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Abstract: A melt of short semi-flexible polymers with hard-sphere-type non-bonded interaction
undergoes a first-order crystallisation transition at lower density than a melt of hard-sphere monomers
or a flexible hard-sphere chain. In contrast to the flexible hard-sphere chains, the semi-flexible ones
have an intrinsic stiffness energy scale, which determines the natural temperature scale of the
system. In this paper, we investigate the effect of weak additional non-bonded interaction on the
phase transition temperature. We study the system using the stochastic approximation Monte Carlo
(SAMC) method to estimate the micro-canonical entropy of the system. Since the density of states
in the purely hard-sphere non-bonded interaction case already covers 5600 orders of magnitude,
we consider the effect of weak interactions as a perturbation. In this case, the system undergoes
the same ordering transition with a temperature shift non-uniformly depending on the additional
interaction. Short-range attractions impede ordering of the melt of semi-flexible polymers and
decrease the transition temperature, whereas relatively long-range attractions assist ordering and
shift the transition temperature to higher values, whereas weak repulsive interactions demonstrate
an opposite effect on the transition temperature.

Keywords: hard sphere; polymer; semi-flexible polymer; polymer melt; phase transition; entropy;
rotator phase

1. Introduction

Hard-sphere polymer models are easy in formulation and thus widely used for the investigation
of the thermodynamic properties of polymeric systems. The simplest model is a system of flexible
chains of tangent hard-sphere beads. Fixed bond length reduces the entropy of the system and shifts
the crystallisation volume fraction to a higher value, φc ≈ 0.51 [1,2], than the corresponding volume
fraction of non-bonded hard spheres φc = 0.494 [3]. However, the entropy reduction does not affect the
structure of the ordered state, both systems form a monomer-based mixture of face-centred cubic (FCC)
and hexagonal close packed (HCP) regions [1–3]. The role of square-well attraction was investigated
for single flexible hard-sphere chains theoretically (for short chains) [4] and numerically [5,6]. At low
temperatures, long chains form a stable crystal structure in the core of the frozen globule. The type
of the crystal structure, FCC, HCP, or body-centred cubic (BCC), depends on the chain length and
interaction width of the square-well potential [6]. Unlike the models discussed above, typical polymers
are semi-flexible, and the local stiffness plays an important role in the folding and crystallisation of
polymers [7–13]. For instance, a geometrical stiffness, where the bead size is bigger than the bond
length, induces the formation of complex non-crystalline single-chain structures depending on the
bead size to the bond length ratio [14].

The semi-flexible tangent hard-sphere chain is a simplified model of real polymers. We calculated
previously, by means of stochastic approximation Monte Carlo (SAMC) simulation [15–17],
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the micro-canonical entropy of a dense semi-flexible tangent hard-sphere polymer system [18]
(we provide a more detailed description of the model in Section 2). When the system is big enough,
the model polymer melt undergoes an ordering transition into a layered rotator-like phase, which
is similar to the rotator phases of n-alkanes: a family of smectically ordered phases with different
ordering in layers [19–22]. However, for a small hard-sphere chain system the size effects disorder
the layered structure, and the system forms a nematic phase with a hexatic ordering in the plain
perpendicular to the director [18].

We focus in the next sections on the influence of weak non-bonded interactions on the
thermodynamic properties of the semi-flexible hard-sphere polymer system. The micro-canonical
entropy of the system reaches the maximal difference ∆S/kB ≈ 12,960 (kB = 1 is the Boltzmann
factor). Thus, the density of states covers (gmax/gmin = e∆S) more than 5600 orders of magnitude [18].
The estimation of the micro-canonical entropy requires an extremely long computational time for such
a system. Therefore, we focus on corrections to the entropy caused by weak square-well attraction or
square-shoulder repulsion, which can be observed during a productive run with the micro-canonical
entropy of the system having purely hard-sphere non-bonded interactions. The entropy estimation
remains unchangeable during the productive run, which makes it possible to accumulate correct
arithmetic averages and distributions of parameters of the system.

