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Abstract: The fault response signals of an axle-box bearing of a rail vehicle have strongly non-linear
and non-stationary characteristics, which can reflect the operating state of the running gears. This
paper proposes a novel method for bearing fault diagnosis based on frequency-domain energy
feature reconstruction (EFR) and composite multiscale permutation entropy (CMPE). First, a wavelet
packet transform (WPT) is applied to decompose the vibration signals into multiple frequency
bands. Then, considering that the bearing-localized defects cause the axle-box bearing system to
resonate at a high frequency, which will lead to uneven energy distribution of the signal in the
frequency domain, the energy factors of each frequency band are calculated by an energy feature
extraction algorithm, from which the frequency band with maximum energy factor (which contains
abundant fault information) is reconstructed to the time-domain signal. Next, the complexity of the
reconstructed signals is calculated by CMPE as fault feature vectors. Finally, the feature vectors are
input into a medium Gaussian support vector machine (MG-SVM) for bearing condition classification.
The proposed method is validated by a public bearing data set and a wheelset-bearing system test
bench data set. The experimental results indicate that the proposed method can effectively extract
bearing fault features and provides a new solution for condition monitoring and fault diagnosis of
rail vehicle axle-box bearings.

Keywords: axle-box bearing of rail vehicle; wavelet packet transform; energy feature reconstruction;
composite multiscale permutation entropy; MG-SVM; fault diagnosis

1. Introduction

As an important component affecting the operational safety of rail vehicles, the axle-box bearing
of the running gear bears various dynamic impacts, such as vehicle body load and starting, traction,
and braking forces during operation. At the same time, the surfaces of many components inside
the bearing are in contact with each other, causing the bearing to generate localized defects, such as
inner race, roller, outer race, and cage faults. As the axle-box bearing is affected by the wheel-rail
high frequency impact and the alternating load of the primary suspension, the vibration signals show
strongly non-linear and non-stationary characteristics, and the response signal of an early fault of
a bearing is very weak, relative to the strong background noise. Extracting the features of bearing
faults in the non-linear, multi-component amplitude and frequency modulated signals, and accurately
identifying the bearing conditions has always been a difficult point in bearing fault diagnosis [1–3].

Bearing fault diagnosis consists of two aspects: fault feature extraction and fault type recognition.
Scholars have carried out many studies on these two aspects and proposed different theoretical
algorithms. Time-frequency analysis methods can be used effectively to decompose and describe
response signals of bearing early faults, including wavelet transform (WT), empirical mode
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decomposition (EMD) [4], local mean decomposition (LMD) [5], empirical wavelet transform (EWT) [6],
and variational mode decomposition (VMD) [7] methods. WT is an effective time-frequency analysis
method which has a good noise reduction effect [8], but it only decomposes the low-frequency band of
the signal; the high-frequency band is not processed, so, the frequency resolution in the high-frequency
band is low. Wavelet packet transform (WPT) methods improve on the wavelet transform, which
can decompose the high- and low-frequency bands of the signal into multiple layers and provide
a high-resolution analysis method for the signal. At the same time, according to the characteristics
of the analyzed signal, the corresponding frequency bands can be adaptively selected to match
the original signal spectrum [9]. EMD is an effective time-frequency analysis approach, which can
decompose complicated multi-component signals into a set of intrinsic mode functions (IMFs). In order
to overcome the drawbacks of EMD, such as the boundary effect, mode mixing, and under- and
over-shoot problems, improved methods, including ensemble EMD (EEMD) [10], complementary
EEMD (CEEMD) [11], and complete EEMD with adaptive noise (CEEMDAN) [12] have been proposed.
In [13–15], the CEEMDAN and VMD methods have been applied for feature extraction and denoising
of underwater acoustic signals.

EMD and its derivative methods, LMD, and VMD methods can decompose complicated signals
self-adaptively; however, the signal frequency bands cannot be accurately divided, and the IMF
decomposition results are related to the original signal characteristics, which cannot form a uniform
frequency distribution. WPT can decompose a signal with multiple scales and high resolution based on
the frequency distribution with more uniform frequency feature extraction results, which is beneficial
to the unified feature extraction of different frequency bands of fault-impact signals and facilitates
intelligent classification of multiple sets of signals. Fan [16] proposed a wavelet-based statistical
signal detection approach for monitoring and diagnosis of bearing compound faults at an early stage.
Bin [17] combined WPT and EMD to extract fault feature frequencies for early fault feature extraction
in rotating machinery. Bastami [18] used WPT to extract vibration signal features and applied an
artificial neural network to estimate the remaining life of rolling element bearings. Wang [19] proposed
a novel sparse wavelet reconstruction residual feature for rolling element bearing diagnosis, based on
WPT and sparse representation theory. Wan [20] used the binary wavelet packet transform, instead of
the finite impulse response filter bank, as the frequency band segmentation method for optimizing
the fast spectrum kurtosis algorithm. As localized bearing defects cause the energy of vibration
signals to change in the frequency domain, the features of the frequency-domain energy can describe
the vibration signal [21]. Huang [22] decomposed bearing vibration signals into wavelet signals of
different frequency bands, where different frequency band signals were respectively reconstructed to
extract energy features, which formed the feature vectors for input into classification models. Ma [23]
extracted the energy distribution coefficients and energy entropy of the third-layer wavelet packet
decomposition coefficients as the characteristic parameters of the subsequent classification models. In
conclusion, many studies have shown that WPT can self-adaptively decompose a signal into different
frequency bands and that the energy factors of each frequency band can reflect the intrinsic features
of the signals. This paper is inspired by this conclusion and, as such, proposes a primary feature
extraction method based on WPT and energy feature reconstruction.

