. Considering data with a
low entropy of attributes, only LR should be used as the fusion method. For data with higher entropy
of attributes, LR and also BBI, BKS and FI can be recommended.

4.4. Are Fusion Methods Improving the Overall Performance? Conclusions from the Numerical Analysis

The question of whether fusion methods increase the overall performance and which
characteristics are influencing the fused performance is considered. A summary of all lessons, which
can be generated from the numerical analysis, are listed in Table 4.

The overall fusion performance illustrates the differences between the considered fusion methods.
While the Logistic Regression outperforms the other fusion methods, the performance of the best
individual base classifier can only be exceeded in 5 out of 105 cases. In 92 of 105 cases, using fusion
leads to a deterioration of performance compared to the best individual classifier performance.

The type of classifier output (abstract or soft), as well as how these outputs are used
(class-conscious or class-indifferent), have no significant influence on the fusion performance, whereas
the trainable methods show slightly better performance than methods without the additional training
prior to the fusion process.

Considering data characteristics, the results show that a higher number of classes leads to worse
performance for some of the fusion methods. The methods LR and FI show the most constant
performance for all numbers of classes, while BKS shows the highest sensitivity to increasing
class number.

The more samples the data set have, the more information can be used for training the base
classifiers as well as the parameters of fusion methods if necessary. This results in a better performance
of the trainable methods for data sets with higher number of samples and can be concluded from
results by the increasing mean value only for trainable methods (BBI, BKS, LR and FI).
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Figure 7. Mean, minimum and maximum gain in accuracy over mean entropy of attributes, with
respect to each dataset and fusion method considered.
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Table 4. Lessons learned from the numerical analysis.

Characteristic Lessons Learned

Overall performance In most cases fusion leads to a deterioration in accuracy compared to the best
individual classifier.
The LR fusion method leads to the best, HR to worst results regarding the
considered data sets and fusion methods.

Classifier output level The level of classifier output does not have significant influence on the
fusion performance.

Use of classifier output Class-indifferent methods perform slightly better than class-conscious methods.

Necessity of training Trainable methods perform slightly better than non trainable methods.

Number of classes For most fusion methods an increasing number of classes (up to 5 classes) leads
to decreasing performance.
For a small number of classes, BBI, BKS, LR and FI are suitable but for a higher
number of classes, only LR and FI are recommended.

Number of samples All trainable methods show increasing performance for increasing number
of samples.
If a large amount of data is available, trainable methods should be preferred, if
only a small number of samples can be used, LR or FI should be applied.

Entropy of classes An increasing entropy of classes leads to a decreased performance for most
fusion methods, although the information content is higher and the classes are
more even distributed for high entropy of classes.
For a small entropy of classes, only LR and FI show good performance, while
only HR is not recommended to be implemented for data with higher entropy
of classes.

Entropy of attributes An increasing performance can be observed for increasing entropy of attributes,
because more information can be extracted using data sets with a high entropy
of attributes.
Considering data with low entropy of attributes, only LR should be used as
fusion method. For data with higher entropy of attributes, LR and also BBI, BKS
and FI can be recommended.

Sensitivity to
all data characteristics

Using the fusion method LR, the results are at least sensitive to the changes in
the data characteristics, while BKS shows the most sensitivity.

Although a higher entropy of classes denotes more even distributed classes in the considered
data set, a decrease in performance (mean and also range between maximum and minimum accuracy
gain) can be observed for most of the fusion methods. Considering data sets with low entropy, all
fusion methods except of HR (fusion method with worst overall performance) show similar and good
performance. Increasing the entropy of classes, only using LR and FI are recommended to reach
good performance.

Complementary to the entropy of classes, the higher entropy of attributes leads to the better
performance of fusion methods. The higher the entropy, the more information can be extracted from
the attributes, which can also be concluded from the results of all fusion methods.

Considering all data characteristics, MV, LR and FI show the least sensitivity to a change in these
characteristics. While LR is performing best in the overall performance, the absolute influence of the
changes is the least using LR. Hence the LR method is denoted as the least sensitive method. The
fusion method BKS is most sensitive to changes of applied data characteristics.

5. Summary and Conclusions

The aim of this contribution conducted is to investigate relationships between fusion methods
and data characteristics. The question to be answered is: Which fusion method improves in which
case the overall performance? Therefore 15 different sets of benchmark data with different number
of classes and samples as well as different entropy of classes and attributes were classified by eight
base classifiers implemented using the WEKA machine learning toolbox. The generated classification
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results were fused by seven selected fusion algorithms. The fusion methods use different types of
classifier outputs (abstract and soft) in different ways (class-conscious or class-indifferent). Some need
additional training prior to fusion, some not. During experiment, nested 5-fold cross validation is used
to distribute the data sets into training and test for classifiers and training and validation for fusion
methods to obtain representative and (with the given restrictions) generalized results.

The main and most important result is that in most cases the use of fusion methods do
not outperform the maximum individual classifier performance. However, the use of fusion has
advantages like insensitivity to overfitting or redundancy. The results of this numerical analysis leads
to the conclusion that the fusion performance strongly depends on the individual fusion method
in combination with data characteristics. Some principal connections are carried out and given
as recommendations.

In this contribution the accuracy as a measure for the overall performance is considered. In further
considerations, also measures like recall, precision, f-score or false alarm rate can be considered to
evaluate the effects to individual classes or assignments.
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