2. Materials and Methods

We consider a system of hard-sphere polymer chains having N = 10 tangent beads of unit
diameter d = 1. The system is composed of Nc = 720 polymers in a simulation box with periodic
boundary conditions. The volume fraction is φ = (π/6)d3 · NNc/L3 ≈ 0.47, with L = 20d being the
linear size of the simulation box, which is below the crystallisation value φc = 0.494 for a system
of non-bonded hard-spheres [3]. The leading interactions are hard-sphere-type interactions of
non-bonded beads:

Unb (r) =

{
∞ r < d

0 r ≥ d
, (1)

where r is the separation between the centres of two beads, and a square-well bond-angle potential

Ua (θ) =

{
−ε θ ≤ θs

0 θ > θs
, (2)

where θ is the angle formed by adjacent bonds along a chain and cos θs = 0.9 or θs ≈ 26 deg.
The non-bonded interaction (1) restricts accessible configurational space, but has no energy
contribution. In contrast, the bond-angle interaction (2) defines the energy of the system U = ∑ Ua =

−naε, with na being the number of bond-angles in the range θ ≤ θs.
We numerically estimate the entropy, S (U), of the system by the SAMC method [15–18].

The micro-canonical entropy defines the logarithm of the density of states (DOS) of the system
ln g (U) = S (U). The SAMC method is a variant of the Wang–Landau algorithm having, in contrast
to the original procedure, proven convergence to the exact DOS [16,17]. When the micro-canonical
entropy is known, we can calculate any thermodynamic property of the system after accumulation
of corresponding averages during a productive run with the fixed DOS [18]. The value of
a thermodynamical parameter A at canonical temperature T can then be calculated as

〈A〉 (T) = 1
Z (T) ∑

na

A (na) eS(na)−U/T , (3)

where Z (T) = ∑na eS−U/T is partition function and A (na) is the mean value of A at energy U =

−naε, which can be estimated as an arithmetical average accumulated during a productive run.
As an example, we calculated the canonical heat capacity CV:



Entropy 2019, 21, 856 3 of 11

CV (T) =
〈U2〉 (T)− 〈U〉2 (T)

T2 (4)

The temperature dependence of the heat capacity is shown in Figure 1. A first-order phase
transition at T = 0.326ε separates ordered and liquid-like disordered states of the system. Chains are
flexible at high temperatures, but decreasing the temperature increases chain stiffness and induces
the first-order phase transition from a disordered melt to a rotator-like phase [18]. In the rotator-like
phase, all chains are stretched along a common director and hexatically ordered in a cross section
perpendicular to the director. This phase transition is a lyotropic one and occurs as the Kuhn length
reaches a critical value, depending on polymer concentration [18].

Figure 1. (a) micro-canonical entropy for the system of tangent hard-sphere flexible polymers
with purely repulsive non-bonded interaction. Entropy shifted according to its maximal value.
(b) Temperature dependence of the heat capacity per chain calculated with the entropy shown in
the left panel.

Non-bonded interactions, square-well attraction and square-shoulder repulsion, can be defined in
a general way:

Unb (r) =


∞ r < d

−εc d ≤ r < d + δ

0 d + δ ≤ r

, (5)

with positive εc > 0 corresponding to the attractive square-well potential, and εc < 0 to the repulsive
square-shoulder interaction. The total energy of the system now depends on both the bond-angle and
non-bonded potentials:

U = −na · ε− nc · εc, (6)

with nc being the number of bead pair separations within the non-bonded interaction range. We take
the pair of parameters (na, nc) as the parameters describing a macro-state of the system. For the
set of these macro-states, we calculate a two-dimensional (2D) entropy S (na, nc) and corresponding
2D DOS g (na, nc) = eS(na,nc). The 2D DOS g (na, nc) is related to the 1D DOS g (U) ≡ g (na) =
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∑nc g (na, nc). On the other hand, for each macro-state (na, nc), a conditional probability p (nc | na) =

g (na, nc) /g (na) can be calculated and so

g (na, nc) = p (nc | na) · g (na) . (7)