In recent years, various entropy-based complexity measurement methods deriving from information
theory have been proposed for feature extraction of non-linear vibration signals [24,25], such as
approximate entropy (ApEn) [26], sample entropy (SampEn) [27], multiscale entropy (MSE) [28],
and fuzzy entropy [29]. Considering that a combination of resonances can change the pattern of
shaft vibration responses, Nicoletti [30] used the ApEn algorithm to highlight the presence of such
resonances and detected the incipient cracks. Li [31] proposed a novel signal processing method by
combining the improved Vold–Kalman filter and multiscale sample entropy for planetary gearboxes
under non-stationary working conditions. The simulation and experimental results showed that the
presented method had superior performance in identifying fault types of planetary gearboxes. Hsieh [32]
combined empirical mode decomposition and MSE to extract the fault defects of a high-speed Spindle.
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Zheng [33] proposed a Sigmoid-based refined composite multiscale fuzzy entropy method and used
it for dynamical complexity analysis of mechanical vibration. The analysis and results showed that
the proposed method had a better distinguishing capacity and robustness, as well as being capable of
reflecting more complex information of the time-series. Permutation entropy (PE) was proposed by
Bandit and Pompe [34], which has the superiority of robustness, simplicity, computational efficiency,
and invariance to non-linear monotonous transformations. For rotary machinery vibration signal fault
feature extraction, Zheng [35] combined PE and VMD, Xiao [36] combined PE and smooth local subspace
projection, and Tian combined [37] PE and manifold-based dynamic time warping; all of which could
diagnose faults accurately. However, the PE method only has a single scale, which makes it insufficient
when dealing with the dynamic changes of vibration signals. In order to overcome the drawbacks of the
PE method, Aziz and Arif [38] proposed a new method, named multiscale permutation entropy (MPE),
using a combination of MSE and PE. MPE can extract features from time-series signals at different scales
and has better robustness, strong anti-noise capability, and can effectively reflect the characteristics
of the non-linear dynamics and random vibrations of a rolling bearing. Zhang [25] used MPE to
calculate the complexity of a reconstructed feature space signal. Zheng [39] proposed an improved
MPE method, called generalized composite multiscale permutation entropy, to solve the drawback of
the coarse graining process in MPE. To improve the trend and stability of the MPE method, composite
multiscale permutation entropy (CMPE) was put forward by improving the coarse-grained procedure
and obtaining several PE values to describe in one same scale [40,41]. Si [42] applied CMPE for accurate
cutting state recognition of a shearer and Yin [43] combined CMPE and WPT for arc fault detection;
they all achieved expected results, which proved the effectiveness of feature extraction by CMPE.

In this paper, a novel method for the fault diagnosis of rail vehicle axle-box bearings is proposed,
based on frequency-domain energy feature reconstruction (EFR) and CMPE. According to mechanical
vibration theory, a localized bearing defect can cause the axle-box bearing system to resonate at a high
frequency, which can lead to an uneven energy distribution of the vibration signal in the frequency
domain. Firstly, the bearing vibration signals are decomposed by a three-layer WPT to divide the
original signals into eight parts, from low frequency to high frequency. Secondly, the energy factors
of each frequency band are calculated by the energy feature extraction algorithm, and the frequency
band containing abundant fault information with maximum energy factor is reconstructed to the
time-domain signal. Thirdly, the complexity of the reconstructed signal is calculated by CMPE over
multiple time scales to obtain a series of PE, which can describe the features of original vibration signal.
Finally, as the fault feature matrixes, the CMPEs are input into a medium Gaussian support vector
machine (MG-SVM) for bearing condition classification.

The rest of this paper is organized as follows: Section 2 reviews the WPT and energy extraction
algorithm, following which the energy feature reconstruction criterion is proposed. The PE, MPE,
and CMPE methods are introduced in Section 3. The proposed method flow is described in Section 4,
which is validated and analyzed by multiple experiment data sets in Section 5. The discussion and
conclusion are given in Sections 6 and 7, respectively. The significations of the acronyms for the
different algorithms in this paper are listed in Table A1, in Appendix A.

2. WPT-Based Energy Feature Reconstruction

2.1. WPT and Energy Feature Extraction Algorithm

The continuous wavelet transform of a finite-energy signal (x(t) ∈ L2(R)) is [17]

Wx(a, b) =
1
√
|a|

∫ +∞

−∞

x(t)ϕ∗(
t− b

a
)dt, (1)

where ϕ∗(t) is the conjugated wavelet of the mother wavelet ϕ(t), a is the scale parameter, b is the
translation parameter, the factor 1/

√
|a| is used for energy preservation, and Wx(a, b) is the continuous

wavelet transform of x(t).
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The scale parameter can adjust the shape of ϕ(t) and the translation parameter can adjust the
displacement ofϕ(t), which makes wavelet analysis an effective decomposition method for a non-linear
and non-stationary signal in both the time and frequency domains.

Although the wavelet analysis is an effective method for time-frequency analysis, it only
decomposes the low-frequency part—the high-frequency part is not processed—which makes the
frequency resolution of high-frequency part poor. However, WPT, which was derived from WT,
can decompose both the low- and high-frequency parts. Thus, the WPT is a full-scale time-frequency
analysis method.