The 2D DOS as well as the conditional probabilities are a priori unknown and should be
calculated during a simulation. However, since even the estimation of a 1D DOS g (na) requires
a long computational time, an estimation of a 2D DOS similar to [23,24] is practically impossible for
this model. We perform a productive run with the fixed 1D entropy S (na) instead of the time-expensive
SAMC simulation and accumulate a visitation histogram H (na, nc). We base our estimation of the
conditional probabilities on the accumulated histograms:

p (nc | na) ≈
H (na, nc)

∑nc|na H (na, nc)
, (8)

where ∑nc|na indicates a sum over all number of contacts observed for a given na. The disadvantage of
this method is the concentration of reachable nc values around the most probable value corresponding
to a given na value. Owing to that we can observe only nc values having a probability of a few orders
of magnitude less than the maximal one for a given na. In essence, we assume that configurations
are very little affected by a weak non-bonded interaction | εc |� ε and consider it as a perturbation.
This assumption fails close to the minimal bond-angle energy, since the total configurational energy
variation is mainly caused in this case by contact changes. Thus, we are limited in our analysis to the
states located far enough from the ground state in the phase space.

The two-dimensional histogram H (na, nc) has a clear geometrical meaning: number of bead pairs
separated by a distance in the range d ≤ r < d + δ observed during a productive run. This number
depends neither on the energy associated with each contact nor, in particular, the sign of the energy
contribution. Consequently, the square-well attraction and square-shoulder repulsion interactions
of the same width produce the same visitation histogram. This allows us to use the accumulated
histogram for the both types of models. As we mentioned above, in the following, we associate
attractive interactions with positive values of εc and repulsive with negative ones.

3. Results

3.1. Structural Properties of the Non-Perturbed System

On the basis of the conditional probabilities p (nc | na) estimated according to (8), we calculate
the 2D entropy S (na, nc) = S (na) + ln p (nc | na). We provided calculations for a series of interaction
widths from δ = 0.025d to δ = 0.35d with a step 0.025d as well as for δ = 0.01d and δ = 0.5d. Some
examples of canonical probabilities of macro-states (na, nc),

p (na, nc | T) =
1

Z (T)
eS(na,nc)−U(na,nc)/T , (9)

are shown in Figures 2 and 3 for two interaction ranges δ = 0.15 and δ = 0.35 and two temperatures:
below (T = 0.31ε) and above (T = 0.35ε) the phase transition temperature Tc = 0.326ε. The most
probable number of contacts significantly changes during the phase transition for both interaction
ranges, but the direction of the change is opposite. The number of short-range interacting pairs
decreases during ordering (Figure 2), whereas for the long-range case we observe an increase in the
number of contacts (Figure 3). This difference indicates a rearrangement of the local packing of beads.
We analyse the local rearrangement by means of the radial distribution function

g2 (r) =
ρ (r)

ρ
, (10)
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where ρ (r) and ρ are monomer density at a distance r from a given bead averaged over all beads and
the mean monomer density in the simulation box, respectively.

Figure 2. Canonical probability distribution for the potential width δ = 0.15d at two temperatures:
(a–c) T = 0.31ε and (d–f) T = 0.35ε. Columns from left to right correspond to the cases of no additional
interactions, square-well attraction εc = 0.01ε and square-shoulder repulsion εc = −0.01ε. Probabilities
less than than 1% of the maximal value are not shown.

The radial distribution function can be estimated without further simulations with the help
of the mean number of contacts 〈nc (δ)〉 (T) observed at temperature T for the interaction range
δ. We calculate the mean values based on the 2D entropy function similar to (3) by replacing the
summation index by the 2D macro-state identifier (na, nc) and using the total energy (6). We take the
contact energy parameter εc = 0 to analyse a non-perturbed radial distribution function describing
the same system as in [18]. Since the difference of 〈nc (δk)〉 − 〈nc (δk−1)〉 is the mean number of beads
pairs located in the spherical layer δk−1 < r < δk, the local density of monomers in the layer confined
by two next interaction ranges δk−1 and δk can be estimated as

ρ (rk) = ρ

(
δk−1 + δk

2

)
≈ 3

2πNNc

〈nc (δk)〉 − 〈nc (δk−1)〉
δ3

k − δ3
k−1

. (11)

The calculated radial distribution function for the system with purely repulsive non-bonded
interaction is shown in Figure 4 for the two temperatures: below (T = 0.31ε) and above (T = 0.35ε) the
phase transition temperature. Because of the fixed bond length, the bonded beads have a configuration
independent contribution to the radial distribution function at r = d, hence we exclude it from the
contact energy as well as radial distribution function calculations. The exclusion has only a weak effect
of some value reduction of the g2 (r) on the leftmost point r1 = 1.005d in Figure 4.
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Figure 3. Canonical probability distribution for the potential width δ = 0.35d at two temperatures:
(a–c) T = 0.31ε and (d–f) T = 0.35ε. Columns from left to right correspond to the cases of no additional
interactions, square-well attraction εc = 0.01ε and square-shoulder repulsion εc = −0.01ε. Probabilities
less than than 1% of the maximal value are not shown.

Figure 4. The radial distribution function calculated for two temperatures: T = 0.31ε (black line) and
T = 0.35ε (red line).

The disordered polymer liquid at temperatures above the phase transition demonstrates a radial
distribution function typical for a disordered state and reaches the first minimum seemingly shortly
after the rightmost point presented in Figure 4. Rotator-like ordering of stretched chains at low
temperatures [18] modifies the radial distribution function. The change is caused by the combination
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of the global nematic ordering and the hexatic ordering in the plain perpendicular to the director.
A cross section transverse to the director crosses half of the chains, i.e., Nc/2 = 360 chains. The packing
of the 360 chains in a hexatic structure leads to a packing of 20× 18 chains in a cross section with
corresponding mean side lengths d and 10/9 · d ≈ 1.11d. Both length scales contribute the maximum
of the radial distribution function below the phase transition temperature. For two beads of the nearest
chains, which are shifted along the director on half of the bond length d/2, the distances for the short

and long hexagon sides are
√

d2 + (d/2)2 ≈ 1.1d and
√
(1.1)d2 + (d/2)2 ≈ 1.2d, respectively. Unlike

the flexible chains [1–3,5,6], an investigation of the local structures using the common neighbour
analysis [25] demonstrates very little increase in the number of atoms organised in FCC, HCP or
BCC crystal structures; at low energies only ∼2% of atoms are identified as being in one of these
crystal structures. This result is similar to the dense flexible polymer systems, which forms an ordered
FCC/HCP crystal state at packing fractions higher than φc ≈ 0.51 [1,2].

3.2. The Role of Non-Bonded Interactions

As we mentioned above, the disadvantage of the visitation histogram accumulation is a relatively
narrow range of numbers of contacts, which can be observed during a productive run. This limitation
becomes apparent in Figures 2 and 3. The border lines of the presented distributions correspond to
contour line drawn on the level of 10−2 of the maximum of the canonical probability. A roughness of
this contour line is visible even for a weak contact energy contribution with | εc |= 0.01ε. This restricts
accessible values of contact energy parameters to a very small range | εc |∼ 10−2ε. In this range,
the transition temperature measured in units of the contact energy is extremely high T/εc ∼ 102.
Thus, the contact energy cannot induce system (re)ordering, but affects thermodynamic properties
such as the phase transition temperature.