The two-scale function of WPT, including a scaling function (φ(t)) and wavelet function (ϕ(t))
can be expressed as

φ(t) =
√

2
∑

k

h(k)φ(2t− k) (2)

ϕ(t) =
√

2
∑

k

g(k)φ(2t− k), (3)

where h(k) is the low-pass filter and g(k) is the high-pass filter. Based on the wavelet filters, the signal
is decomposed into a form of a binary tree. The WPT coefficients can be expressed as

d j+1, 2n =
∑

m
h(m− 2k)d j, n (4)

d j+1, 2n+1 =
∑

m
g(m− 2k)d j, n, (5)

where j is the decomposition layer, n is the node number in layer j, and m is the number of wavelet
coefficients. Figure 1 is a binary tree of a three-layer WPT, where S(0, 0) represents the original signal,
and the signal is decomposed into eight sub-bands.
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Figure 1. Schematic of a three-layer wavelet packet decomposition.

WPT decomposes a signal into different frequency bands. When a bearing fault occurs, the localized
defect impact can cause resonance at a different natural frequency from the axle-box bearing system,
resulting in an uneven energy distribution in the frequency domain of the vibration signal. Therefore,
energy distribution regularity in the frequency domain can be viewed as an important characteristic of
a vibration signal. For an orthogonal wavelet packet space, the energy factor (E( j, n)) of the frequency
domain in the signal WPT space is defined as [21]

E( j, n) =
∑

[d( j, n)]
2
, (6)

where d( j, n) is the WPT coefficient, which can be calculated by Equations (4) and (5).
If the original signal is subjected to a J-layer wavelet packet full-scale decomposition, the energy

characteristic matrix (C(J, s)) of each frequency band under the J-layer WPT can be calculated as

C(J, s) = [E(J, 20), E(J, 21), · · · , E(J, 2J
− 1)]. (7)
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When an axle-box bearing has a fault, the localized defects will cause the axle-box bearing system to
resonate at a high frequency, which will lead to uneven energy distribution of the signal in the frequency
domain and frequency bands with higher energy factors contain more fault feature information.
The wavelet packet reconstruction is performed on the frequency band with maximum energy factor
and, then, a new time-domain vibration signal with more obvious fault features is obtained.

2.2. Experimental Verification

The CWRU-BDC (Case Western Reserve University Bearing Data Center) data set is taken as
an analysis example (this data set will be introduced in more detail in Section 5.1). Based on the
experimental vibration signals in different conditions, including a normal bearing, a bearing with an
inner race fault, a bearing with a roller fault, and a bearing with an outer race fault, three-layer WPT
was performed on the vibration signals. Each signal was decomposed into eight parts in the frequency
domain and the energy factors were calculated according to Equation (6). The energy distributions of
the different bearings are shown in Figure 2.
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Figure 2. The energy factors of frequency bands for rolling bearings in different conditions.

It can be seen, from Figure 2, that there were differences in the energy distributions of bearings in
different conditions. For the normal bearing, the signal energy was mainly concentrated in the low
frequency band (especially in the 0th frequency bands) and the energy factor in the high frequency
band was relatively small. The energy of the low frequency band for the normal bearing mainly came
from the even vibration noise generated by the rotation of the bearing. The frequency band energy
distributions of the bearings with different kinds of faults were similar, mainly concentrated in the 2nd
and 6th frequency bands, especially the 6th frequency band of the high frequency part, which was
caused by the fact that localized defect impact can cause resonance at high natural frequencies of the
axle-box bearing system. Therefore, for the fault bearings, the 6th frequency band, with high energy
factor, contained abundant fault feature information. The normal bearing energy in the 6th frequency
band was small, such that the normal bearing and the fault bearings had significant feature differences
in this frequency band.

Therefore, wavelet packet reconstruction can be performed on the high-energy frequency band of
the fault bearing, from which time-domain vibration signals with more bearing feature information
are obtained. Figure 3 shows the original vibration signals of the bearing in different conditions,
and Figure 4 shows the reconstructed signals of the 6th frequency band.

Comparing Figures 3 and 4, it can be seen that the amplitude of the reconstructed signal for
the normal bearing was significantly reduced, but the reconstruction signals for the fault bearings
showed less loss in amplitude, such that the difference between the normal bearing and the fault
bearings was more obvious. On the other hand, the low-amplitude noise of the reconstructed fault
signals was reduced, which is due to the fact that the low frequency bands were excluded during
signal reconstruction.
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Figure 3. Vibration signals of different bearings: (a) normal bearing, (b) bearing with inner race fault,
(c) bearing with roller fault, and (d) bearing with outer race fault.
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Figure 4. The 6th frequency band reconstructed signals of different bearings, based on energy feature
reconstruction: (a) normal bearing, (b) bearing with inner race fault, (c) bearing with roller fault, and (d)
bearing with outer race fault.
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Figures 5 and 6 show the signal spectrum of the normal bearing and inner race fault bearing
before and after energy feature reconstruction. It can be seen, from Figure 5, that the energy of normal
bearing is mainly distributed at low frequency segment (below 2 kHz) and the reconstructed signal of
the 6th frequency band is located at 2–4 kHz, where the energy of original signal is small, such that
the frequency amplitude of reconstructed signal is greatly reduced. In Figure 6, it can be seen that
the signal frequency of bearing with inner race fault is mainly distributed in 2–4 kHz, which contains
abundant bearing fault information. After the signal reconstruction of the 6th frequency band by the
wavelet packet, the main energy of original signal is saved. At the same time, the noise at low frequency
is suppressed and the loss of frequency amplitude for reconstructed signal is small. The above analysis
further demonstrates that the method of energy feature reconstruction can effectively extract the
bearing fault information, and suppress the signal energy of the normal bearing, which can increase
the signal differences between the normal bearings and the fault bearings.
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Figure 5. Spectrum of vibration signals for a normal bearing: (a) the original signal, (b) the reconstructed
signal of the 6th frequency band.