To analyse the transition temperature shift, we calculate the heat capacity for the 2D DOS similar
to (4) with energy contributions of both bond-angle and non-bonded interactions (6). The heat capacity
maps calculated for some interaction ranges δ are shown in Figure 5. Note that the upper halfs of the
heat capacity maps (εc > 0) correspond to the square-well attraction and the bottom halfs (εc < 0)
represent the influence of the square-shoulder repulsion. The effects of attraction and repulsion are
non-uniform as a function of the interaction range. For short interaction ranges, repulsive potentials
assist the ordering and increase the phase transition temperature. However, the shift of the phase
transition temperature is non-uniform. The effect grows until δ = 1.1d and reduces back to a level
comparable to the shortest interaction range δ = 1.01d for δ = 1.24d. Furthermore, for longer ranges,
repulsive and attractive interactions exchange roles: the repulsion impedes, whereas the attraction
assists the ordering. In all cases, the effects of attractive and repulsive interactions are opposite and the
phase transition temperature shift is smooth upon crossing the border-line εc = 0. This allows a linear
fit of the heat capacity maxima temperatures around the crossing point:

Tc = T0
c + εc × α (δ) , (12)

where the slope α (δ) reflects a ‘shift rate’ created by the additional interactions, and T0
c = 0.326ε is the

phase transition temperature in absence of contact energy contribution (For the fitting we considered
T0

c as a free fitting parameter, but the fitted values were the same for all interaction ranges, and equal
to the transition temperature of the system with purely hard-sphere interaction). Since positive values
of εc correspond to the square-well attraction, positive values of α > 0 correspond to the increase in
the transition temperature by attractive interaction, and the α < 0 indicates an ordering assistance of
the repulsive interaction. The fitted ‘shift-rates’ are presented in Figure 6.
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Figure 5. Heat capacity maps calculated for temperatures around the phase transition. The corresponding
interaction ranges are shown on the maps.

Figure 6. The phase transition temperature ‘shift-rate’ (12). The line represents a fit of central points
by the cubic polynomial f (x) = −0.0647− 7.247x + 45.6622 − 61.310x3, with x = δ/d. The neutral
interaction width estimated from the equation f (x) = 0 is δc = 0.245d.

The 2D hexatic ordering of the system in cross sections perpendicular to the director is governed by
maximising of the 2D entropy of the chain projections onto the cross section plain [18]. This ordering is
of the same nature as hexatic ordering of 2D hard disks. For perfectly aligned fully stretched chains the
areal density of the projections fall into the coexistence region between disordered and hexatic phases
of hard disks. We did not observe such coexistence in our data for the semi-flexible polymer model,
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hence we suppose an effective repulsion between neighbouring chains associated with bond-angle
fluctuations. The effective repulsion induces an increase in effective areal density. An additional
repulsive interaction makes for a further increase in the effective areal density, and assists ordering
of the system, but only for a relative short-range interaction comparable to the typical inter-chain
distances. The temperature shift-rate induced by this effect is maximal at δ ≈ 1.1d corresponding to
the longest hexagon’s side in the ordered state. Note that negative α (δ) values mean that the transition
is assisted by the square-shoulder repulsion, and the minimum of the α (δ) indicates the strongest
influence of the repulsion. Attractive interaction impedes ordering in these interaction ranges by
decreasing of inter-chain distances and the effective areal density.

Upon an increase in the repulsion width, a situation is reached, where two nearest beads of
neighbour chains are shifted by a distance ∼ d/2 along the director. This reduces the effective areal
density and the effective aspect ratio of the chains and reduces the transition temperature. In contrast,
an increase in the number of close neighbours by the attractive interaction helps to increase the role of
the effective repulsion and assists the ordering. Thus, the ordering assistance by attraction remains
at the widest investigated interaction range. The switching of the roles of attraction and repulsion
are found by the fitting of central part of the the shift-rate dependency on the interaction range by
a cubic polynomial (see caption of the Figure 6). The corresponding root of the fitting polynomial is
δc = 0.245d.