Entropy 2019, 21, x FOR PEER REVIEW 7 of 23 

 

Figures 5 and 6 show the signal spectrum of the normal bearing and inner race fault bearing 
before and after energy feature reconstruction. It can be seen, from Figure 5, that the energy of 
normal bearing is mainly distributed at low frequency segment (below 2 kHz) and the 
reconstructed signal of the 6th frequency band is located at 2–4 kHz, where the energy of original 
signal is small, such that the frequency amplitude of reconstructed signal is greatly reduced. In 
Figure 6, it can be seen that the signal frequency of bearing with inner race fault is mainly 
distributed in 2–4 kHz, which contains abundant bearing fault information. After the signal 
reconstruction of the 6th frequency band by the wavelet packet, the main energy of original signal 
is saved. At the same time, the noise at low frequency is suppressed and the loss of frequency 
amplitude for reconstructed signal is small. The above analysis further demonstrates that the 
method of energy feature reconstruction can effectively extract the bearing fault information, and 
suppress the signal energy of the normal bearing, which can increase the signal differences between 
the normal bearings and the fault bearings. 

  
(a) (b) 

Figure 5. Spectrum of vibration signals for a normal bearing: (a) the original signal, (b) the 
reconstructed signal of the 6th frequency band. 

  
(a) (b) 

Figure 6. Spectrum of vibration signals for a bearing with inner race fault: (a) the original signal, (b) 
the reconstructed signal of the 6th frequency band. 

3. Composite Multiscale Permutation Entropy 

3.1. Permutation Entropy 

Permutation entropy (PE) was proposed for measuring the complexity and detecting the 
chaotic dynamic change of a time-series by comparing adjacent values without considering the size 
of the values, which makes it suitable for analyzing non-stationary time-series detected from 
complex dynamic systems. 

Considering a given time-series{ }( ), 1,2,...,x i i N= , it can be reconstructed in phase space by 
[34]: 

0 1000 2000 3000 4000 5000 6000
Frequency/Hz

0

0.05

0.1

0.15

0.2

0.25

Am
pl
itd
e/
(m

/s
2 )

Figure 6. Spectrum of vibration signals for a bearing with inner race fault: (a) the original signal, (b) the
reconstructed signal of the 6th frequency band.

3. Composite Multiscale Permutation Entropy

3.1. Permutation Entropy

Permutation entropy (PE) was proposed for measuring the complexity and detecting the chaotic
dynamic change of a time-series by comparing adjacent values without considering the size of the
values, which makes it suitable for analyzing non-stationary time-series detected from complex
dynamic systems.
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Considering a given time-series
{
x(i), i = 1, 2, . . . , N

}
, it can be reconstructed in phase space

by [34]: 

X(1) =
{
x(1), x(1 + λ), . . . , x(1 + (m− 1)λ)

}
...
X(i) =

{
x(i), x(i + λ), . . . , x(i + (m− 1)λ)

}
...
X(N − (m− 1)λ) =

{
x(N − (m− 1)λ), x(N − (m− 2)λ), . . . , x(N)

}
, (8)

where m is the embedding dimension and λ is the time delay. X(i) is the reconstructed series in phase
space. The elements in X(i) are sorted by increasing order:

XS(i) =
{
x(i + ( j1 − 1)λ) ≤ x(i + ( j2 − 1)λ) ≤ . . . ≤ x(i + ( jm − 1)λ)

}
, (9)

where XS(i) is the sorted series. j is the position order of x(i) in X(i) and 1 ≤ j ≤ m.
For an arbitrary series X(i), there are m! permutation possibilities, and the relative frequency of

each permutation π can be obtained by

p(π) =
Number

{
i
∣∣∣i ≤ N −m, Xm

i = π
}

N − (m− 1)λ
, (10)

where Xm
i is one of XS and the elements sorting order of Xm

i is same with permutation π when
embedding dimension is m.

Based on Shannon entropy, the PE of dimension m can be defined as

HPE(m) = −
π=m!∑
π=1

p(π) ln(p(π)). (11)

The maximum of HPE(m) can reach ln(m!), which is related with the dimension m. In general,
HPE(m) can be normalized as

HPE = HPE(m)/ ln(m!). (12)

Thus, PE ranging from 0 to 1 can be calculated by the above procedure. If HPE is small, it means
that the series is regular; if HPE is large, it means the series is random.

3.2. MPE and CMPE

MPE and CMPE are improved methods derived from PE. In order to solve the shortcomings of
PE’s single-scale analysis of signal, a coarse-grained procedure was put forward to generate multiple
related series based on a signal series. As one PE value can be calculated through one series, MPE and
CMPE can use a series of PE values to describe one series, which can yield more information for a
complex time-series. The difference between MPE and CMPE is in the coarse-grained procedure.

(1) Coarse-grained procedure of MPE:

Considering a given time-series
{
x(i), i = 1, 2, . . . , N

}
of length N, each new time-series y(τ) can

be obtained by calculating the average of successive data within non-overlapping windows at a scale
factor of τ:

y(τ)j =
1
τ

jτ∑
i=( j−1)τ+1

xi 1 ≤ j ≤
⌊N
τ

⌋
, (13)

where τ is the scale factor and bN/τc is the length of each of the coarse-grained series y(τ).
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Then, each coarse-grained series y(τ) with different scale factor τ can be calculated and obtain a
PE value. Multiple PE values constitute the MPE:

MPE(X, τ, m,λ) = PE(y(τ), m,λ), (14)

where m is the embedding dimension and λ is the time delay.
Although MPE can describe the complexity of a time-series through multiple PE values,

which is better than one single PE, the conventional MPE method still has two drawbacks: firstly,
the coarse-grained procedure of MPE is not symmetric. Secondly, the MPE results have unstable trends
over for long temporal scales.

(2) Coarse-grained procedure of CMPE:

CMPE improves the coarse-grained procedure by using multiple coarse-grained time-series at
one scale factor. By improving Equation (13), CMPE obtains τ new coarse-grained series at a scale
factor of τ, where the kth coarse-grained series can be obtained by:

y(τ)k, j =
1
τ

jτ+k−1∑
i=( j−1)τ+k

xi 1 ≤ j ≤
⌊N
τ

⌋
, 1 ≤ k ≤ τ. (15)

Then, the average of multiple PE of τ new coarse-grained series is calculated to obtain the CMPE
value at a scale factor τ:

CMPE(X, τ, m,λ) =
1
τ

τ∑
k=1

PE(y(τ)k , m,λ). (16)

With a scale factor of 3, the coarse-grained procedures of MPE and CMPE are shown in Figure 7.
MPE can decompose one time-series at a scale factor of 3, while the CMPE can decompose three
time-series at a scale factor of 3.
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multiscale permutation entropy (MPE) with scale factor 3.
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3.3. Simulation Contrast between MPE and CMPE

In order to contrast and compare CMPE and MPE, 4096 Gaussian white noise data points were
taken as the extraction object, the scale factor was set to 20, the embedding dimension to 4–6, and the
delay time to 1. Then, using CMPE and MPE, the PE values of the Gaussian white noise data were
found. The result is shown in Figure 8.Entropy 2019, 21, x FOR PEER REVIEW 10 of 23 
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Figure 8. Contrast between CMPE and MPE over different embedding dimension and scale factors.

In Figure 8, it can be seen that, as the scale factor increased, the value of PE decreased. Furthermore,
the larger the embedding dimension was, the faster the PE decreased. This is because the data length
reduces as the scale factor increases and, so, the time-series becomes more stable and the PE decreases.
The smaller the embedding dimension is, the shorter the length of the phase space reconstruction signal.
The time-series becomes more complex, which leads to an increase in PE. However, comparing the
extraction results of CMPE and MPE, it can be seen that the CMPE calculation results were obviously
more stable.

4. The Proposed Fault Diagnosis Method

Based on the signal feature analysis of fault bearings and non-linear time-frequency analysis
algorithms, this paper combines WPT, EFR, CMPE, and the classification method of MG-SVM
(WPT-EFR-CMPE + MG-SVM) to propose the following fault diagnosis process for rail vehicle
axle-box bearings:

(1) Perform three-layer dmey kernel (discrete Meyer wavelet) WPT on the vibration signals of the
training data set and decompose the signals into eight frequency bands.

(2) Calculate the energy factor of each frequency band using the wavelet packet coefficients.
The position of the frequency band with the highest energy factor of the fault signal will be chosen,
and all frequency bands at this position are constructed to time-domain signals.

(3) For the reconstructed time-domain signals, calculate their CMPE values and set the scale factor
to 15, the embedding dimension to 6, and the delay time to 1. Each signal is transformed into a feature
vector containing 30 factors.

(4) Input the feature vectors into the MG-SVM to establish a bearing condition classifier through
supervised learning.

(5) For the test data set, extract their features using steps 1 to 3. Then, input the features into the
classifier for bearing condition classification and fault size classification.

Figure 9 shows the flowchart of the proposed method.
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5. Experimental Results and Analysis

5.1. Experimental Validation 1

The method proposed in this paper was verified using the bearing test bench data set from
CWRU-BDC (Case Western Reserve University Bearing Data Center) [44]. The test bench is shown
in Figure 10. The test bearing was a SKF6205-2RS deep groove ball bearing, which included four
conditions: normal bearing (Normal), inner race fault (IRF), roller fault (BF), and outer race fault (ORF).
The vibration signal sampling frequency was 12 kHz. In order to increase the fault diagnosis difficulty,
the rotation speeds of the bearing corresponding to the chosen data were 730, 1750, 1772, and 1797
rpm. Figure 11 shows an example of the time-domain waveforms of vibration signals corresponding
to different bearing conditions. The normal bearing has no obvious fault impact (Figure 11a), and the
amplitude fluctuates within a small range; the time-domain waveform of the bearing with roller fault
is similar to normal bearing (Figure 11b), but the vibration amplitude is slightly larger, indicating that
the impact vibration caused by the roller was small and easily covered by noise; the inner race fault
and the outer race fault bearings have obvious periodic impact characteristics (Figure 11c,d), and the
waveform amplitude is large.

The training and testing data set samples were collated, where each sample consisted of 2048
points containing information for approximately five cycles of the bearing. For each fault type, the fault
point diameter was selected from 0.1778, 0.3556, or 0.5334 mm. For each fault diameter, 12 training
samples and 48 testing samples were selected. The sample labels were divided into two groups. Group
I was in accordance with the bearing fault types and contained four categories, and Group II contained
10 categories in accordance with the fault diameters of bearings in different conditions. Detailed
information of the data set is shown in Table 1.
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Figure 11. Vibration signals of different bearings (from CWRU-BDC): (a) normal bearing, (b) bearing
with inner race fault, (c) bearing with roller fault, and (d) bearing with outer race fault.

Table 1. The classification details of the bearing experimental data set.