4. Discussion

We considered a dense semi-flexible polymer system and analysed the effects of a weak
square-well attraction as well as of square-shoulder repulsion on the thermodynamic properties
of the dense semi-flexible polymer system. In the case of purely hard-sphere interaction of non-bonded
beads, the considered system undergoes a first-order phase transition. The driving force of this
transition is the maximising of the three-dimensional orientational entropy leading to a nematic
ordering of the system with synchronous hexatic ordering in the plane transverse to the nematic
director. The hexatic ordering is governed by the maximising of the translational entropy contribution
associated with the 2D ordering of the system in the plane transverse to the director [18].

The flexible chains crystallise in a mixture of coexisting FCC/HCP structures [1,2] as non-bonded
hard spheres [3] or flexible single hard-sphere polymer chains with a square-well attraction [5,6]. While
the ordered state of semi-flexible chains at the considered packing fraction demonstrates a very small
total number of beads in the FCC, HCP and BCC structures. Thus, the liquid crystal ordering of the
semi-flexible chains system does not necessarily lead to a crystal ordering similar to a dense system of
flexible hard-sphere polymers or non-bonded hard-spheres.

Additional weak repulsive and attractive interactions have opposite effects on the phase transition
temperature. When attraction impedes ordering and decreases the transition temperature, repulsion,
vice versa, assists the phase transition. The square-shoulder repulsion assists the ordering transition by
increasing the effective size of the chains for the interaction widths range δ < 0.245d. For wider
interaction ranges, the ordering transition is assisted by square-well attraction. The transition
temperature shift depends not only on the interaction range, but also on the contact energy scale
εc/ε. We analyse this dependence in terms of the first derivative on εc (or slope) of the corresponding
dependence of the transition temperature (12). The slope α (δ) depends strongly and non-uniformly
on the interaction range. The strongest transition temperature increase by repulsive interaction was
observed for the interaction range comparable with the typical side length of hexagons formed in cross
sections transverse to the director. After that point, the role of repulsion decreases, whereas attraction
increases its influence.

A quantitative comparison of simulation results with real polymers requires a mapping of the
square-well attraction on the van der Waals interaction. The analysis provided in [26] shows that
δ/d ∼ 0.4÷ 0.7 is necessary for mapping the interaction range. The attraction within the required
range increases the transition temperatures almost equally over the whole range. The rotator-like
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structure of the system at low temperatures is in a good agreement with the experimental results
for melts of short n-alkanes, which also undergo an ordering into one of the (smectic-like) rotator
phases between melt and crystal states [19–21]. The temperature range of the stable rotator phases of
n-alkanes is ∆Tstable ∼ 10 K, which corresponds to a relative temperature range of a few percents of
the rotator-transition temperature ∆Tstable/Trot ∼ 10−2. While for the hard-sphere chain system with
weak attraction, we expect crystallisation temperatures of the order T ∼ εc < 10−2ε, which is much
less than the ordering temperature and is out of the parameter range satisfying the basic assumptions
of the presented method.
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The following abbreviations are used in this manuscript:

FCC Face-centred cubic
HCP Hexagonal close packed
BCC Body-centred cubic
DOS Density of states
SAMC stochastic approximation Monte Carlo
1D one-dimensional
2D two-dimensional

References

1. Karayiannis, N.C.; Laso, M. Dense and nearly jammed random packings of freely jointed chains of tangent
hard spheres. Phys. Rev. Lett. 2008, 100, 050602. [CrossRef] [PubMed]

2. Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Entropy-driven crystallisation in dense systems of athermal
chain molecules. Phys. Rev. Lett. 2009, 103, 045703. [CrossRef] [PubMed]

3. Engel, M.; Anderson, J.A.; Glotzer, S.C.; Isobe, M.; Bernard, E.P.; Krauth, W. Hard-disk equation of state:
First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 2013,
87, 042134. [CrossRef] [PubMed]