Bearing
Condition

Fault Diameter
(mm)

Number of
Training Samples

Number of
Testing Samples

Group II
Class Label

Group I
Class Label

Normal 0 36 144 0 1

IRF1 0.1778 12 48 1
2IRF2 0.3556 12 48 2

IRF3 0.5334 12 48 3

BF1 0.1778 12 48 4
3BF2 0.3556 12 48 5

BF3 0.5334 12 48 6

ORF1 0.1778 12 48 7
4ORF2 0.3556 12 48 8

ORF3 0.5334 12 48 9



Entropy 2019, 21, 865 13 of 23

Three-layer WPT was performed on the vibration signals and energy features were extracted,
as shown in Figure 12. It can be seen that the fault bearings had the largest energy factor, mainly
in the 6th frequency band. According to the principle of system resonance caused by bearing fault
impact, the 6th frequency bands of all signals were reconstructed into time-domain signals by wavelet
packet reconstruction.
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Figure 12. The energy factors of frequency bands for rolling bearings in different conditions.

The examples of reconstructed signals are shown in Figure 13. Compared with the original signal
(Figure 11), the low-amplitude noise was suppressed in fault bearing signals, and the fault impact
features are more obvious. The amplitude difference between the normal bearing and the fault bearing
signals was large, as a result of the vibration signal of normal bearing having a lower energy factor
in the high frequency band, as well as the lower frequency band, with higher energy, having been
removed. The CMPE was calculated from the reconstructed signals (Figure 14).
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Figure 13. The 6th frequency band reconstructed signals of different experimental bearings (from
CWRU-BDC) based on energy feature reconstruction: (a) normal bearing, (b) bearing with inner race
fault, (c) bearing with roller fault, and (d) bearing with outer race fault.
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Table 2. The classification results of the proposed method. 

Item 

Fault 

Diameter 

(mm) 

Accuracy (%) 

(Correct Number/Testing Number) 

Total 

Accuracy 

(%) Normal IRF BF ORF 

Group I 

0.1778 
100 

(144/144) 

100 (48/48) 97.9 (47/48) 100 (48/48) 

98.54 0.3556 97.9 (47/48) 97.9 (47/48) 100 (48/48) 

0.5334 100 (48/48) 93.8 (45/48) 97.9 (47/48) 

Group II 
Different 

diameter 

100 

(144/144) 

99.31 

(143/144) 

100 

(144/144) 

99.31 

(143/144) 
99.66 

5.2. Performance Comparison 1 

In order to prove the superiority of the WPT-EFR-CMPE + MG-SVM method proposed in this 

paper, different bearing diagnosis methods were applied to the same dataset, including MPE + 

MG-SVM, CMPE + MG-SVM, WPT-EF + MG-SVM, and WPT-EFR-MPE + MG-SVM, where WPT is 

wavelet packet transform, EFR is energy feature reconstruction, EF is energy feature, MPE is 
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Figure 14. The CMPE values of rolling bearings in different conditions.

After obtaining the CMPE value, it was input into the MG-SVM for fault mode identification.
The recognition result is shown in Figure 15. For Group I (Figure 15a), the recognition rate of normal
bearings and bearings with a roller fault was 100%, the recognition rate of bearings with inner and
outer race faults was 99.31%, and the average rate was 99.66%. Overall, the recognition rate was high.
One of the inner race faults was incorrectly identified as an outer race fault, and one outer race fault
was incorrectly identified as an inner race fault. The bearing fault point size can be further classified,
and the result is shown in Figure 15b. Out of a total of 576 samples analyzed, 469 samples were
correctly identified, and seven samples were recognized incorrectly. The overall recognition rate was
98.54%; however, the recognition rates of normal bearings and fault bearings were 100%. The results
are listed in Table 2.
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Figure 15. Classification results using proposed method: (a) Group I, with four bearing conditions;
and (b) Group II, with 10 bearing conditions.

Table 2. The classification results of the proposed method.

Item
Fault

Diameter
(mm)

Accuracy (%)
(Correct Number/Testing Number)

Total
Accuracy

(%)Normal IRF BF ORF

Group I
0.1778

100
(144/144)

100 (48/48) 97.9 (47/48) 100 (48/48)
98.540.3556 97.9 (47/48) 97.9 (47/48) 100 (48/48)

0.5334 100 (48/48) 93.8 (45/48) 97.9 (47/48)

Group II Different
diameter

100
(144/144)

99.31
(143/144)

100
(144/144)

99.31
(143/144) 99.66
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5.2. Performance Comparison 1

In order to prove the superiority of the WPT-EFR-CMPE + MG-SVM method proposed in this paper,
different bearing diagnosis methods were applied to the same dataset, including MPE + MG-SVM,
CMPE + MG-SVM, WPT-EF + MG-SVM, and WPT-EFR-MPE + MG-SVM, where WPT is wavelet packet
transform, EFR is energy feature reconstruction, EF is energy feature, MPE is multiscale permutation
entropy, CMPE is composite multiscale permutation entropy, and MG-SVM is medium Gaussian
support Vector machine. The classification results are shown in Figures 16–19.
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Figure 16. Classification results using the MPE + MG-SVM method: (a) Group I, with four bearing
conditions; and (b) Group II, with 10 bearing conditions.
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Figure 17. Classification results using the CMPE + MG-SVM method: (a) Group I, with four bearing
conditions; and (b) Group II, with 10 bearing conditions.
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Figure 18. Classification results using the WPT-EF + MG-SVM method: (a) Group I, with four bearing
conditions; and (b) Group II, with 10 bearing conditions.
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Figure 19. Classification results using the WPT-EFR-MPE + MG-SVM method: (a) Group I, with four
bearing conditions; and (b) Group II, with 10 bearing conditions.