4. Taylor, M.P. Collapse transition for isolated square-well chain molecules: The exact density of states for short
chains. J. Chem. Phys. 2003, 118, 883–891. [CrossRef]

5. Taylor, M.P.; Paul, W.; Binder, K. All-or-none proteinlike folding transition of a flexible homopolymer chain.
Phys. Rev. E 2009, 79, 050801. [CrossRef] [PubMed]

6. Taylor, M.P.; Paul, W.; Binder, K. Phase transitions of a single polymer chain: A Wang–Landau simulation
study. J. Chem. Phys. 2009, 131, 114907. [CrossRef] [PubMed]

7. Shakirov, T.; Paul, W. Folded alkane chains and the emergence of the lamellar crystal. J. Chem. Phys. 2019,
150, 084903. [CrossRef] [PubMed]

8. Khokhlov, A.R.; Semenov, A.N. On the theory of liquid-crystalline ordering of polymer chains with limited
flexibility. J. Stat. Phys. 1985, 38, 161–182. [CrossRef]

9. Anwar, M.; Turci, F.; Schilling, T. Crystallisation mechanism in melts of short n-alkane chains. J. Chem. Phys.
2013, 139, 214904. [CrossRef]

10. Nguyen, H.T.; Smith, T.B.; Hoy, R.S.; Karayiannis, N.C. Effect of chain stiffness on the competition between
crystallization and glass-formation in model unentangled polymers. J. Chem. Phys. 2015, 143, 144901.
[CrossRef]

11. Rochette, C.N.; Rosefeldt, S.; Henzler, K.; Polzer, F.; Ballauf, M.; Tong, Q.; Mecking, S.; Drechsler, M.;
Narayanan, T.; Harnau, L. Annealing of Single Lamella Nanoparticles of Polyethylene. Macromolecules 2011,
44, 4845–4851. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.100.050602
http://www.ncbi.nlm.nih.gov/pubmed/18352353
http://dx.doi.org/10.1103/PhysRevLett.103.045703
http://www.ncbi.nlm.nih.gov/pubmed/19659372
http://dx.doi.org/10.1103/PhysRevE.87.042134
http://www.ncbi.nlm.nih.gov/pubmed/23679398
http://dx.doi.org/10.1063/1.1523914
http://dx.doi.org/10.1103/PhysRevE.79.050801
http://www.ncbi.nlm.nih.gov/pubmed/19518407
http://dx.doi.org/10.1063/1.3227751
http://www.ncbi.nlm.nih.gov/pubmed/19778149
http://dx.doi.org/10.1063/1.5087640
http://www.ncbi.nlm.nih.gov/pubmed/30823774
http://dx.doi.org/10.1007/BF01017855
http://dx.doi.org/10.1063/1.4835015
http://dx.doi.org/10.1063/1.4932193
http://dx.doi.org/10.1021/ma2003213


Entropy 2019, 21, 856 11 of 11

12. Osichov, A.; Rabe, C.; Vogtt, K.; Narayanan, T.; Harnau, L.; Drechsler, M.; Ballauf, M.; Mecking, S. Ideal
polyethylene nanocrystals. J. Am. Chem. Soc. 2013, 135, 11645–11650. [CrossRef] [PubMed]

13. Bu, H.; Pang, Y.; Song, D.; Yu, T.; Voll, T.M.; Czronyj, G.; Wunderlich, B. Single-molecule single crystals.
J. Polym Sci. B, Polym. Phys. 1991, 29, 139–152. [CrossRef]

14. Werlich, B.; Taylor, M.; Shakirov, T.; Paul, W. On the Pseudo Phase Diagram of Single Semi-Flexible Polymer
Chains: A Flat-Histogram Monte Carlo Study. Polymers 2017, 9, 38. [CrossRef] [PubMed]

15. Liang, F.; Liu, C.; Carroll, R.J. Stochastic approximation in Monte Carlo computation. J. Am. Stat. Assoc. 2007,
102, 305–320. [CrossRef]

16. Liang, F.; Liu, C.; Carroll, R.J. Stochastic Approximation Monte Carlo. In Advanced Markov Chain Monte Carlo
Methods: Learning from Past Samples; John Wiley & Sons: Chichester, UK, 2011; pp. 207–218.

17. Shakirov, T. Convergence estimation of flat-histogram algorithms based on simulation results.
Comput. Phys. Commun. 2018, 228, 38–43. [CrossRef]

18. Shakirov, T.; Paul, W. Crystallisation in melts of short, semiflexible hard polymer chains: An interplay of
entropies and dimensions. Phys. Rev. E 2018, 97, 042501. [CrossRef]

19. Sirota, E.B.; King, H.E., Jr.; Singer, D.M.; Shao, H.H. Rotator phases of the normal alkanes: An X-ray scattering
study. J. Chem. Phys. 1993, 98, 5809–5824. [CrossRef]

20. Sirota, E.B.; Singer, D.M. Phase transitions among the rotator phases of the normal alkanes. J. Chem. Phys.
1994, 101, 10873–10882. [CrossRef]

21. Wentzel, N.; Milner, S.T. Crystal and rotator phases of n-alkanes: A molecular dynamics study. J. Chem. Phys.
2010, 132, 044901. [CrossRef]

22. Milner, S.T.; Wentzel, N. Twist solitons in ordered phases of n-alkanes. Soft Matter 2011, 7, 7477–7492.
[CrossRef]

23. Zablotskiy, S.V.; Ivanov, V.A.; Paul, W. Multidimensional stochastic approximation Monte Carlo. Phys. Rev. E
2016, 93, 063303. [CrossRef] [PubMed]

24. Maltseva, D.; Zablotskiy, S.V.; Martemyanova, J.; Ivanov, V.A.; Shakirov, T.; Paul, W. Diagrams of States of
Single Flexible-Semiflexible Multi-Block Copolymer Chains: A Flat-Histogram Monte Carlo Study. Polymers
2019, 11, 757. [CrossRef] [PubMed]

25. Liu, Z.R.; Zhang, R.F. AACSD: An atomistic analyzer for crystal structure and defects.
Comput. Phys. Commun. 2018, 222, 229–239. [CrossRef]

26. Gil-Villegas, A.; del Río, F.; Vega, C. Thermodynamics of fluids obtained by mapping the collision properties.
Phys. Rev. E 1996, 53, 2326. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ja4052334
http://www.ncbi.nlm.nih.gov/pubmed/23855756
http://dx.doi.org/10.1002/polb.1991.090290201
http://dx.doi.org/10.3390/polym9020038
http://www.ncbi.nlm.nih.gov/pubmed/30970714
http://dx.doi.org/10.1198/016214506000001202
http://dx.doi.org/10.1016/j.cpc.2018.03.009
http://dx.doi.org/10.1103/PhysRevE.97.042501
http://dx.doi.org/10.1063/1.464874
http://dx.doi.org/10.1063/1.467837
http://dx.doi.org/10.1063/1.3276458
http://dx.doi.org/10.1039/c1sm05326d
http://dx.doi.org/10.1103/PhysRevE.93.063303
http://www.ncbi.nlm.nih.gov/pubmed/27415383
http://dx.doi.org/10.3390/polym11050757
http://www.ncbi.nlm.nih.gov/pubmed/31052227
http://dx.doi.org/10.1016/j.cpc.2017.07.026
http://dx.doi.org/10.1103/PhysRevE.53.2326
http://www.ncbi.nlm.nih.gov/pubmed/9964517
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Structural Properties of the Non-Perturbed System
	The Role of Non-Bonded Interactions

	Discussion
	References