A comparison of the fault recognition rates of the different algorithms is shown in Table 3.
The proposed method was superior to the other similar diagnosis methods in both bearing fault mode
classification and fault size classification, which proves that the fault feature extraction of the proposed
method is more accurate, and the fault recognition rate is higher.

Table 3. Comparison results of different methods for fault diagnosis accuracy (data set coming
from CWRU-BDC).

Different Approaches Accuracy (%)

Group I Group II

MPE + MG-SVM 86.60 91.15
CMPE + MG-SVM 93.33 95.49

WPT-EF + MG-SVM 95.63 98.26
WPT-EFR-MPE + MG-SVM 94.79 97.57

Proposed method 98.54 99.66

5.3. Experimental Validation 2

Through the wheelset-bearing system test bench, the effectiveness of the proposed method for fault
diagnosis of axle-box bearing in rail vehicles was verified. The test bench is shown in Figure 20. The
wheelset is driven by the driving wheel and an aerodynamic force is applied to the shaft-end axle-box
through the lever, which can simulate different loads. An accelerometer was mounted in the bearing
loading area of the axle-box to monitor the bearing vibration, and the monitoring direction of vibration
was 45◦ relative to gravity direction, as shown in Figure 20c. Rotation tests of bearings in different
conditions were carried out, including normal, inner race fault, roller fault, and outer race fault bearings.
An artificial fault on the surface of a single roller is shown in Figure 20d. The parameters of the tested
rolling bearings included rotation velocity and load, as shown in Table 4. The vibration signals were
collected at a sampling frequency of 12 kHz. Figure 21 shows an example of the time-domain vibration
signals for bearings in different conditions.

Table 4. The parameters of the tested rolling bearing in the wheelset-bearing system test bench.

Pitch Diameter
(mm)

Roller Diameter
(mm)

Roller
Number

Contact Angle
(rad)

Rotation
Velocity (rpm) Load (kN)

176 26 18 0 300 70
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Figure 21. Vibration signals of different bearings (from the wheelset-bearing system test bench):
(a) normal bearings, bearings with (b) inner race fault, (c) roller fault, and (d) outer race fault.

WPT was performed on the vibration signals of different condition bearings and the energy factor
of each frequency band was extracted. As shown in Figure 22, the vibration energy of the fault bearing
signals was mainly concentrated in the 1st frequency band, and the normal bearing signal energy was
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mainly concentrated in the 4th frequency band. This is because, when the rail vehicle is in operation,
the wheel-rail contact generates a high-frequency vibration impact, which directly acts on the axle-box
at the shaft end of the wheelset. If the axle-box bearing is a normal bearing, the accelerometer can
directly monitor the high frequency impact, and if the bearing has a fault, the frequency-domain
characteristics of the signal change due to the fault impact and, so, the energy distribution in the
frequency domain will change as well. The 1st frequency band was selected for wavelet packet
reconstruction, and the CMPE was calculated from the reconstructed time-domain signal and input
into the MG-SVM classifier for bearing condition recognition.
Entropy 2019, 21, x FOR PEER REVIEW 18 of 23 

 

 

Figure 22. The energy factors of frequency bands of axle-box bearings in different conditions, which 

were calculated by three-layer WPT and energy feature extraction. 

Examples of the reconstructed signals are shown in Figure 23. Compared with the original 

signal (Figure 21), the same conclusion can be obtained: the low-amplitude noise was suppressed in 

fault bearing signals, and the amplitude difference between the normal bearing and the fault 

bearing signal was large, which facilitates the classification of normal bearings and fault bearings.  

  

(a) (b) 

  

(c) (d) 

Figure 23. The 1st frequency band reconstructed signals of different experimental bearing (from the 

wheelset-bearing system test bench) based on energy feature reconstruction: (a) normal bearing, (b) 

bearing with inner race fault, (c) bearing with roller fault, and (d) bearing with outer race fault. 

For signals of different bearing condition types, the training and testing data set samples were 

collated. For each bearing fault type, the number of training samples was 100 and the number of 

testing samples was 40. For mode classification, the normal bearing was marked with label 1, the 

inner race fault was marked with label 2, the roller fault was marked with label 3, and the outer race 

fault was marked with label 4. The classification results are shown in Figure 24 and Table 5. The 

classification accuracy of the normal bearings and fault bearings were 100%, and the recognition 

rate was high. There were four inner race faults incorrectly identified as outer race faults, two roller 

faults incorrectly identified as outer race faults, three outer race faults incorrectly identified as inner 

E
n

e
rg

y 
fa

c
to

r 
/ 

%

A
m

p
lit

d
e
/(

m
/s

2
)

A
m

p
lit

d
e

/(
m

/s
2
)

A
m

p
lit

d
e

/(
m

/s
2
)

A
m

p
lit

d
e
/(

m
/s

2
)

Figure 22. The energy factors of frequency bands of axle-box bearings in different conditions, which
were calculated by three-layer WPT and energy feature extraction.

Examples of the reconstructed signals are shown in Figure 23. Compared with the original signal
(Figure 21), the same conclusion can be obtained: the low-amplitude noise was suppressed in fault
bearing signals, and the amplitude difference between the normal bearing and the fault bearing signal
was large, which facilitates the classification of normal bearings and fault bearings.
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Figure 23. The 1st frequency band reconstructed signals of different experimental bearing (from the
wheelset-bearing system test bench) based on energy feature reconstruction: (a) normal bearing,
(b) bearing with inner race fault, (c) bearing with roller fault, and (d) bearing with outer race fault.
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For signals of different bearing condition types, the training and testing data set samples were
collated. For each bearing fault type, the number of training samples was 100 and the number of testing
samples was 40. For mode classification, the normal bearing was marked with label 1, the inner race
fault was marked with label 2, the roller fault was marked with label 3, and the outer race fault was
marked with label 4. The classification results are shown in Figure 24 and Table 5. The classification
accuracy of the normal bearings and fault bearings were 100%, and the recognition rate was high.
There were four inner race faults incorrectly identified as outer race faults, two roller faults incorrectly
identified as outer race faults, three outer race faults incorrectly identified as inner race faults, and one
outer race fault incorrectly identified as a roller fault. The overall recognition rate was 93.75%.
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Table 5. Classification results based on the proposed method for four bearing conditions.

Accuracy (%) (Correct Number/Testing Number) Total Accuracy (%)
Normal IRF BF ORF

100 (40/40) 90 (36/40) 95 (38/40) 90 (36/40) 93.75

5.4. Performance Comparison 2

Based on the data set obtained from the wheelset-bearing system test bench, the performance of
fault recognition between the proposed method with other bearing diagnosis methods was compared.
The fault recognition rates of the different algorithms are shown in Table 6, and it can be seen that the
proposed method was superior to other similar diagnosis methods in bearing fault recognition.

Table 6. Comparison results of different methods for fault diagnosis accuracy (data set from the
wheelset-bearing system test bench).

Different Approaches Accuracy (%) (Correct Number/Testing Number) Total Accuracy
(%)Normal IRF BF ORF

MPE + MG-SVM 100 (40/40) 65 (26/40) 88 (35/40) 83 (33/40) 83.75

CMPE + MG-SVM 100 (40/40) 73(29/40) 95 (38/40) 97 (39/40) 91.25

WPT-EF + MG-SVM 100 (40/40) 78 (31/40) 95 (38/40) 85 (34/40) 89.37

WPT-EFR-MPE + MG-SVM 95 (38/40) 63 (25/40) 90 (36/40) 83 (33/40) 82.50

Proposed method 100 (40/40) 90 (36/40) 95 (38/40) 90 (36/40) 93.75

6. Discussion

Compared with the classification results of the bearing data set from CWRU-BDC, the recognition
rate of the bearing data set from the wheelset-bearing system test bench was relatively low, which is
due to the fact that the axle-box vibration signal collected from the wheelset-bearing system contains
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high-frequency interference from the wheel-rail impact and, as the wheelset hunting occurs during
the traveling process, the wheel-rail impact signal transmitted to the axle-box becomes non-linear,
thereby increasing the difficulty of noise separation and fault-impact feature extraction in the axle-box
vibration signal, which is one of the main difficulties in fault diagnosis for axle-box bearings in rail
vehicles. Considering that the bearing-localized defects cause the axle-box bearing system to resonate
at a high frequency, which will lead to uneven energy distribution of the signal in the frequency
domain, the frequency bands with higher energy factors contain more fault feature information. Based
on the method of frequency-domain energy feature reconstruction, most of the interference signals
in the original signal can be removed; in particular, the energy of the normal bearing signal was
significantly reduced, which is beneficial in increasing the signal difference between a normal bearing
and a fault bearing. CMPE has the characteristics of sensitivity to the impact signal and stability of the
extraction results. Based on CMPE, the features of the reconstructed signals could be fully extracted.
The experimental results support theoretical analysis: for different bearing test data sets, the proposed
method can achieve higher recognition rate of bearing condition than the other methods. However, for
higher accuracy classification of fault type and fault size in axle-box bearings of rail vehicles, further
research is needed.

7. Conclusions

In this paper, a new method for fault diagnosis for rail vehicle axle-box bearings based on
frequency-domain energy feature reconstruction, CMPE, and MG-SVM is proposed. WPT can
decompose non-linear and non-stationary signals into different frequency bands. Based on the fact that
fault impact can cause axle-box bearing system resonance and lead to an uneven energy distribution
of the vibration signal in the frequency domain, the frequency band with maximum energy factor
containing abundant fault information is reconstructed to a time-domain signal. Compared with the
original signal, the reconstructed signal has lower noise interference and can better reflect the basic
features of the fault signal. CMPE is better than MPE, in terms of stability, and can be used to calculate
the complexity of the reconstructed signals. Multiple experimental data set analysis and classification
result comparisons of different feature extraction algorithms were performed. The proposed method
all achieved 100% recognition rate between normal bearings and fault bearings, and on the other hand,
compared with the other methods, the proposed method can achieve higher recognition in different
bearing conditions, which are 99.6% in the data set of CWRU-BDC and 93.75% in the data set of the
wheelset-bearing system test bench. It was concluded that the proposed method can extract the fault
feature and classify the fault mode of the bearing effectively, and this paper provides a new solution
for fault diagnosis for the axle-box bearing of rail vehicles.
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Appendix A

The signification of each acronym for different algorithms in this paper is listed in Table A1.
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Table A1. The signification of each acronym for different algorithms.

Acronym Signification

WT Wavelet Transform
WPT Wavelet Packet Transform

EF Energy Feature
EFR Energy Feature Reconstruction
PE Permutation Entropy

MPE Multiscale Permutation Entropy
CMPE Composite Multiscale Permutation Entropy
EMD Empirical Mode Decomposition

EEMD Ensemble Empirical Mode Decomposition
CEEMD Complementary Ensemble Empirical Mode Decomposition

CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
LMD Local Mean Decomposition
EWT Empirical Wavelet Transform
VMD Variational Mode Decomposition
ApEn Approximate Entropy

SampEn Sample Entropy
MSE Multiscale Entropy
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